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Abstract

We herein describe the positional identification of a 2-bp deletion in the open reading frame of the MRC2 receptor causing
the recessive Crooked Tail Syndrome in cattle. The resulting frame-shift reveals a premature stop codon that causes
nonsense-mediated decay of the mutant messenger RNA, and the virtual absence of functional Endo180 protein in affected
animals. Cases exhibit skeletal anomalies thought to result from impaired extracellular matrix remodeling during
ossification, and as of yet unexplained muscular symptoms. We demonstrate that carrier status is very significantly
associated with desired characteristics in the general population, including enhanced muscular development, and that the
resulting heterozygote advantage caused a selective sweep which explains the unexpectedly high frequency (25%) of
carriers in the Belgian Blue Cattle Breed.
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Introduction

The Belgian Blue Cattle breed (BBCB) is notorious for its

exceptional muscular development known as ‘‘double-muscling’’.

This extreme phenotype is due in part to an 11-bp loss-of-function

deletion in the myostatin gene that has been fixed in the breed (e.g.

[1]), as well as to ongoing selection on as of yet unidentified

polygenes influencing muscularity. As in other breeds, intense

selection has substantially reduced the effective population size.

Extensive reliance on artificial insemination (AI), in particular, by

allowing popular sires to have thousands of descendants, narrows

the genetic basis. The concomitant increase in the rate of

inbreeding causes recurrent outbreaks of recessive defects.

Inherited defects that have lately afflicted the BBCB include the

recently described Congenital Muscular Dystonias (CMD) I and II

[2].

As a result of this peculiar demography of domestic animal

populations, inherited defects generally involve unique ‘‘founder’’

mutations. Allelic homogeneity greatly facilitates positional

identification using identity-by-descent (IBD) mapping, as recently

demonstrated using the first generation high density SNP arrays

for the bovine [2]. The genes underlying CMD I & II were readily

mapped, and the causative mutations in the ATP2A1 and SLC6A5

genes identified. The widespread use of the resulting diagnostic

tests allowed immediate and effective control of the corresponding

pathologies.

We herein report the positional identification of the mutation

causing a novel, recently appeared defect referred to as Crooked

Tail Syndrome (CTS). The incidence of CTS has risen very

suddenly in the BBCB, and 25% of animals now appear to be

CTS carriers. We herein provide strong evidence for exacerbated

muscular development of carriers of the CTS mutation, conferring

‘‘heterozygote advantage’’ underlying the selective sweep that

raised the causative mutation to alarming proportions.

Results

Crooked Tail Syndrome (CTS) exhibits variable
expressivity

We recently established a heredo-surveillance platform operat-

ing in close collaboration with field veterinarians to rapidly identify

emerging genetic defects. As part of these activities, 105 CTS cases

were reported to the platform between November 2006 and

November 2007. In addition to the striking deviation of the tail

(equally likely to be dextro- or levo-rotatory), detailed clinical

examination revealed three symptoms shared by all cases: (i)

general growth retardation manifesting itself at approximately one

month of age, (ii) abnormal skull shape manifested as a shortened
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broad head, and (iii) extreme muscular hypertrophy including a

conspicuous outgrowth of the gluteus medius anchor. Additional

symptoms were observed in a substantial proportion but not all

cases: (i) spastic paresis of the hind limbs affecting either the

quadriceps only (22%), or quadriceps and gastrocnemius (14%),

often associated with straight hocks, (ii) short, straight and

extended fore limbs (33%), and (iii) pronounced scoliosis with

asymmetric development of the muscles of the back (20%). Figure 1

illustrates the corresponding symptomatology. We performed

complete necropsy of a few selected cases but detected no

additional obvious abnormalities. Moreover, radiological exami-

nation of crooked tails and scoliotic spines failed to reveal

structural defects of the vertebrae (data not shown).

Although the defect is not lethal by itself, the most severe cases

(,25%) were euthanized on welfare grounds. The surviving

,75% nevertheless caused important economic losses to their

owners as a result of growth retardation and carcass depreciation.

