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Influential theoretical models argue that an internal simulation mechanism
(motor or sensorimotor simulation) supports the recognition of facial
expressions. However, despite numerous converging sources of evidence,
recent studies testing patients with congenital facial palsy (i.e. Moebius syn-
drome) seem to refute these theoretical models. However, these results do
not consider the principles of neuroplasticity and degeneracy that could sup-
port the involvement of an alternative neural processing pathway in these
patients. In the present study, we tested healthy participants and participants
with Moebius syndrome in a highly sensitive facial expression discrimination
task and concomitant high-density electroencephalographic recording. The
results, both at the scalp and source levels, indicate the activation of two differ-
ent pathways of facial expression processing in healthy participants and
participants with Moebius syndrome, compatible, respectively, with a dorsal
pathway that includes premotor areas and a ventral pathway. Therefore,
these results support the reactivation of sensorimotor representations of facial
expressions (i.e. simulation) in healthy subjects, in the place of an alternative
processing pathway in subjects with congenital facial palsy.

This article is part of the theme issue ‘Cracking the laugh code: laughter
through the lens of biology, psychology and neuroscience’.
1. Introduction
Human faces are a major source of data that healthy individuals can extract in a
split second by processing that occurs in distributed neural networks [1–3]. This
ability may ultimately support reasoning on others’ mental and affective states
and allows shaping behavioural responses, especially during fast ongoing
face-to-face interactions (e.g. [4]).

One of the most debated aspects in this field relates to the cognitive and
neural mechanism(s) through which humans can assign emotional meaning
to facial expressions.

The present research’s primary aim was precisely to clarify the nature of
these mechanisms and attempt to provide an explanatory model to account for
such conflicting findings. If on the one side it is established that emotional proces-
sing recruits a constellation of perceptual, cognitive, affective, motor and

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2021.0190&domain=pdf&date_stamp=2022-09-21
http://dx.doi.org/10.1098/rstb/377/1863
http://dx.doi.org/10.1098/rstb/377/1863
mailto:paola.sessa@unipd.it
mailto:pierfrancesco.ferrari@isc.cnrs.fr
http://orcid.org/
http://orcid.org/0000-0002-8748-2633
https://orcid.org/0000-0003-4521-0450
https://orcid.org/0000-0002-0778-3920
https://orcid.org/0000-0002-1529-2056
https://orcid.org/0000-0003-4492-3926
https://orcid.org/0000-0002-7054-3559
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

377:20210190

2
somatosensory components (e.g. [5]), a more heated debate
regards the theoretical position according to which the attribu-
tion of emotional meaning to others’ facial expressions is
ascribable to a mechanism of internal simulation that involves
motor, somatosensory and limbic regions (sensorimotor
simulation; [6]; embodied simulation; [7]).

According to the simulation models proposed in the litera-
ture, this simulation mechanism is considered either necessary
for emotion processing [8] or rather a contributing component
[6,9]. On the contrary, the detractors of simulation models
consider simulation an unnecessary process for optimal facial
expression recognition and deem as sufficient perceptual
processing supported by perceptual learning [10–12].

(a) Evidence in favour of simulation in facial expression
processing

At least three lines of experimental evidence sustain the exist-
ence of a simulation mechanism underlying the recognition
of others’ facial expressions. First, the studies that have
considered the role of the observers’ facial mimicry as a periph-
eral manifestation of the simulation mechanism provided
evidence that the active mimicry manipulation by the exper-
imenter [13–20] and mimicry deficiency in the case of some
clinical conditions [21–23] are associated with an impairment
of emotional expressions recognition/discrimination. Notably,
when facialmimicry is blocked through a hardening gel, neural
activity indexing visual working memory representations of
emotional expressions is reduced in amplitude [24]. Second,
neuroimaging studies provided convincing evidence of over-
lapping brain regions, including premotor, somatosensory,
and gustatory cortices, involved in the production and the
observation of emotional expressions [25–29]. Third, a cogent
body of evidence comes from studies in both patients with
brain lesions critical for the simulation accounts [30] and
healthy individuals subjected to virtual lesions through tran-
scranial magnetic stimulation [31,32]. This latter line of
evidence strongly supports the role of somatosensory, motor
and premotor regions in facial expression processing.

Even stronger support for the role of embodiment in
emotional processing comes from a recent functional magnetic
resonance (fMRI) study by Volynets and colleagues [33]. These
authors used a statistical Bayesian pattern recognition technique
demonstrating how executed and observed video-clipped facial
expressions of joy, anger and disgust are associatedwith discrete
neural signatures in the somatomotor system. The common
neural bases of facial expressions observation and production
included motor strip, supplementary motor area (SMA), soma-
tosensory cortices, anterior cingulate cortex (ACC), amygdala,
parts of the orbitofrontal cortex (OFC) and temporal pole.
Notably, specific patterns of activation within the motor strip,
SMA and somatosensory cortices could reliably predict which
facial expression had been observed or produced by the partici-
pant. These results prove that the recruitment of motor and
somatosensory regions during facial expression processing is a
marker of the recovery of expression-specific sensorimotor
representations (but see also [34]).

