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ABSTRACT: In this work, we present a detailed comparison between wave-
function-based and particle/hole techniques for the prediction of band gap energies of
semiconductors. We focus on the comparison of the back-transformed Pair Natural
Orbital Similarity Transformed Equation of Motion Coupled-Cluster (bt-PNO-
STEOM-CCSD) method with Time Dependent Density Functional Theory (TD-
DFT) and Delta Self Consistent Field/DFT (Δ-SCF/DFT) that are employed to
calculate the band gap energies in a test set of organic and inorganic semiconductors.
Throughout, we have used cluster models for the calculations that were calibrated by
comparing the results of the cluster calculations to periodic DFT calculations with the
same functional. These calibrations were run with cluster models of increasing size
until the results agreed closely with the periodic calculation. It is demonstrated that
bt-PNO-STEOM-CC yields accurate results that are in better than 0.2 eV agreement
with the experiment. This holds for both organic and inorganic semiconductors. The
efficiency of the employed computational protocols is thoroughly discussed. Overall,
we believe that this study is an important contribution that can aid future developments and applications of excited state
coupled cluster methods in the field of solid-state chemistry and heterogeneous catalysis.

I. INTRODUCTION
The fundamental energy gap or the band gap (BG) is an
important intrinsic physical property of any solid material. In
fact, all the materials can be categorized into three general
classes depending on the magnitude of the measured band gap
energies. Materials with negligible band gap energy (∼0 eV)
are characterized as conductors or metallic materials. Materials
with very large band gap energies (>15 eV) are said to exhibit
insulator behavior, while those having intermediate band gap
energies are described as materials showing semiconductor
behavior.1−3

For an N electron neutral system, the fundamental band gap
(fundamental BG) is defined as the energy difference between
the ionization potential (IPN) and the electron affinity (EAN)
energies (E) so that BG = IPN − EAN. IPN is the minimum
energy that is required to remove one electron from the neutral
N electron system (IPN = EN−1 − EN), while EAN is the
minimum energy that is required to remove one electron from
the N + 1 electron system (EAN = EN − EN+1) so that BG =
[EN−1 − EN] − [EN − EN+1]. The fundamental band gap is also
called transport band gap because it determines the minimum
energy necessary to create a charge carrier in the material.4 In
an alternative definition, the band gap refers to the excitation
energy of the lowest allowed transition and hence is called
optical band gap (optical BG). In organic semiconductors, the
energy difference between the fundamental and optical band
gaps is about 2−3 eV, and quite commonly photoemission and
absorption or reflectance optical spectroscopies can exper-

imentally probe both of them. In contrast, for inorganic
semiconductors, it is not always possible to clearly distinguish
between these two types of energy gaps.4 The experimentally
observed fundamental or optical band gaps are further
characterized as direct BGs or indirect BGs depending on
whether the experimentally probed excitation process involves
vertical (nonadiabatic) or adiabatic excitations.4

Over the past decades, density functional theory (DFT) in
the framework of periodic calculations or nonperiodic
embedded cluster calculations has been widely applied in
electronic band structure studies in an effort to predict this
fundamental property.1,5−8 In particular, a variety of DFT
approaches (one-electron energies or Δ-SCF), linear response
DFT approaches like the many-body Green’s function
approximation (GW), the Bethe−Salpeter equation, as well
as time-dependent density functional theory (TD-DFT)
provide access to the fundamental and optical BG energy
with an accuracy that is strongly functional dependent.1,5,6,9−11

It has been shown that in periodic DFT calculations the local
as well as the semilocal and the generalized gradient
approximation (GGA or meta-GGA) density functionals, the
most affordable functionals for solids, strongly underestimate
the magnitude of the band gap energies in the semiconductor
class of chemical systems (more than 1 eV on average).5,6,8 On
the other hand, hybrid functionals (global or screened) are
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known to perform better. Global hybrid functionals like
B3LYP, B3PW91, and PBE0 or screened hybrid functionals (in
plane-wave DFT) like HSE are able to lower the mean
absolute errors in the band gap calculations to about 0.4 eV.1,5

It should be noted that these errors are very similar to the
errors of the many body perturbation GW approach.1,5

Meanwhile, a wide variety of specialized functionals have
been designed like the SCAN meta-GGA functional that
minimizes the self-interaction and improves the efficiency of
the band gap calculations for solids toward the accuracy of
hybrid functionals and GW methods.7,8 Similarly, the range
separated quantum theory project (CAM-QTP) family of
functionals has been proven successful in calculating band gaps
and charge transfer excitation energies in benchmark
studies.12,13 Diagrammatically derived functionals based on
the random phase approximation (RPA) have been also
employed to calculate band gaps, but they are limited to small
solid-system sizes due to the high computational cost.14

Alternatively, electron correlation phenomena can be treated
in the framework of ab initio wave-function-based methods.
These methods are based on a systematic expansion of the
many-particle Schrödinger equation. The most powerful
methods are based on coupled-cluster (CC) theory;15−17 by
including higher and higher excitations, CC theory systemati-
cally converges to the exact solution of the many-particle
Schrödinger equation. Fortunately, the convergence with
excitation rank has been proven to be rather fast. Already,
CC theory with single and double replacements, relative to a
reference determinant (usually, the Hartree−Fock wave
function), provides results that are considered the “gold
standard” in quantum chemistry.18,19 Owing to exponential
ansatz, the truncated CC methods are strictly size consistent at
any level of truncation.19,20 This guarantees the correct scaling
of the CC methods with the system size, thus leading to an
accurate description of the relative energies along the potential
energy surface or between different electronic states. Hence,
CC methods, in principle, are ideal tools to treat chemical
phenomena in the field of molecular and solid-state
chemistry.21,22 Extension of the CC methodologies to treat
excited state phenomena is conventionally performed in the
framework of the linear response (LR)23,24 or equation of
motion (EOM)18,25−27 theories. A particularly attractive
variant of EOM-CCSD has been developed by Nooijen and
Bartlett and is called similarity transformed EOM-CCSD
(STEOM-CCSD).26,28 Through a carefully chosen sequence of
similarity transformations, one can reach a large manifold of
singly excited states by diagonalizing a Hamiltonian that only
has the dimension of the hole/particle space (e.g., the same
size as the CI-singles matrix). Thus, STEOM-CCSD gives
efficient access to many excited states. However, at the same
time its intrinsic accuracy surpasses that of EOM-CCSD.26,28