CTS is caused by a fully penetrant, two base pair deletion
in the open reading frame (ORF) of the MRC2 gene

We previously mapped the CTS locus to bovine chromosome 19,

in a 2.4 Mb interval shared homozygous-by-descent by the eight

analyzed CTS cases [2]. To refine the map location of the CTS

locus we genotyped the 105 reported CTS cases for five SNPs

covering the 2.4 Mb interval (Figure 2A). The SNPs were selected

on the basis of the low population frequency of the disease-

associated allele. Genotyping was achieved by first sequencing 35

pools of three animals, followed by individual sequencing of the

pools revealing the presence of the major allele and therefore of one

or more recombinants. This approach allowed us to confine the

critical region to the 812 Kb rs29010018 - AAFC03034831

interval. It comprises seven annotated genes which were ranked

on the basis of their perceived relevance with regard to the CTS

condition. Coding exons were sequenced in an affected and a

matched healthy control individual.

Author Summary

Livestock are being subject to intense artificial selection
aimed at ever-increasing, sometimes extreme, production
phenotypes. This is well-illustrated by the exceptional
muscular hypertrophy characterizing the ‘‘double-mus-
cled’’ Belgian Blue Cattle Breed (BBCB). We herein identify
a loss-of-function mutation of the bovine MRC2 gene that
increases muscle mass in heterozygotes, yet causes
skeletal and muscular malformations known as Crooked
Tail Syndrome (CTS) in homozygotes. As a result of the
‘‘heterozygote advantage’’, the MRC2 c.2904_2905delAG
mutation has swept through the BBCB population,
resulting in as many as 25% carrier animals and causing
a sudden burst of CTS cases. These findings highlight one
of the risks associated with pushing domestic animals to
their physiological limits by intense artificial selection.

Figure 1. Clinical spectrum exhibited by CTS cases. Crooked tail, growth retardation, stocky head, extreme muscular hypertrophy, spastic
paresis of the hind limbs, straight hock, scoliosis.
doi:10.1371/journal.pgen.1000666.g001
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During this process, we identified a 2-bp deletion in the ORF of

the mannose receptor C type 2 (MRC2) gene. The MRC2 gene

encodes the 180 kDa Endocytic Transmembrane Glycoprotein

(Endo180), one of the four members of the mannose receptor

family [3,4]. Endo180 is a recycling endocytic receptor that is

predominantly expressed in mesenchymal cells such as stromal

fibroblasts and in the chondrocytes and osteoblasts/osteocytes in

the developing bones, and is proposed to play a role in regulating

extracellular matrix degradation and remodelling. It has C-type

lectin activity, binds collagen and interacts with urokinase-type

plasminogen activator receptor (uPAR) in a trimolecular cell

surface complex with pro-urokinase plasminogen activator (pro-

uPA). The 180 kD Endo180 protein comprises an aminoterminal

cysteine-rich domain of unknown function, a fibronectin type II

domain which mediates collagen binding, eight C-type lectin-like

domains (CTLDs) of which the second mediates Ca2+-dependent

lectin activity, a stop-transfer signal anchoring this single-pass

transmembrane protein in the membrane, and a carboxyterminal

cytoplasmic domain allowing association with adaptor proteins in

the clathrin coat. The mutation identified in CTS cases is located

in exon 20 and deletes nucleotides 2904 and 2905 of the MRC2

cDNA (c.2904_2905delAG). It is predicted to append a frame-

shifted 30-residue peptide to a truncated Endo180 receptor

missing the CTLD6-8 domains, the stop-transfer signal and the

cytoplasmic domain (Figure 2B,C,D). As a result, the mutated

protein should be unable to localize to the plasma membrane and

mediate receptor-mediated endocytosis.

We developed a 59 exonuclease assay for the mutation and geno-

typed the 105 reported CTS cases. All proved to be homozygous for

the c.2904_2905delAG mutation. We then genotyped 1,899 healthy

Belgian Blue animals. Unexpectedly, 24.7% of animals appeared to

be carriers, without a single homozygous mutant (p,10212 assuming

Hardy-Weinberg equilibrium). Taken together, these results allowed

us to incriminate the c.2904_2905delAG mutation as being causal and

fully penetrant.