(b) Evidence against simulation in facial expression
processing

Although this set of studies, and in particular those that have
employed the perturbational approach [31,32], supports a
causal role of the recruitment of motor and somatosensory
regions in emotion recognition, other experimental evidence
seems to challenge this role dramatically, thus making
the potential contribution of sensorimotor representations’
reactivation in facial expression processing less clear.
A particularly relevant source of divergent evidence comes
from two studies in patients with congenital facial palsy,
specifically with Moebius syndrome (MBS; [35,36]).

MBS is an extremely rare congenital non-progressive
condition mainly characterized by facial paralysis. Given the
rarity of the syndrome, only a few studies have investigated
emotion recognition in MBS patients, none using neuroimaging
techniques, and, further, they present inconsistent results (for a
critical review, see [21]). Nonetheless, based on the sensorimotor
simulation models, one would expect that even a partial and
congenital inability to recruit the facial muscles should some-
how limit facial mimicry and the possibility of reactivating
expression-specific sensorimotor representations. According to
detractors of the simulation mechanism, evidence that these
patients may perform normotypical recognition/discrimination
would offer a convincing refutation of simulation models.

Using a single-case analysis approach,Vannuscorps et al. [36]
tested 11MBS participants in a series of eight behavioural exper-
iments. Most of the focus was on two MBS participants who
achieved normotypical behavioural performance despite their
severe facial palsy, leading the authors to conclude that motor
simulation is unnecessary for facial emotion recognition.1

Despite the seemingly flawless conclusion, these results are not
necessarily antagonist to the simulation account. Firstly, when
dealingwith congenital and acquired nervous system disorders,
it is mandatory to consider crucial variables such as neuroplasti-
city [37] and degeneracy, a concept introduced by Edelman
indicating ‘the ability of elements that are structurally different
to perform the same function or yield the same output’ [38–
40]. Demonstrating that (some) individuals with congenital
facial paralysis show normotypical behavioural outputs in
facial expressions recognition tasks does not disprove simulation
in healthy individuals, as alternative processing pathways (in
light of neuroplasticity and degeneracy) may have been estab-
lished in MBS individuals. Thus, neuroimaging investigations
aremandatory to disclose the unfolding of facial expression pro-
cessing in both MBS and control participants and, possibly, to
reveal the recruitment of degenerate pathways. Secondly, pre-
vious studies have suggested that visual matching tasks, rather
than labelling tasks, are more appropriate to unveil the role of
sensorimotor simulation and facial mimicry in emotion proces-
sing (e.g. [20]). This observation is in line with the evidence
supporting the reactivation of expression-specific sensorimotor
representations during the processing of facial expressions [33].
Altogether, these observations lead to the hypothesis that simu-
lation might be necessary to precisely characterize—from the
perceiver’s perspective—even subtle instances of others’ facial
expressions (see [24]). In this vein, very sensitive tasks are
required to detect possible subtle processing deficits (in terms
of accuracy and/or reaction times) in MBS subjects, and finely
tuned techniques are needed to test the hypothesis of degenerate
pathway activation in MBS subjects.
(c) The present investigation
We implemented a very sensitive emotion discrimination task
and the simultaneous recording of neural activity using high-
density (128 sensors) electroencephalography (i.e. hdEEG).



Table 1. Demographic data and clinical information for MBS participants

participant age gender cranial nerves involved disfunction

MBS1 54 M abducens nerve (VI); facial nerve (VII) no lateral eye movements; facial palsy

MBS2 57 M abducens nerve (VI); facial nerve (VII) no lateral eye movements; facial palsy

MBS3 38 M abducens nerve (VI); facial nerve (VII) no lateral eye movements; facial palsy

MBS4 25 F facial nerve (VII) facial palsy

MBS5 65 F abducens nerve (VI); facial nerve (VII) no lateral eye movements; facial palsy

MBS6 39 F abducens nerve (VI); facial nerve (VII) no lateral eye movements; facial palsy

MBS7 34 F abducens nerve (VI); facial nerve (VII) no lateral eye movements; facial palsy
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We aimed to test whether neural activity (in terms of both
event-related potentials and source activations) compatible
with sensorimotor simulation is observed in healthy
individuals and whether neural activity, compatible with an
alternative network likely of a compensative nature, is
observed in MBS individuals. To this aim, seven MBS partici-
pants and seven Control participants (matched for age,
gender, ethnicity and level of education) performed a subtle
discrimination task of both facial expressions and equally
challenging control non-face stimuli (i.e. animal shapes).
In addition, using the hdEEG technique provided us with
an unrivaled online window (compared to previous
behavioural investigations) on the possible degenerate/
compensatory processing pathway in MBS individuals.