STEOM-CCSD has shown excellent performance in calculat-
ing excited state and magnetic properties on a variety of small
and medium size chemical systems.29

Unfortunately, for many years, the applicability of CC
methods was limited to rather small molecules (20−30 atoms
max.) due to the steep scaling of the computational time with
the system size (i.e., O(N)6 for CCSD and O(N7) for
CCSD(T); N is a measure of system size). Thus, until recently,
wave function based correlation methods were not tractable for
surface problems or were too demanding to be applied
routinely.30−37 However, several important ground and excited
state applications at the level of periodic Monte Carlo coupled

cluster (CC) and full configuration interaction (full-CI)
exist,33,34,37 while recently band structure calculations of
several semiconductors have been performed at the level of
periodic equation of motion based coupled cluster (EOM-CC)
theory.38,39

However, it has been shown that exploiting the short-range
character of the dynamical correlation in the framework of
local correlation techniques can alter the severe limitations
imposed by the steep scaling of the wave-function-based
methods with system size and provide access to various surface
problems.40 In this direction, periodic local second-order
Møller−Plesset perturbation theory (MP2) has been used to
treat a number of surface problems.21,22,41−44 Similarly, for
nonmetallic systems, it has been shown that embedded cluster
models that treat the long-range electrostatics and polarization
on a molecular mechanics level can lead to an effective
reduction of the system size that needs to be treated quantum
mechanically.45−50 The combination of these two approaches
has been proven instrumental for performing “gold standard”
CCSD(T) level calculations for surface systems.32,51 It has
been shown that, provided that the quantum region is
described at the level of the domain-based local pair natural
orbital version of the CCSD(T) approach (DLPNO-CCSD-
(T)),52 the adsorption energies for a set of small molecules at
the rutile TiO2(110) surface can be computed with errors of
<0.04 eV (1 kcal/mol) with respect to the available
experimental values.32

Local correlation methods in combination with excited state
methods are much less explored. It has been shown that
correlated methods for excited states based on either
configuration interaction or couple cluster schemes like
CIS(D), CC2, or ADC2 can be used to generate excited
state PNOs,53−55 thus leading to state specific PNO−CI and
PNO-CC based methods. More recently, we have shown that a
ground state PNO scheme can be used in combination with
the original equation of motion coupled-cluster techniques
EOM-CC and STEOM-CC,18,19,26 resulting in the back-
transformed (bt) bt-PNO-EOM-CCSD and bt-PNO-STEOM-
CCSD methods (also referred to as EOM-CC and STEOM-
CC), which provide a balanced description for valence, charge
transfer (CT), and Rydberg states in optical spectroscopy.56,57

In particular, bt-PNO-STEOM-CCSD has been able to
describe the excited states of a wide variety of chemical
systems delivering errors below ∼0.1 eV for valence, Rydberg,
and CT states.56−58

In this work, the performance of the bt-PNO-STEOM-
CCSD method to calculate a variety of energy gaps in organic
and inorganic semiconductors will be evaluated. For this
purpose, a test set of organic and inorganic semiconductors
will be employed with band gap energies ranging between 1
and 14 eV. In particular, it will be shown that bt-PNO-
STEOM-CCSD alone or when combined with embedded
cluster approaches in the case of inorganic semiconductors
delivers an efficient computational protocol with strong
predictive ability for band gap energies. The performance of
bt-PNO-STEOM-CCSD will be evaluated against available
experimental data and various Δ-SCF/DFT and TD-DFT
methods.

II. THEORETICAL CONSIDERATIONS
II.A. Relation between Fundamental and Optical

Energy Gaps in Particle/Hole and Wave-Function-
Based Methods. As was discussed for an N electron system,
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the fundamental or transport energy gap is defined as ΔEF =
[EN−1 − EN] − [EN − EN+1] = IPN − EAN, where IPN and EAN
refer to the vertical ionization potential and electron affinity of
the system. In the one-electron picture, these quantities can be
replaced by the energies of the highest occupied molecular
orbital (HOMO) of the N-electron system and the lowest
unoccupied molecular orbital (LUMO) − εa of the N + 1
electron system7,8,59,13 such that

ε ε ε ε εΔ = − ∼ − = Δ− →
+

E a i a i
i a

F
IP EA

N N N N1 (1)

where uppercase labels refer to many electron quantities
throughout, lowercase labels to one-electron quantities. Indices
i, j, k, and l refer to doubly occupied orbitals in the reference
determinant; a, b, c, and d to virtual orbitals; p, q, r, and s to
general orbitals; and σ and θ to spin variables. In practice,
orbital energy differences have been proven to be a good
approximation in calculating the fundamental energy gaps. At
this point, a question arises about how the fundamental energy
gap (ΔEF

IP−EA) relates to the optical energy gap (ΔEO
S0→S1),

which is defined as the energy difference between the ground
state (S0) energy and the excited state (S1) energy. Let us try to
answer this question by recalling in this section the principles
of delta self-consistent field/DFT (Δ-SCF/DFT) and time
depended density functional theory (TD-DFT).
In Δ-SCF/DFT types of approaches, the ground state

energy expressions are evaluated using the Δ-SCF orbitals.60

Δ-SCF/DFT provides direct access to the fundamental energy
gaps. In this approach, the energies of the N, N + 1, and N − 1
electron systems are calculated separately, and they are
inserted into the fundamental energy gap relation. Likewise,
Δ-SCF/DFT can also be used to calculate optical energy gaps
by employing the following relation (also known as purification
formula):60

= −E E E2S TBS1 0 (2)

in which the excited singlet (S1), the triplet (T0), and the
broken symmetry (BS) states are given by

ψ ψ ψψ ψ ψ ψψ

ψ ψ ψψ ψ ψ ψψ

ψ ψ ψψ

|Ψ ⟩ ∝ | ̅ ̅ ⟩ − | ̅ ̅ ⟩

|Ψ ⟩ ∝ | ̅ ̅ ⟩ + | ̅ ̅ ⟩

|Ψ ⟩ ∝ | ̅ ̅ ⟩ ∝ |Ψ ⟩ + |Ψ ⟩

... ...