Mutant MRC2 mRNAs are targeted by the nonsense-
mediated decay (NMD) RNA surveillance pathway

C.2904_2905delAG causes a frame-shift resulting in a premature

stop codon in the 21st of the 30-exon MRC2 gene. Mutant mRNAs

Figure 2. Positional identification of the c.2904_2905delAG MRC2 mutation causing CTS, and its effect of the Endo180 protein. (A)
Gene content of the 2.4 Mb interval in which the CTS mutation was located using identity-by-descent mapping. The triangles correspond to five SNPs
used to refine the CTS locus position, with corresponding number of recombinant individuals out of 105 CTS cases. The resulting non-recombinant
(NR) interval is marked by the red horizontal line. (B) Structure of the MRC2 gene within that interval. (C) Domain composition of the wild-type (WT)
and mutant (MUT) Endo180 protein. (D) Sequences traced obtained from genomic DNA of a homozygous wild-type, carrier and homozygous CTS
animal showing the deletion of the ApG dinucleotide in the mutant.
doi:10.1371/journal.pgen.1000666.g002

Balancing Selection at the MRC2 Locus

PLoS Genetics | www.plosgenetics.org 3 September 2009 | Volume 5 | Issue 9 | e1000666



are therefore predicted to undergo NMD [5]. To test this, we first

compared the levels of wild-type and mutant MRC2 mRNA in

lung and skeletal muscle of a carrier animal by direct sequencing

of RT-PCR products encompassing the deletion. As can be seen

from Figure 3A, mutant mRNA was barely detectable. We then

compared the levels of MRC2 mRNA in lung tissue of animals of

the three genotypes using quantitative RT-PCR performed with

primer sets targeting the 59 and 39 end of the mRNA respectively.

Highly significant reductions in MRC2 mRNA levels were

observed in carriers relative to homozygous wild-type individuals

(75%64% and 45%66% of control values for the 59 and 39

systems respectively), while MRC2 mRNA levels in cases were less

than 5% of homozygous wild-types (Figure 3B). Both the allelic

imbalance and qRT-PCR experiments thus supported degrada-

tion of the mutant transcripts by NMD.

Amounts of full-length Endo180 protein are halved in
tissues of carrier animals

From the ten anti-human Endo180 antibodies tested by

Western blotting, only one polyclonal rabbit antibody (CAT2)

detected the bovine Endo180 protein with sufficient specificity.

The CAT2 antibody is directed against the last 19 amino acids of

Endo180 of which the last 18 are perfectly conserved between

human and cow [6]. CAT2 was thus predicted to allow

recognition of the wild-type but not mutant Endo180. As

expected, no wild-type Endo180 was detected in lung tissue of

CTS affected animals. In carrier animals, the levels of Endo180

protein were approximately half those observed in homozygous

wild-types (Figure 4). Assuming that Endo180 is dosage sensitive,

Figure 3. Nonsense-mediated RNA decay of c.2904_2905delAG mutant MRC2 transcripts. (A) Direct sequencing of MRC2 amplicons
spanning the CTS mutation obtained from genomic DNA and pulmonary cDNA of a heterozygous animal, showing the virtually exclusive detection of
wild-type allele amongst transcripts (the position of the deleted nucleotides is underlined in red, the sequencing direction is represented by a
triangle). (B) Comparing MRC2 mRNA levels in the lung of +/+, +/CTS and CTS/CTS animals. Data are shown for two amplicons at the 59 and 39 ends of
the mRNA, respectively. Error bars correspond to standard errors over three replicates per sample.
doi:10.1371/journal.pgen.1000666.g003

Figure 4. Effect of the CTS mutation on the levels of full-length
Endo180. Western blot results from lung of animals of the three
genotypes. Hu: human control sample. MW: molecular weight marker.
The 55 Kd band corresponds to non-specific binding of the CAT2
antibody to tubulin, used as control for the amount of protein loaded.
doi:10.1371/journal.pgen.1000666.g004
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such reduction in the supposedly functional species might affect

phenotype.

CTS carrier status increases muscle mass
The unusually high frequency of the CTS mutation in BBCB

suggested that it might confer heterozygote advantage in this

highly selected population. To test this hypothesis we estimated the

effect of carrier genotype on 22 type traits evaluating muscularity,

skeletal conformation, size and leg soundness, which are

systematically recorded as part of the selection programs

implemented in the BBCB. The analysis was conducted on 519

pedigreed bulls, including 148 carrier and 371 homozygous wild-

type animals, using a mixed model including fixed effects of MRC2

genotype, year at scoring, body condition and age at scoring, as

well as a random individual animal effect. Variance components

and effects were estimated by restricted maximum likelihood

(REML) analysis. Highly significant effects were obtained for the

four categories of recorded traits (Table 1). CTS carrier animals

were smaller, stockier and more heavily muscled. They had a

thinner skeleton and more rounded ribs, which are characteristics

of beef cattle. MRC2 genotype accounted for 3.6%, 3.6% and

2.6% for the genetic variance of height, muscularity and general

appearance, respectively. These results strongly suggest that CTS

carrier frequency is increased by selection programs applied in

BBCB.