We opted for two methodological/analytical choices.
First, all the results we present are based on contrasts
between brain activity (event-related potentials and source
activations) elicited by instances of facial expressions ran-
domly selected from morphing continua and brain activity
elicited by instances of animal shapes randomly selected
from morphing continua. This approach allowed us to isolate
face/facial expression-sensitive neural activity in both Con-
trol and Moebius participants, thus excluding possible
confounding factors related to a general deficiency in visual
processing and object recognition in MBS (i.e. not facial
expression-specific). We considered a control task that did
not include facial identity and/or morphing of facial identi-
ties more appropriate since several authors have questioned
the dissociability between facial expressions and identity
processing domains (see, e.g. [41]).

Second, to deal with the multiple comparison problem
and the Type I error, which are particularly relevant for
large spatio-temporal datasets like those produced by electro-
encephalographic research, we opted for the state-of-the-art
cluster-based permutation approach [42,43].

Using the contrastive approach reported above (facial
expressions vs. animal shapes), we expected to observe in Con-
trol participants differences in the neural processing between
the two stimuli categories (facial expressions versus animal
shapes) from early stages, encompassing the P1 and the
N170 [44,45] event-related potentials, with the involvement of
regions crucial for simulation models, such as the premotor
cortex and the inferior frontal gyrus (in particular the pars
opercularis). Concerning MBS participants, we expected to
observe facial expression processing relying on regions associ-
ated with visual and/or conceptual-semantic systems as a
marker of compensatory strategies linked with degeneracy/
neuroplasticity. Beyond the possible mechanisms hypothesized
as underpinning compensation (particularly following brain
lesions), two criteria are mandatory to define a particular
brain activityas compensatory. First, itmust occur in association
with correct behavioural performance; and second, it must
occur under demands precisely attributable to the damaged/
altered region or network (e.g. [46]). In the present context, we
will be allowed to define ‘compensatory’ neural activity selec-
tively observable in MBS participants if their behavioural
performance is comparable to that of control participants.
2. Methods
(a) Participants
Data were collected from 15 adult participants. Seven MBS
participants (MBS group: MBS 4 females and 3 males, M age =
40,43 years; s.d. = 11,03) were recruited through the Italian
Association of Moebius Syndrome (AISMo) and the Operative
Unit of Maxillo-Facial Surgery Head and Neck Department of
the University of Parma. Data collection was conducted at the
University of Padua. In table 1, demographic data and clinical
information concerning all participants with MBS are reported.
The inclusion criteria for adults with MBS were a certified diag-
nosis of unilateral or bilateral facial paralysis [47]. Exclusion
criteria were (1) the presence of congenital limb malformations
and (2) the presence of any psychiatric or physical illness at the
time of participation. Eight healthy controls were recruited to
match in terms of age, gender, ethnicity and level of education
with the MBS group. One control participant was discarded for
technical issues during data collection; thus, 14 participants
were included in the final sample. The sample size was deter-
mined through a power analysis using data simulation for
cluster-based permutation tests [48]. This analysis revealed that
a sample size of five participants was sufficient to obtain
power of at least 80% to detect a difference in event-related
potentials (ERP) data between two conditions (face versus non-
face stimuli) for a within-subject design. All participants reported
normal or corrected to normal vision using lenses or glasses and
did not have intellectual disabilities or other psychological or
neuropsychological disorders at the time of the test. All partici-
pants gave their informed written consent after a full
explanation of the procedure under the Declaration of Helsinki.
The study was approved by the Ethics Committee of the
University of Padova (Protocol no. 2855).

(b) Stimuli
The stimuliwere 11 coloured digital pictures (i.e. face and non-face,
and animal stimuli) for each morph continuum. The stimuli can be
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Figure 1. Schematic illustration of the sequence of events in two experimental trials, with facial expressions on the left, and with animals on the right (ITI, inter
trial interval). (Online version in colour.)
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viewed at the following link of the Open Science Framework repo-
sitory: osf.io/krpfb [49]. We adopted the stimuli developed by
Niedenthal et al. [50] and used in previous studies [18,20]. The
face stimuli consisted of images of a female model expressing
morphed combinations of two emotions continua; sadness–
anger and happiness–disgust, while the non-face control images
were selected from a morph of a horse and a cow that had maxi-
mally similar postures. The face continuum began at 100% sad
expression and 0% angry expression and transitioned in 20% incre-
ments to 0% sad expression and 100%angry expression.All images
were generated by cropping the face region, excluding the hair,
then they were resized to subtend a visual angle between 10 and
12 degrees.
(c) Experimental procedure
Stimuli were presented on a 17 inch monitor at a resolution of
1280 × 1024 pixels. Participants were seated comfortably in a
chair at a viewing distance of around 60 cm from the monitor.
Each trial began with a fixation cross of 500 ms that remained
in the centre of the screen throughout the trial. Then a target
image appeared, presented for 750 ms. The target was a stimulus
extracted from one of the three different morphing continua.