... ...

...

S i a i a

T i a i a

i a S T

1 1 1 1

1 1 1 1

BS 1 1

1

0

1 0

where ψ and ψ̅ denote spin-up and spin-down orbitals.
In the conventional TD-DFT approach, one needs to solve

the following non-Hermitian eigenvalue problem

= Ω
−
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jjj
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{
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k
jjj

y
{
zzz
i
k
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y
{
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Y

X
Y

1 0
0 1 (3)

where Ω is the excitation energy and the vectors X and Y
represent the occupied−virtual and the virtual−occupied
blocks of the first-order density response matrix. In this
scheme, the orbital rotation matrices A and B are written as

δ δ δ ε ε δ= − + | − |

+ | |

σ η ση σ η σ σ η η ση σ σ σ σ

σ σ ση η η

A a i j b c j i a b

a i f j b

( ) ( ) ( )

( )

ia jb ij ab a i x

xc

,

(4)

δ= | − | + | |σ η σ σ η η ση σ σ σ σ σ σ ση η ηB a i b j c a j b i a i f b j( ) ( ) ( )ia jb x
xc

,

(5)

where (pq|rs) are the two-electron repulsion integrals in the
Mulliken notation and (pq|f xc|rs) represents the matrix

elements of the exchange−correlation kernel in the adiabatic
approximation. The third term in eq 4 and the second term in
eq 5 describe the contribution of the HF exchange part of the
Kohn−Sham operator. In the limiting cases where cx = 0 or cx
= 1, eqs 4 and 5 describe TD-DFT employing pure (e.g.,
GGA) functionals or TD-HF, respectively.
It can be shown that the optical energy gap ΔEO

S0→S1

involving i → a long-range charge transfer (CT), core, or
Rydberg excitations in the presence of hybrid functionals (cx >
0) is given by61,62

εΔ = Δ − |→ →E c ii aa( )S S i a
xO

0 1 (6)

as in fact all the exchange type integrals in eqs 4 and 5
practically vanish. In contrast, the (ii|aa) integrals represent
Coulomb type integrals that are not small and can have values
of several electronvolts. In this case, the orbital energy
difference in eq 6 clearly does not approximate the state
energy difference to any level of accuracy. By inserting eq 1
into eq 6:

Δ ∼ Δ − |→ −E E c ii aa( )S S
xO F

IP EA0 1 (7)

it is shown that the excitation energies do not either
approximate the IP-EA fundamental energy gap unless a
nonhybrid functional is considered. We will come back to that
point in the numerical results section, where a numerical
comparison will be provided between Delta-SCF approaches,
orbital energy differences, and TD-DFT calculations.
Alternatively, optical and fundamental energy gaps can be

calculated by employing wave-function-based methods in the
framework of equation of motion coupled cluster theory. This
family of methods provides a natural treatment of ionization
potentials, electron affinities, and excitation ener-
gies.18,19,26,56,58,63 It should be noted that, in the Δ-SCF/
DFT approach, different sets of orbitals are used for each state
of interest, while as the different states are optimized
separately, they can be nonorthonormal. This is however not
the case in the case of TD-DFT or the STEOM-CC methods
in which only one set of orbitals is used and the computed
states are necessarily orthonormal. In the following, we
describe briefly the principles of the bt-PNO-STEOM-CC
method.

II.B. Principles of bt-PNO-STEOM-CC Method. In the
canonical STEOM-CCSD method,18,19,26 one begins by
solving the ground state coupled cluster (CC) Schrödinger
equation: H̅|Φ0⟩ = E0|Φ0⟩ by using the similarity transformed
Hamiltonian H̅ = e−T̂HeT̂ with the CC ground state excitation
operator T = ∑i,ataia

†i + ∑i<j,a<btab
ija†ib†j + ... The excited state

solutions are then obtained in the EOM framework as H̅R̂k|Φ0⟩
= E0R̂k|Φ0⟩ by using linear excitation operators for the excited
energies (R̂k

EE), ionization potentials (R̂k
IP), and electron

affinities (R̂k
EA)

∑ ∑

∑ ∑

∑ ∑
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In a second step, the cost of computing EE values can be
reduced by performing a second similarity transform in order
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to reduce the excited state canonical expansion space. Hence,
the STEOM Hamiltonian can be written as

= { } ̅{ }̂ − ̂G e H eS S1 (8)

in which Ŝ is the transformation operator in singles and
doubles truncation, parametrized in terms of IP and EA
solutions.
The most expensive step in the STEOM-CC calculation is

the ground state couple cluster iterative process, as well as the
iterative EOM-IP and EOM-EA calculations. In the bt-PNO-
STEOM-CC scheme, the expensive ground state amplitudes
are replaced by those obtained from the linear scaling based
pair natural orbitals (DLPNO) CCSD. Hence, in the ground
state step, the pair natural orbital machinery (PNO) is used to
effectively reduce the virtual excitation subspace in the vicinity
of the pair occupied orbitals

∑= ̃ ̃ ̃
∼

D d n dab
ij

a
aa a a b

ij

ij ij ij

(9)

while in a next step the DLPNO quantities are transformed
back into the canonical basis.