The target was then replaced by a noise mask blank screen
with a duration of 300 ms to limit the use of mnemonic strategies
(see [20]), followed by a test image. The test image was extracted
from the same morphing continuum as the target (figure 1). Par-
ticipants were instructed to maintain their gaze on the fixation
cross throughout the trial. The task was to compare the target
with the test image and to indicate if the test image matched
the target or not (by pressing ‘F’/‘J’ keys on the keyboard;
order counterbalanced across participants). The target and
image were identical in 50% of the trials. In the remaining 50%
of the trials, the test image was a different stimulus from the
same continuum. For example, if the target was a facial
expression from the happy–disgust continuum when a change
occurred, the test image was a different facial expression from
the same happiness–disgust continuum. The responses had to
be given without any time pressure. Following the participant’s
response, a variable interval of 1000–1500 ms (in 100 ms steps)
elapsed before the presentation of the fixation cross, indicating
the beginning of the subsequent trial.

Participants performed eight practice trials for the control
animal condition, eight for the anger–sad and eight for the
happiness–disgust facial expressions condition (counterbalanced
order across participants) in separate blocks of trials. The trial
order was randomized across participants and was separated
into three blocks for each continuum with self-paced breaks
every 20 trials. Participants performed 192 trials for each
continuum. The total number of trials was 540. E-prime 2 soft-
ware (Psychology Software Tools, Pittsburgh, USA) was used
to create and administer the experiment.

(d) Behavioural analysis
We tested our hypotheses using accuracy and reaction times
(RTs) as response variables. We considered only RTs in correct
trials. We analysed the effects on response accuracy and RTs by
setting a single factor within-subject experimental design that
we tested through generalized linear mixed-effect models
(GLMMs). We defined two separate GLMMs for RTs and accu-
racy for each of the two groups (i.e. MBS and control)
separately. Type of stimulus (i.e. Animal versus Face) was con-
sidered as a within-subject fixed factor. We set random
intercept models, with participants as the clustering variable.
Ninety-five percent confidence intervals (CIs) of the mean differ-
ences between conditions are reported in squared brackets. We
used the R statistical software [51] to run statistical analyses,
using the following packages: lme4 [52] to test the GLMMs,
emmeans [53] to test multiple comparisons, and car [54] to esti-
mate p-values, which were adjusted with the false discovery
rate correction [55]. We reported confidence intervals (set at
99%), defined only for t-tests, and referred to the difference of
means (i.e. Mdiff; as suggested by [56]). We also ran two separ-
ated models for RTs and accuracy, testing the interaction between
Type of stimulus and Group (i.e. MBS and Control), settled as
within-subject fixed factors. Results from these models are
reported at the OSF repository link [49].

(e) Electroencephalography recordings
We used a Geodesic hdEEG System (EGI GES-300) with a pre-
cabled 128-channel HydroCel Geodesic Sensor Net (HCGSN-
128) and electrical reference to the vertex. EEG data were
recorded during the entire experiment. The sampling rate was
500 Hz. The impedance was kept below 60 kΩ for each sensor.
To reduce signal contamination, participants were instructed to
limit eye blinks and eye movements as much as possible
during trials.

( f ) Electroencephalography pre-processing
Signal preprocessing was performed through EEGLAB 14.1.2b
[57]. The continuous EEG signal was first downsampled at
250 Hz and then bandpass-filtered (0.1–45 Hz) using a Hamming
windowed sinc finite impulse response filter (filter order = 8250).
The signal was successively epoched between −500 and 1500 ms

https://osf.io/krpfb
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Figure 2. The figure shows the violin and box plot of the single-subject data
for mean RTs for Control and MBS groups, separately. Light blue dots rep-
resent the mean of RTs for each type of stimulus. (Online version in colour.)
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from the target onset. Epochs related to trials containing prema-
ture responses were rejected. Epoched data were subjected to an
automated bad-channel and artefact detection algorithm using
the TBT plugin [58] implemented in EEGLAB. This algorithm
identified the channels that exceeded a differential average
amplitude of 250 µV and marked those channels for rejection.
Channels marked as bad on more than 30% of all epochs were
excluded. Epochs having more than 10 bad channels were also
excluded. Successively, we automatically detected possible flat
channels with the Trimoutlier EEGLAB plugin, with the lower
bound of 1 µV. Data cleaning was performed employing an inde-
pendent component analysis [59], using the Infomax algorithm
[60] implemented in EEGLAB. The independent components
(ICs) were automatically labelled using the IClabel plugin
[61]. ICs labelled as eye, heart, muscle, line noise or channel
noise with greater than 70% confidence were marked as artefac-
tual and rejected. The remaining components were then
projected back to the electrode space to obtain cleaner EEG
epochs. Finally, bad channels were reconstructed with the spheri-
cal spline interpolation method [62,63]. The data were then
re-referenced to the average of all electrodes, and baseline correc-
tion was applied by subtracting the mean signal amplitude in the
pre-stimulus interval. Epoched data were imported in Brain-
storm [64] to generate the individual average for each electrode
site and experimental condition. To isolate specific face-sensitive
responses, we first subtracted the electrical activity generated by
animals from that generated from faces. We used the global field
power (GFP, [65], i.e. the sum of the square of all the sensors at
each time point) of the differential waveforms plotted as a func-
tion of time, and the occurrence times of GFP maxima to
determine the latencies of each evoked potential component for
the two groups separately (±100 ms around the GFP maxima).
We employed this approach because crucial differences between
controls and MBS participants could be likely observed in terms
of the latencies of the components sensitive to the processing of
faces compared to non-face stimuli.

(g) Cortical source modelling
Baseline-corrected epochs were imported in Brainstorm [64] to
model their cortical generators. We used the ICBM152 anatom-
ical template to approximate the individual anatomy of each
participant [66]. Co-registration of EEG electrodes’ position was
performed via Brainstorm, projecting the digitized EEG sensor
positions GSN Hydrocel 128 E1 available in Brainstorm on the
head surface. We then derived an EEG forward model using
the three-layer boundary element method (BEM) from Open-
MEEG implemented as a Brainstorm routine [67,68]. The
source space was constrained to the cortex and modelled as a
grid of 15.002 orthogonal current dipole triplets. We used sLOR-
ETA as a source model with Brainstorm’s default parameter
settings. The empirical noise covariance model was obtained
from the average of ERP baseline signals. The sources were pro-
jected to the standard anatomical template (MNI), and their
activity was transformed in Z scores relative to the baseline.
Finally, a spatial smooth with a 3 mm full width at half
maximum was applied to each source.

(h) Electroencephalography statistical analysis
We applied a whole-scalp analysis approach at all electrode sites
using a paired t-test (α = 0.05) permutation approach to control
the family-wise error rate [69]. A similar technique was
employed in previous ERP studies [70–74]. To control for the
Type I error, we performed 5000 Monte-Carlo permutations
and applied cluster-based correction over all 128 electrode
locations and including all the timepoints within the temporal
windows (i.e. not averaged) using the Fieldtrip functions [75],
accessible via Brainstorm [64].
Finally, concerning the source statistic, a one-tailed 1000
Monte-Carlo permutation paired t-test was run over the mean
amplitude of the Z-scored maps, in the same (averaged in
time) windows of the ERPs components.
3. Results
(a) Behavioural results
We did not observe any significant effects at the accuracy
level. For RTs, we observed a statistically significant effect
of the Type of stimulus both for the control (x2ð1Þ = 83.71;
p < 0.001) and for the MBS group (x2ð1Þ = 19.12; p < 0.001).
The two groups showed an opposite pattern (see figure 2);
Controls were faster in trials with faces than animals
(t =−9.10; p < 0.001, Mdiff =−172,58, 95% CI [−204,23,
−132,22]), while MBS were faster with animals than faces
(t =−4.37; p < 0.001, Mdiff = 46,58, 95% CI [31,22, 81,99]).
(b) Electroencephalography results
GFP maxima of the difference waveforms (i.e. faces minus
animals) indicated two different time-windows of face sensi-
tivity for MBS and Control group. Two different peaks were
identified for each group: for the Controls, from 112 to
152 ms and from 168 to 208 ms, compatible with a P1 and a
N170 effect, respectively, while for the MBS, two later time-
windows were identified, i.e. from 180 to 256 and from 256
to 332 ms.

In the first time-window compatible with the P1 time
range and scalp distribution (112–152 ms), the Control
group presented a marginally significant positive cluster of
electrodes ( p = 0.051; cluster size = 203; cluster statistic =
604), showing a trend toward a larger amplitude in response
to faces as compared to animals. The permutation analysis in
the second time-window (168–208 ms) revealed a significant
positive cluster of fronto-central electrodes (p < 0.0001; cluster
size = 372; cluster statistic = 1394) and a negative cluster of
occipital electrodes ( p = 0.048; cluster size = 250; cluster stat-
istic =−785), compatible with the N170 component (see
figure 3a).