⇒ ⇒ ⇒μ μ μμ μν νν μ μν ν̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃d T d L T L C T C Taa
ij

a b
ij

b
ij ij ij ij

a
ij ij

b
ij

ab
ij

ij ij ij ij (10)

These amplitudes are then used to solve the EE, IP, or EA
equations in the canonical basis. This leads us to the bt-PNO-
EOM-CCSD method. In addition, within this scheme the most
expensive EOM-EA and some of the expensive terms of EOM-
IP calculations are replaced by the seminumerical chain of
spheres (COSX)64,65 method.
Further details regarding the bt-PNO-STEOM and the way

it is implemented in the ORCA package have been discussed
elsewhere.56−58

II.C. Quasi-Degenerate Perturbation Theory. On top of
the bt-PNO-STEOM-CC or TD-DFT calculations for the
singlet and triplet multiplicities, SOC is introduced on the
basis of the quasi-degenerate perturbation theory (QDPT). In
the QDPT scheme, SOC acts as perturbation to the
nonrelativistic Hamiltonian, which takes the form

δ δ δ

⟨Ψ | + |Ψ ′ ′⟩

= ′ ′ + ⟨Ψ | |Ψ ′ ′⟩

H H

E H

I
SM

BO J
S M

IJ SS MM I
S

I
SM

J
S M

SOC

SOC (11)

In this approach, the SOC operator is approximated by the
spin−orbit mean field (SOMF) operator,66 which is an
effective one-electron operator that contains one- and two-
electron SOC integrals and also incorporates the spin-other
orbit interaction. Similar to the multireference configuration
interaction (MRCI) and multireference equation of motion
couple cluster (MREOM-CC) approaches, SOC is incorpo-
rated into the framework of STEOM-CC and TD-DFT by
using the bare untransformed SOC operator in the QDPT
step. Hence, in eq 11, HSOC is given by

∑=H ih x s( ) ( )
i

iSOC
SOC

(12)

where hSOC(xi) is the effective mean-field one-electron spin−
orbit operator and xi and s(i) refer to the coordinates and spin-
operators of electron i, respectively. In the presence of a scalar-
relativistic potential, picture change effects on the SOC
operator are included. A more consistent approach would be
to carry out a many-body similarity transformation of the SOC
operator first. However, it has been shown previously that
QDPT related methods that make use of the untransformed
SOC operator offer a reliable description of SOC effects.67−72

By making use of the Wigner−Eckart theorem, eq 11 is
reduced to

∑δ δ δ

⟨Ψ | + |Ψ ′ ′⟩

= ′ ′ + −
′
′

×⟨Ψ || ||Ψ ⟩
′

= ±

−´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ
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jjjj
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zzzz
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( 1)
1
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S M

IJ SS MM I
S

m

m

I
SS

m J
SS

Y m

I SOC

0, 1

SOC

( )SS
IJ (13)

Here, m represents the standard vector operator components.
(M′
S′ m

1 |M
S ) is a Clebsch−Gordon coefficient that has a single

numerical value that is tabulated. It satisfies certain selection

Figure 1. Molecular structures of a selection of organic and inorganic semiconductors.

Inorganic Chemistry Article

DOI: 10.1021/acs.inorgchem.9b00994
Inorg. Chem. 2019, 58, 9303−9315

9306

http://dx.doi.org/10.1021/acs.inorgchem.9b00994


rules and contains all of the M-dependence of the SOC matrix
elements. The quantity YIJ

SS(m) is a reduced matrix element. It
only depends on the standard components of the two states
involved. It has been shown that there are only three nonzero
YIJ
SS(m) cases that arise from state pairs that either have the

same total spin or differ by one unit:73

∑− =
+

⟨Ψ | ̂ |Ψ ⟩−Y m
S S

S
z i s i( )

( 1)
( ) ( )IJ

SS
I
SS

i
m J

SS
0

(14)

∑− = +
+

⟨Ψ | ̂ |Ψ ⟩+
− −

+ +Y m
S
S

z i s i( )
2 3
2 1

( ) ( )IJ
SS

I
SS

i
m J

S S1
1

1 1

(15)

∑− = ⟨Ψ | ̂ |Ψ ⟩−
− +

− −Y m z i s i( ) ( ) ( )IJ
SS

I
SS

i
m J

S S1
1

1 1

(16)

Further details on QDPT66,74,75 and the way it is incorporated
in various wave-function-based methods to treat various
problems in the field of X-ray spectroscopy and magnetism
have been reported elsewhere.67,71,72,76,77

III. CHOSEN STUDY SET OF SEMICONDUCTORS
The chosen test set of the semiconductors includes the
naphtalene (2A), anthracene (3A), tetracene (4A), and
pentacene (5A) oligoacene, as well as the α-2T, α-3T, α-4T,
α-5T, and α-6T oligothiophene organic semiconductors. In the
field of inorganic semiconductors, representative examples
from the zinc blende, rock salt, and orthorhombic structural
groups are included, namely, ZnS, ZnO, MgS, and MgSe from
the zinc blende group; LiF, LiCl, NaCl, LiBr, NaBr, MgO, and
MgSe from the rock salt group, as well as GeS from the
orthorhombic group. Representative molecular structures from
the test set are presented in Figure 1, while a structural analysis
is presented in the Supporting Information.

Alkali metal halides are wide band gap direct semi-
conductors with band gaps >6 eV. In particular, LiF shows
the largest known band gap of this class, and it is transparent to
short wavelengths of UV radiation, which can be used in UV
optics. In contrast, metal-oxide, metal-sulfide, and metal-
selinide semiconductors show smaller band gaps (<6 eV) than
the alkali metal halide semiconductors. Experimental funda-
mental and optical band gaps are presented in Tables S1 and
S2.

IV. EXPERIMENTAL ENERGY GAPS OF THE
SEMICONDUCTOR TEST SET

IV.A. Organic Semiconductors. The experimental optical
energy gaps of oligoacenes and α-oligothiophenes have been
obtained from optical spectroscopy measurements, while the
respective fundamental gaps are estimated using experimental
values of ionization potentials and electron affinities extracted
from photoelectron spectroscopic data.78−81

IV.B. Inorganic Semiconductors. In the case of inorganic
semiconductors, optical and fundamental energy gaps cannot
always be extracted separately. In fact, as seen in Table S2 for a
given semiconductor, there is a large variety to the reported
experimental band gap energies. These energies are closely
dependent on the type of the experimental spectroscopic
measurement, the experimental conditions, as well as the
experimental resolution. Focusing on optical absorption
spectroscopic measurements, the experimental band gaps of
the test set of inorganic semiconductors are presented in Table
S2. It should be noted that these experimental values have
served as reference values in various computational studies.1,5

Among the various experimentally determined band gap
energies, the largest variations are observed for the class of
wide band gap semiconductors LiF and MgO. In fact, as seen
in Table S3, the variations between the different experimental
energy gaps range between 2 and 3 eV. Like in the case of the

Figure 2. Graphical representation of the embedded cluster approach for LiCl. (1) Unit cell approach. (2) Ligand field approach. Color coding
QC: Li (purple), Cl (green). BR: cECPs (red).
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organic semicondutors in these cases, it seems reasonable to
classify the different energy gaps as representing effectively
optical or fundamental energy gaps depending on whether they
are determined on the basis of optical absorption spectroscopy
or photoelectron electron energy loss spectroscopy (EELS).
On this basis, the optical and fundamental energy gaps for
MgO amount to about 6.21 eV82 and 7.8 eV,83 while in the
case of LiF the optical and fundamental energy gaps are 11.6
eV84 and 13.7 eV.85,86

V. COMPUTATIONAL DETAILS
All calculations were performed with the Orca 4.1 suite of programs.87

Optical (ΔEO
S0→S1) and fundamental (ΔEF

IP−EA) energy gaps were
evaluated at the TD-DFT, Δ-SCF/DFT, and bt-PNO-STEOM-
CCSD levels of theory. For the ground and excited state energetics, a
variety of DFT functionals were employed involving the generalized
gradients approximation (GGA) functionals BP86,88,89 BLYP,88,90,91

and PBE;92 the hybrid functionals B3LYP,88,90,93 B1LYP,88,90,93 and
PBE092,94 and B3PW91;91 as well as the double hybrid B2PLYP95

functional. These functionals were employed together with Grimme’s
dispersion correction96,97 and by using deconstructed versions of the
correlation-consistent triple and quadrupole-zeta quality (cc-pVXZ, X
= T,Q) one-electron basis sets.98 The calculations were accelerated by
employing the resolution of identity approximation (RI)99 for the
Coulomb integrals, while the exchange terms were efficiently
computed using the “chain-of-spheres” (COSX)64,65 approximation
by utilizing the def2/J and the cc-pV(T/Q)Z/C auxiliary basis sets,
respectively. All the calculations were performed using the second-
order Douglas−Kroll−Hess correction (DKH2)100,101 to account for
the scalar relativistic effects, employing the finite nucleus model.102

Spin−orbit coupling effects (SOC) were computed in the framework
of quasi-degenerate perturbation theory (QDPT).66,74,75All the
calculated energetics are zero-point energy (ZPE) corrected from
respective DFT frequency calculations. For bt-PNO-STEOM-CCSD,
an extrapolation to the basis set limit (CBS) was carried out based on
the two point coupled-electron pair extrapolation scheme with the all
electron cc-pVTZ/cc-pVQZ basis sets.103 Within this scheme, only
the correlation energies of the ground and the excited states are taken
into account for the extrapolation of the excited states energies. By
contrast, DFT/cc-pVQZ calculations are considered to be at the CBS.
Atomic coordinates of all systems were obtained from the American
Mineralogist Crystal Structure Database104 and the Crystallography
Open Database.105,106

VI. EMBEDDED CLUSTER APPROACH
The band gap calculations on the inorganic semiconductors
were performed in the framework of the embedded cluster
calculations. A schematic representation of the employed
embedded cluster approach is presented in Figure S1. As
shown in Figure 2, all quantum clusters (QCs) were extracted
from the crystallographic supercells by either employing a unit-
cell approach, in which the resulted clusters contain building
units that correspond to the crystallographic unit cell, or a
ligand-field approach, in which the building units retain the
metal−ligand coordination environment.
Figure 2 illustrates both approaches for LiCl at the

converged cluster size, and it is found that both lead to
identical excited state properties. In particular, Figure S4 shows
that they converge to the same band gap energy. In order to
account for long-range Coulombic forces, point charge fields
(PCs) were constructed by including an amount of 5000 to
about 10 000 charges. These charges were placed at the
appropriate crystal lattice atom positions. In the employed
embedding scheme, the positions and magnitudes of the point
charges are kept fixed, leading to a nonpolarizable embedding
scheme. Between the QC and PC regions, a third boundary

region (BR), equipped with capped effective core potentials
(cECPs), was introduced, in order to avoid spurious electron
leakage from the clusters. In particular, an up to double layer of
cECPs, ECP10MDF107 and ECP2MWB108 (included in the
def2-SD framework), was used to replace the metal and the
main group atoms, respectively. The charges that were chosen
to equip the cECPs and PCs regions were obtained by (1)
imposing cluster neutrality conditions (i.e., constraining the
absolute total charge of the system to a value close to zero, as
described previously68) and (2) by ensuring uniform charge
distribution in both QC, BR, and PC regions. Figure 3

demonstrates both the convergence of the optical band gap of
LiCl at the STEOM-CC level with respect to the cluster size
and the dependence of the converged result on the input
charge of the BC + PC region. The cluster size can then be
chosen such that the calculated BG curves converge; in the
present case, this happens at n = 4 for all input charges. As for
the input charge, the best agreement with experiment as a
function of growing cluster size is obtained for qLi = 0.95,
which is the very choice that satisfies the criterion of a uniform
charge distribution between the QC and BR + PC regions.
This value can be obtained by locating the intersection of the
reference charge line (qQC = q(BR + PC)) and a line
determined using a simple linear-regression between the input
charge that equips the BR + PC regions and the average charge
distribution of the Li atoms in the QC region (Figure 3b). For
this purpose, the electrostatic potential (ESP) charges were
used as they are obtained from population analysis after the
converged self-consistent field (SCF) iterations. Alternatively,
NPA, Hirshfeld, or Löwdin charge schemes may be used. For
ionic systems, Mulliken charges can also be used. However, as
this charge scheme is quite vulnerable with respect to the basis
set extension, this choice is generally not recommended. The
number of point charges, cECPs, as well as the corresponding
charges for all clusters is presented in Table S3.