In the first selected time-window (180–256 ms), the MBS
group presented a significant negative cluster of occipital elec-
trodes ( p = 0.005; cluster size = 226; cluster statistic =−714),
while the second time-window (256–332 ms) revealed a
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(Brodmann area 11); and the pSTS, posterior superior temporal sulcus (Brodmann area 22). The right panel shows the greater activity for faces in the MBS group in:
OFC, orbitofrontal cortex (Brodmann area 11); anterior inferior gyrus (Brodmann area 20) and middle temporal gyrus (Brodmann area 21). (Online version in colour.)

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

377:20210190

6



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.

7
positive right fronto-central cluster of electrodes (p < 0.022;
cluster size = 74; cluster statistic = 223).

To estimate face-sensitive areas, we performed one-tailed
permutations at the level of the sources by comparing the
activity elicited from faces to the one from animals in the
averaged late time-window including anterior clusters (Con-
trols: 168–208 ms; MBS: 256–332 ms; p < 0.05) as we were
particularly interested in anterior sources activation.

In the Control group, the source statistic revealed the
engagement of the left IFG (pars opercularis, orbitalis and tri-
angularis) and premotor cortex and SMA, as well as the left
anterior cingulate cortex. Further, we also found a higher acti-
vation for facial expressions compared to animals in the right
posterior superior temporal sulcus (pSTS) and the left medial
OFC (see figure 3b, left panel).

The same analysis for the MBS group revealed a stronger
activation for facial expressions than animals in the right
anterior middle and inferior temporal gyri, the right temporal
pole, and the lateral OFC bilaterally (see figure 3b, right panel).
 B
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4. Discussion
In the face of several sources of evidence supporting the hypoth-
esis of a functional reactivation of sensorimotor representations
in emotional expression recognition [25–28,30,33] some diver-
ging evidence seems conclusive in holding that this ability
does not require sensorimotor simulation.

A particularly relevant source of opposing evidence is
based on normotypical abilities in facial expression recog-
nition tasks shown by some individuals with MBS [35,36].
This evidence has been interpreted as supporting the suffi-
ciency of a visual analysis system jointly with a perceptual
learning mechanism as underlying emotion recognition.
Still, these conclusions are not unquestionable and do not
conclusively disprove sensorimotor simulation models.

Firstly, the tasks employed in these previous studies onMBS
individuals used very high-intensity expressions and/or
required them to label the expressions and, therefore, could
have been not appropriately sensitive to reveal subtle deficits.
Secondly, when dealing with congenital and acquired nervous
system disorders, it is mandatory to consider compensatory
and neuroplasticity mechanisms, likely leading to the develop-
ment of alternative network(s) for facial expression recognition.
Thirdly, some simulation models [6] implicitly acknowledge
the brain mechanism of degeneracy [39,40] and conceive the
involvement of the sensorimotor system as an important contri-
bution within a complex network in which different nodes
process partially overlapping aspects of the same type of infor-
mation. From these considerations derives the need for
particularly sensitive techniques and paradigms to detect
whether and how emotional recognition is implemented in the
brain through an alternative neural pathway in the case of the
absence/deficiency of a contribution from sensorimotor regions.

In brief, these previous studies do not directly inform us
on the neurocognitive functioning in healthy subjects, nor
do they inform us about possible alternative compensatory
networks in MBS individuals.

In the present investigation, employing a highly sensitive
emotion recognition task that included control stimuli (i.e.
animal shapes) and the use of hdEEG, we exactly pursued
the aim to evaluate whether emotion recognition processing
was associated with the involvement of the sensorimotor
system in healthy participants and whether an alternative
network was recruited in MBS participants.

Regarding the behavioural performance, we did not
observe differences in accuracy for facial expressions versus
animal shapes, both in healthy Control participants and
in MBS participants. However, in terms of speed (i.e. RTs),
Controls and MBS showed opposite patterns, with Control
participants faster with facial expression stimuli than
animal shapes stimuli, and MBS, vice versa, faster with
animal shapes stimuli than with facial expression stimuli.
Interestingly, a similar effect in terms of RTs was recently
observed in individuals with temporarily acquired facial
palsy (i.e. Bell’s palsy; [76]).

To characterize the spatio-temporal unfolding of facial
expression processing in both healthy Control and MBS par-
ticipants, we employed cluster-based and permutation tests
on ERPs and brain source signals, respectively.

In Control participants, testing for two early face-sensitive
effects (facial expressions versus animal shapes) compatible
with the temporal windows encompassing the P1 and the
N170, the cluster-based permutation test revealed a difference
between facial expressions and animal shapes that
approached significance ( p = 0.051) for the first temporal
window and a significant difference for the second temporal
window comprising the N170. For the P1 time range, the
difference was most pronounced over occipito-parietal sen-
sors, while in the N170 time range, the difference was
characterized by two main clusters of activity, namely one
negative cluster encompassing the N170 (which indicated a
larger N170 for facial expressions than for animal shapes;
see also [77]) and one positive cluster most pronounced
from centro-parietal to frontal regions. The source-level
analysis contrasting facial expressions versus animal shapes
within the second temporal window (that included the
more anterior positive cluster) indicated facial expression-
selective recruitment of the right pSTS (a region critical
within the core system and mainly involved in the processing
of mutable aspects of faces such as facial expressions and eye
gaze direction; [1]) and the right angular gyrus. Most interest-
ingly for our aims, we observed selective recruitment of the
left premotor cortex, the pars opercularis, orbitalis and trian-
gularis of the left IFG, the left SMA, the left anterior cingulate
cortex, and the medial portion of the OFC.

Precisely to account for the results converging with the
simulation account, the latest version of the distributed neural
model of face processing by Haxby & Gobbini [1] has included
amotor simulationmechanism as a component of the extended
system comprising the frontal operculum, aimed at assigning
meaning in terms of emotion to facial expressions firstly visu-
ally analysed/detected in the core system, with a key role of
the pSTS.

In brief, these results on healthy individuals dovetail nicely
with the previous evidence supporting simulation and those
results that provide evidence for a common neural basis for
facial expressions observation and production [25–29].
Especially the IFG, in particular the operculum (BA 44), is con-
ceived as a portion of an ancient system underlying emotional
contagion recruited during emotion recognition and empathy
tasks [78,79]. The left lateralization we have observed in ERP
and source analyses could be interpreted as in line with the
Arousal Hypothesis, which states that low arousing facial
expressions of emotions tend to preferentially activate the left
hemisphere, especially the left frontal operculum [78]. Here
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most of the facial expressions that participants viewed were of
low intensity (i.e. low arousing) since they were extracted from
morphing continua and, along with the Arousal Hypothesis,
could have preferentially recruited a left neural pathway. The
observation of the recruitment of the medial portion of
the OFC deserves separate consideration. For a long time,
OFC has been considered a region supporting cross-category
and abstract general-domain processing of stimuli reward
value, regardless of whether such stimuli are social or not
(i.e. ‘common currency’ response in the OFC; [80]). However,
more recently, some influential studies have provided evidence
in support of the existence of face-selective patches in the OFC
[81,82], in particular in the most medial portion, underlying
affective and motivational face processing, and, in monkeys,
preferentially responding to emotions and social categories,
in particular, facial expressions, juvenile and female monkeys
[81] in a time-window of around 130–220 ms following the
face onset [81,82]. Since we did not match facial expressions
and animal shapes for their motivational value, we cannot
directly disentangle between the ‘common currency’ view
and the face-selective proposal regarding the OFC activation
we observed. However, the selective recruitment of the
medial portion of OFC fits nicely with the latter view [82].

Interestingly, in MBS participants, the neural activity
indicated a sensitivity to facial expressions (versus animal
shapes) that occurred later in time from around 180 ms
post-stimulus onset. We individuated two different temporal
windows of facial expression sensitivity, namely between 180
and 250 ms and between 250 and 330 ms. The first of the two
temporal windows was characterized by a negative cluster
slightly right-lateralized at occipito-temporal sensors. This
cluster is functionally compatible with an N170-like activity,
although temporally delayed, of larger amplitude for facial
expressions than animal shapes. The second, positive cluster
indicated a significant difference between facial expressions
and animal shapes that was most pronounced at the right
centro-frontal sensors.

The source-level analysis (facial expressions versus
animal shapes) within this averaged later temporal window
showed the facial expression-selective recruitment of the
right anterior inferior and middle temporal gyrus, the right
temporopolar region, and the lateral OFC.

We interpret thesewhole findings in the light of degeneracy
and neuroplasticity, while also showing that healthy individ-
uals recruit regions critical for sensorimotor simulation
during face processing.

Expanding from Haxby and Gobbini’s [1] distributed
neural model of face perception, more recently Duchaine
and Yovel [83] proposed a revised neural framework of face
processing to account for new evidence partially challenging
the original model. To our aims, we want to stress here that in
this revised model, both the fusiform face area (FFA) and
pSTS contribute to facial expression processing, with the
former being generically sensitive to form information
(independent of this conveying emotional information) and
pSTS selectively sensitive to facial expressions (see, e.g. [84]).
Furthermore, the model integrates the discovery of additional
face-selective areas by proposing the existence of two differ-
ent processing pathways dedicated to face processing,
namely a ventral pathway (including the anterior temporal
lobe face area, ATL-FA) which preferentially represents
form information but which nonetheless contributes to the
processing of emotional expressions (see, e.g. [85]) and a
dorsal pathway (which includes pSTS and the inferior frontal
gyrus face area, IFG-FA), specialized in representing chan-
ging aspects of faces, such as expressions, direction of the
gaze and movements of the mouth. Interestingly, Pitcher &
Ungerleider [86] recently proposed a pathway of visual pro-
cessing specialized for social perception. Notably, this
pathway largely overlaps with the dorsal pathway of face
processing of the model by Duchaine and Yovel [83]. The
main common nodes between the dorsal pathway for face
processing and the pathway for social perception are the
pSTS face area (i.e. pSTS-FA) and the anterior STS face area
(i.e. aSTS-FA), both selectively recruited in healthy partici-
pants in the present study. Conversely, a region compatible
with the ATL-FA was selectively activated in MBS partici-
pants. As this is a central node for the ventral face
processing pathway in the Duchaine and Yovel’s [83]
model, the conclusion of a degenerate and compensatory
processing pathway in MBS appears even more plausible.2