VII. BAND GAP ENERGIES OF ORGANIC
SEMICONDUCTORS: THE CASE OF ANTHRACENE

Prior to the evaluation of the performance of DFT, TD-DFT,
and STEOM-CC approaches to calculate the various band gap

Figure 3. Charge convergence in LiCl. (1) Cluster size convergence
at various charges. (2) Matching the charge between the quantum
cluster QC and the charge imposed in the BR and PC regions. Black
dot line: Reference charge line in which qQC = q(BR + PC). Gray
line: Linear regression between the input charge that equips the BR +
PC regions and the average charge distribution of the Li atoms in the
QC region obtained by generating the ESP charges after the
converged SCF iterations.
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energies, we present in detail the case of anthracene (3A). The
experimental singlet (ΔEO

S0→S1 optical band gap energy) and
triplet (ΔEO

S0→T0) excitation energies80,81,109 and the funda-
mental band gap energy (ΔEF

IP−EA)79,110 amount to about
ΔEO

S0→S1 = 3.20 eV, ΔEO
S0→T0 = 1.85 eV, and ΔEFIP−EA = 6.87 eV,

respectively.
In the following, the singlet and triplet excitation energies

are calculated in the framework of bt-PNO-STEOM, TD-DFT
(ΔETD‑DFT/STEOM‑CC

S0→S1 and ΔETD‑DFT/STEOM‑CC
S0→T0 ), and Δ-SCF/

DFT (ΔEΔ‑SCF
S0→S1 and ΔEΔ‑SCF

S0→T0) approaches. In addition, the
fundamental energy gap is calculated in the framework of bt-
PNO-STEOM-CC (ΔESTEOM‑CC

IP−EA ) and Δ-SCFIP‑EA (ΔEΔ‑SCF
IP−EA)

approaches. The results are summarized in Table 1 and show
clearly that both Δ-SCF/DFT and TD-DFT behave similarly
in calculating the triplet excitation energies. These energies are
in good agreement with the experiment for all the employed
functionals. For the singlet excitation energies, TD-DFT
predictions are generally higher than Δ-SCF/DFT, while
both energies increase in the sequence GGA (BP86, BLYP,
PBE), hybrid (B1LYP, B3LYP, BEPW91, PBE0), and double
hybrid (B2PLYP) functionals. The two approaches differ by
about 0.7 eV for GGA functionals and 0.5 eV for hybrid
functionals, while they actually match for double hybrid
functionals. One should notice that the orbital energy
difference between HOMO and LUMO (ΔεHOMO−LUMO) is
an excellent approximation to the average excitation energy
between singlet and triplet states av.ΔEΔ‑SCF

(S0→S1,S0→T0) only if there
is no HF exchange in the functional (BP86, BLYP, PBE). This
is due to the fact that in the presence of hybrid or double
hybrid functionals the ΔεHOMO−LUMO orbital energy difference
drastically overestimates the singlet excitation energies and
approaches the value of the fundamental energy gap ΔEF

IP−EA as
the fraction of the HF exchange in the functional increases. In
pure HF calculations, ΔεHOMO−LUMO becomes higher than 8
eV. In accordance with the discussion in the theory section, the
orbital energy differences do not relate directly to either the
optical or the fundamental energy gaps.
For the fundamental energy gaps (ΔEF

IP−EA) in general, Δ-
SCF/DFT in the presence of hybrid and double hybrid
functionals provides good agreement with the experiment. By
contrast, the GGA functionals provide rather unbalanced
predictions. This is also consistent with previous studies for
organic and inorganic semiconductors.9,78 As expected among
all methods tested, the bt-PNO-STEOM-CC provides the best
agreement with the available experimental values for singlet

and triplet excitation energies as well as the fundamental
energy gap. It should be noted that, due to the rigid nature of
the oligoacene organic semiconductors, the experimental and
calculated energy gaps of the anthracene molecule relate
directly to the band gap energies of the actual anthracene
organic semiconductor.111 This holds in general for the
majority of the organic semiconductors.

VIII. BAND GAP ENERGIES OF INORGANIC
SEMICONDUCTORS: CLUSTER SIZE
CONVERGENCE IN THE CASE OF ZNS AND LICL

Entering the field of inorganic semiconductors, we first
investigate the convergence of the cluster size with respect to
the calculated band gap energies. To this end, we choose to
investigate the ZnS and LiCl semiconductors. The exper-
imental optical band gap energies are ΔEO = 3.78 eV and ΔEO
= 9.40 eV, respectively (Table S2). For ZnS, PBE periodic
band structure calculations have predicted a band gap energy
that amounts to 2.60 eV.1 For LiCl, PBE periodic band
structure calculations have predicted a band gap energy that
amounts to 7 eV,1 while B3PW91 periodic band structure
calculations have predicted values that range between 8.60 and
8.80 eV.1,5 In the following, we employ DFT orbital energy
differences (HOMO−LUMO gap) as well as TD-DFT and bt-
PNO-STEOM-CC state energy difference to calculate the ZnS
and LiCl optical energy gaps at various cluster sizes. The
results are presented in Figure 4 and Figure S6.
In the case of ZnS, already for cluster [Zn2S7]

−10, the PBE
calculated orbital energy difference converges to the PBE
periodic orbital energy difference. Hence, at the DFT level, the
cluster size converges rapidly, and for all intents and purposes,
the [Zn4S10]

−12 cluster can be considered converged. Likewise,
in the case of LiCl, the PBE calculated orbital energy difference
converges to the PBE periodic orbital energy difference at a
cluster size of [Li8Cl8]

0 (Figure 4).
As seen in Figures 4 and S6, TD-DFT shows a similar

convergence pattern. Consistent with the results of the
previous section, it is observed that, as long as there is no
HF exchange in the functional, the orbital energy difference
between HOMO and LUMO is almost identical to the energy
of the first excited state (ΔETD‑DFT

S0→S1 ∼ ΔεHOMO−LUMO, Figures 4
and 5). Like the DFT and TD-DFT results, bt-PNO-STEOM-
CC results show signs of convergence with patterns similar to
DFT or TD-DFT for the ZnS and LiCl cases. This indicates