One source of evidence in favour that both FFA and pSTS
may play a role in expression recognition by extracting differ-
ent sources of information from faces comes from a study by
Said et al. [84], who presented computer-generated faces
varying along two different dimensions, namely expression
and typicality relative to the average face. These authors
observed that FFA was sensitive to deviations for both
dimensions while pSTS was sensitive to deviations from the
average face in terms of expression. This pattern of findings
may indicate that FFA is overall sensitive to even subtle
differences in shape, and MBS individuals may use this infor-
mation, at least for static subtle facial expressions, activating
the ventral pathway when processing emotional faces. This
is even more plausible when considering that the ATL-FA,
which belongs to the ventral pathway and has direct connec-
tions with FFA, was selectively recruited in MBS participants.
ATL-FA has been associated with tasks involving configural
and/or identity face processing. Nevertheless, it is interesting
to note that configural processing is important not only for
face recognition but also for facial expression recognition
because of the peculiar spatial arrangement of the features
that characterize the different facial expressions and the
different instances of the same facial expression (e.g. [88]).

In conclusion, our results seem to support the notion that in
healthy individuals the preferential route for facial expression
processing is the one involving the dorsal pathway and the
motor system. At the same time, our findings suggest that
the ventral pathway can contribute (at least for static emotional
expressions) by the mechanisms of degeneracy and neuroplas-
ticity, thus allowing normotypical behavioural performance in
MBS individuals. We deem that the neural activity selectively
observed in MBS is a marker of compensatory processes, also
in the light of behavioural performance,which in terms of accu-
racy of facial expressions discrimination was similar to that of
Controls (see, e.g. [46]). To note, however, the neural analysis
revealed a delay of several tens of milliseconds in response
selectivity to emotional faces in MBS participants compared
to control participants. This delay could obviously have a
noticeable dysfunctional impact in face-to-face interactions
that future research needs to explore.

The possible advantage(s) in functional terms of reactivat-
ing sensorimotor representations in healthy
individuals remain to be understood. One first possible
advantage comes from experimental evidence suggesting
that the dorsal/simulation pathway could be particularly
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efficient for face processing in poor/no-visibility conditions.
For instance, Jiang et al. [89] investigated the processing time-
course of faces with neutral and fearful expressions under
conditions of interocular suppression and demonstrated that
invisible fearful faces selectively recruit STS. Along the same
line, emotional contagion and spontaneous mimicry have
also been reported for unattended or unconscious facial
expressions, thus advocating for their critical role in non-
conscious emotion recognition (e.g. [90,91]). A secondpotential
advantage concerns the possibility that motor simulation
might bolster synchronization during social interactions.
Facial mimicry, as a manifestation of motor simulation, is
one of the primary mediators of emotional contagion;
as such, facial mimicry is plausibly one of the main mechan-
isms of emotion and mood sharing, favouring coordination
and synchronization between interacting individuals, both
human and non-human animals, such as geladas, gorillas
and dogs (see, e.g. [92]). Finally, the recruitment of one’s
motor system could make us ‘participants’ of others’ emotions
rather than mere ‘spectators’ [93,94], allowing us to ‘feel’
others’ emotions and enriching the subjective experience of
the social world.
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Endnotes
1Note, however, our own population statistical analyses on the orig-
inal open data showed that in three out of five experiments MBS
patients performed worse than Control participants. Generalized
linear mixed models (i.e. logistic regression) were performed for
experiments 1–5. The statistical model was the same across exper-
iments: Score∼Group+(1|ID) (in Wilkinson notation). Score is the
response variable (0 =wrong, 1 = correct), Group is a binary factor
(MBS vs. Control participants) inserted as fixed effect and a
random intercept for ID (subjects’ identifier) for the repeated measure
design. For Experiment 1, p = .011; for Experiment 2, p < .001; for
Experiment 3, p = .79; for Experiment 4, p = .038; and for Experiment
5, p = .121.
2To note, the dorsal and ventral pathways of Duchaine & Yovel’s [83]
model do not correspond anatomically to those of the vision of the
‘two-stream hypothesis’ [87]. On the contrary, Pitcher & Ungerleider
[86], when citing the dorsal and the ventral pathways, strictly refer to
the ‘two-stream hypothesis’.
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