Table 1. Performance of Various DFT Functionals in the Framework of Δ-SCF/DFT and TD-DFT versus bt-PNO-STEOM-
CC for Calculating the Optical As Well As the Fundamental Band Gap Energies (eV) of Anthracene (3A)

experimental energies (eV)

ΔEO
S0→S1 ΔEO

S0→T0 ΔEF
IP−EA

3.20 1.85 6.87
calculated energies (eV)

methods ΔεHOMO−LUMO ΔETD‑DFT/STEOM‑CC
S0→S1 (ΔEΔ‑SCF

S0→S1 ) ΔETD‑DFT/STEOM‑CC
S0→T0 (ΔEΔ‑SCF

S0→T0) av.ΔEΔ‑SCF
(S0→S1,S0→T0) ΔEΔ‑SCF/STEOM‑CC

IP→EA

BP86 2.34 3.10 (2.41) 1.97 (1.98) 2.19 6.51
BLYP 2.33 3.09 (2.39) 2.00 (2.01) 2.19 6.97
PBE 2.34 3.11 (2.40) 1.99 (2.00) 2.19 7.50
B1LYP 3.81 3.44 (2.89) 2.05 (2.09) 2.49 6.67
B3LYP 3.52 3.39 (2.80) 2.06 (2.09) 2.43 6.65
B3PW91 3.53 3.39 (2.79) 2.05 (2.06) 2.43 6.67
PBE0 3.82 3.46 (2.91) 2.03 (2.07) 2.49 6.74
B2PLYP 5.50 3.54 (3.56) 2.02 (2.08) 2.81 6.95
STEOM-CC 3.28 1.84 6.85
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that it is a valid choice to identify the converged cluster sizes at
the DFT level.
As seen in Figure 4, in the case of ZnS and LiCl, the PBE

calculated orbital energy differences (obtained by periodic or
embedded cluster calculations) or the PBE/TD-DFT state
energy differences (obtained by embedded cluster calcula-
tions) underestimate the experimental band gap energies by
more than 1 and 2 eV, respectively. These errors can be
effectively reduced with the use of hybrid functionals.1,5 In fact,
in the case of LiCl, the B3PW91 calculated orbital energy
differences (obtained by periodic or embedded cluster
calculations) range between 0.8 and 0.6 eV from the
experimental values (Figure S6). Consistent with the analysis
described above, the B3PW91 TD-DFT results (obtained by

embedded cluster calculations) underestimate the experimen-
tal value by about 1.1 eV.
By contrast, in the case of ZnS, the bt-PNO-STEOM-CC

results employing the [Zn4S10]
−12 cluster deviate from the

experimental value by less than 0.2 eV. Likewise, in the case of
LiCl, the errors from the experimental optical energy gap drop
below 0.15 eV only when the bt-PNO-STEOM-CC method is
employed together with cluster [Li8Cl8]

0. Compared to the bt-
PNO-STEOM-CC results, the PBE or B3PW91 calculated
orbital energy differences (obtained by periodic or embedded
cluster calculations) range between 0.6 and 0.4 eV, while the
TD-DFT/B3PW91 calculated state energies (obtained by
embedded cluster calculations) are off by more than 1 eV.
To conclude this part, it has been shown that the

combination of the bt-PNO-STEOM-CC method with the
embedding cluster approach results in a calculation protocol
for energy gaps that shows a relatively fast cluster size
convergence while delivering very accurate predictions for the
optical band gaps. This is also reflected in Figure S5, in which
the orbital energies as well as the excited state energy spectrum
are calculated as a function of the system size in the case of
LiCl. As seen for small cluster sizes ([LiCl]0, [Li2Cl2]

0), the
molecular picture is preserved, while the [Li8Cl8]

0 cluster
shows a solid behavior which allows for the orbital energies to
be assigned either to the occupied or to the unoccupied bands
while the excited states start to form an excited state
continuum. The final clusters employed in this work are listed
in Table S3. In all studied cases, the converged clusters contain
less than 10 building units. This relatively fast cluster size
convergence may be related to fact that the band gap
represents the minimum of the band excitation energies in
the solid-state context. Hence, one may reach convergence for
this property with cluster size much sooner than convergence
of the entire spectrum of excited states. As is seen in Figure S7,
in the case of LiCl, the first 10 bt-PNO-STEOM-CC calculated
excitation energies are essentially converged at the [Li8Cl8]

0

cluster size, while convergence of higher excitations energies
(>20) requires much larger cluster sizes.

Figure 4. Experimental versus calculated band gap energies for
clusters (a) [ZnS4]

−6, [Zn2S7]
−10, and [Zn4S10]

−12 and (b) [LinCln]
0,

n = 1−4, 6, and 8). Color coding: Experiment (dotted red line),
STEOM-CC (solid red line), DFT/PBE (solid blue line), TD-DFT/
PBE (solid green line), and periodic DFT/PBE (dotted blue line).

Figure 5. CIS, TD-DFT, and STEOM-CC calculated ΔES0→S1 − ΔεHOMO−LUMO energy difference for the case of (a) [Zn4O10]
−12 and (b) [Li8Cl8]

0

clusters.
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IX. EVALUATING THE PERFORMANCE OF STEOM-CC,
TD-DFT, AND ΔSCF/DFT FOR CALCULATING
BAND GAP ENERGIES

In the next step of our analysis, the optical band gap energies
(Table S1) for the chosen test set of semiconductors are
computed in the framework of TD-DFT and bt-PNO-
STEOM-CC methods. The results are presented in Table S4
and Figure 6. As seen for the chosen set of organic and
inorganic semiconductors, the TD-DFT mean absolute errors
(MAE) range between 1.26 and 0.56 eV, and the maximum
absolute errors (MaxAE) range between 3.06 and 1.64 eV in
the sequence of GGA, hybrid, and double hybrid functionals. It
should be noted that for hybrid functionals the TD-DFT
computed errors (MAE, MaxAE) are slightly higher than those
reported in the respective periodic DFT calculations.1,5 In fact,
it was shown in the previous section that in the case of LiCl
both periodic DFT and TD-DFT calculations employing the
B3PW91 functional underestimate the experimental value by
about 0.6−0.8 and 1.1 eV respectively. The best agreement
with experiment is observed in the case of bt-PNO-STEOM-
CC calculations, as in fact both the mean absolute error as well
as the maximum absolute error drop below 0.15 and 0.25 eV
(MAE = 0.11, MaxAE = 0.23).
The Δ-SCF/DFT and bt-PNO-STEOM-CCSD fundamen-

tal energy gaps for the test set of the organic semiconductors as
well as for LiF and MgO are presented in Table S5. Once
again, in the sequence of GGA, hybrid, and double hybrid
functionals, the Δ-SCF/DFT mean absolute errors (MAE)
range between 1.75 and 0.38 eV, and the maximum absolute
errors (MaxAE) range between 1.64 and 0.37 eV. In fact, both
the mean absolute error and the maximum absolute error drop
below 0.2 eV (MAE = 0.22, MaxAE = 0.22) only when
STEOM-CC is employed to compute the fundamental gaps.
It should be mentioned that the balance between achievable

accuracy and the computational effort is a requirement in any
practical study. Thus, focusing on the computational efficiency
of the employed methods, the timings (using four CPU cores)
in a typical single-point DFT calculation (cc-pVTZ basis) of
the Li8Cl8 cluster range between 10 min for B3PW91 to about
1 day for the respective bt-PNO-STEOM-CC calculations. As

is seen in Figure S8 within the various calculation steps, the
major time is spent in computing the “dressing” integrals, the
EOM doubles, and the STEOM-CCSD amplitudes. We have
recently extended the EOM-CCSD method in the framework
of the domain-based pair natural orbitals (DLPNO).63 On the
basis of the performance of the EOM-DLPNO-CCSD method
in calculating electron affinities, it is expected that
implementation of the relevant STEOM-DLPNO-CCSD
method will be much more efficient than the respective bt-
PNO-STEOM-CCSD method. Hence, it is expected that the
above-reported timings will be drastically decreased toward
values that are more in line with the DFT performance.

X. CONCLUSIONS
In conclusion, a systematic bt-PNO-STEOM-CC and DFT
benchmark study on band gap energies in a chosen test set of
organic and inorganic semiconductors has been presented. In
particular, bt-PNO-STEOM-CC, TD-DFT, and Δ-SCF/DFT
were employed to calculate optical and fundamental gaps of
oligoacene and oligothiophen organic semiconductors. In
addition, it was shown that combining the embedded cluster
approach with bt-PNO-STEOM-CC, TD-DFT, or Δ-SCF/
DFT yields a computationally affordable computational
protocol that is capable of computing a wide range of band
gap energies (1.5−13.5 eV) of inorganic semiconductors. In
fact, provided that the charge is uniformly distributed between
the QC and the BR+PC regions and that the chosen method
operates at the basis set limit the cluster size converges rapidly
with respect to the computed band gaps. Among the different
methods tested, it was shown that for both organic and
inorganic semiconductors, bt-PNO-STEOM-CC provides the
best agreement with the available experimental values, resulting
in errors that are on average lower than 0.2 eV. Relative to the
bt-PNO-STEOM-CC and the experimental values, TD-DFT
and Δ-SCF/DFT results are of varying accuracy. They
basically follow the expectations derived from Jacob’s ladder
and are consistent with the periodic DFT results. In this
context, double hybrid functionals (e.g., B2PLYP) were found
to perform best in a series of functionals consisting of GGA,
hybrid and double hybrid functionals. Not surprisingly, it is
apparent from our results that increased accuracy comes at the

Figure 6. Experimental versus TD-DFT and bt-PNO-STEOM-CC absolute errors and mean absolute errors (MAE) of the computed optical band
gap energies.
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price of increased computational cost. For example, simple
GGA DFT calculations can be performed on the investigated
cluster models in just a few minutes. On the contrary, hybrid
and more complicated functionals require hours of computa-
tion time. Finally, the bt-PNO-STEOM-CC calculations are
more expensive than the respective DFT calculations for these
types of systems by about 1 order of magnitude
In summary, we have demonstrated, that local correlation

methods in conjunction with the embedding approach deliver
an excellent quality of band gap energies in a wide variety of
semiconductors. In fact, bt-PNO-STEOM-CC is a method
with high predictive accuracy; hence, it can be used to predict
the band gap energies of unknown materials or to benchmark
DFT functionals. Further research is undertaken in our
laboratories in an effort to deliver more accurate and more
efficient STEOM-CC methods that will be able to treat a large
variety of excited state problems in the field of solid-state
chemistry and heterogeneous catalysis. Our future develop-
ment efforts are focused on bringing the STEOM-CC method
as close to linear scaling as possible (i.e., in the framework of
the domain-based pair natural orbitals, DLPNO) and to
improve over the efficiency of the employed embedded cluster
approach.
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(36) Marsman, M.; Grüneis, A.; Paier, J.; Kresse, G. Second-order
Møller-Plesset perturbation theory applied to extended systems. I.
Within the projector-augmented-wave formalism using a plane wave
basis set. J. Chem. Phys. 2009, 130, 184103.
(37) Hunt, R. J.; Szyniszewski, M.; Prayogo, G. I.; Maezono, R.;
Drummond, N. D. Quantum Monte Carlo calculations of energy gaps
from first principles. Phys. Rev. B: Condens. Matter Mater. Phys. 2018,
98 (7), 075122.
(38) McClain, J.; Lischner, J.; Watson, T.; Matthews, D. A.; Ronca,
E.; Louie, S. G.; Berkelbach, T. C.; Chan, G. K. L. Spectral functions
of the uniform electron gas via coupled-cluster theory and comparison
to the GW and related approximations. Phys. Rev. B: Condens. Matter
Mater. Phys. 2016, 93, 235139.
(39) McClain, J.; Sun, Q.; Chan, G. K.-L.; Berkelbach, T. C.
Gaussian-Based Coupled-Cluster Theory for the Ground-State and
Band Structure of Solids. J. Chem. Theory Comput. 2017, 13 (3),
1209−1218.
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(53) Helmich, B.; Haẗtig, C. Local pair natural orbitals for excited
states. J. Chem. Phys. 2011, 135, 214106.
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