The C.2904_2905delAG mutation is undergoing a
selective sweep

To more directly demonstrate the occurrence of a selective

sweep, we performed the following analysis. Examination of the

available genealogies of the 105 affected individuals indicated that

all of them trace back to Précieux, a popular AI sire, via both sire

and dam. This suggested that Précieux, born in 1980, was CTS

carrier and that its extensive utilization in the mid eighties spread

the CTS mutation in BBCB. Genotyping Précieux and three of his

sons for the C.2904_2905delAG mutation and the 60K Illumina

chip, indeed demonstrated that he carried the CTS mutation

embedded in the SNP haplotype shared homozygous-by-descent

by the examined cases [2]. Thus, the vast majority of

C.2904_2905delAG mutations encountered in present-day BBCB

animals, trace back to Précieux.

We obtained DNA samples from all BBCB sires (174) born

between 2003 and 2005, whose semen had been commercialized

by one of the ten major Belgian AI studs. Such AI sires are heavily

selected for extreme muscularity. Examination of the pedigrees

indicated that 160 of the 174 [2003–2005] AI sires were

descendents of Précieux. The number of generations separating

these sires from Précieux averaged 5.9 (range: 3 to 8). Genotyping

the C.2904_2905delAG mutation in this cohort identified 45 CTS

carriers, all of them amongst the 160 descendents of Précieux.

Assuming that the CTS mutation indeed underwent a selective

sweep, 45 carriers out of the 160 Précieux descendants would be

significantly higher than expected by chance alone. To verify this

assumption we simulated the segregation of a mutation in the true

genealogy of the 160 descendants of Précieux and counted the

resulting number of carrier bulls. In these simulations, Précieux

was systematically assumed to be carrier, while the frequency of

the mutation in animals unrelated to Précieux varied from 0 to

0.05. In the absence of selection (i.e. if a carrier animal is equally

likely to transmit either the mutation or the wild-type allele to

anyone of its descendents), the probability to obtain 45/160

Table 1. Effect of CTS carrier status on type traits in BBCB.

Trait or syntetic note Contrast Std. error p value Carrier characteristics

SIZE Withers height 2.33 0.320 *** Smaller

Length 0.36 0.181 N.S.

Chest width 20.68 0.319 * Larger

Pelvis width 20.32 0.188 N.S.

Pelvis length 0.25 0.163 N.S.

MUSC. Shoulder muscling 20.58 0.283 * Increased muscularity

Top muscling 21.71 0.409 *** Increased muscularity

Buttock side 20.35 0.20 N.S.

Buttock rear 20.50 0.251 * Increased muscularity

Synthetic note for muscularity 20.70 0.246 ** Increased muscularity

General appearance 21.73 0.124 *** Better

SKELETAL CONFORM. Skeleton 21.18 0.386 ** Thinner

Rib shape 21.67 0.456 *** Ronder

Fore legs stance 0.54 0.157 *** More toed-in

Rear legs stance 20.43 0.200 * More toed-out

OTHER Skin 20.34 0.442 N.S.

Tail set 20.24 0.529 N.S.

Shoulder bone 0.10 0.108 N.S.

Rump 1.25 0.425 ** More horizontal

Top line 20.36 0.137 ** More convex

Hocks stance 0.84 0.367 * Straighter

* p,5%, ** p,1%, *** p,1%.
doi:10.1371/journal.pgen.1000666.t001
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carriers was 0.0014, 0.0023 and 0.0130 for mutation frequencies

(outside the Précieux lineage) of 0.00, 0.01 and 0.05, respectively

(Table S1). Thus we can confidently assert that the

C.2904_2905delAG mutation indeed underwent a selective sweep

in the BBCB.

To have some quantitative assessment of the intensity of the

selective sweep, we repeated the ‘‘gene dropping’’ simulations

while varying the degree of segregation distortion in favour of the

mutant allele. Figure 5 shows the proportion of simulations

yielding 45/160 carrier bulls as a function of the transmission

probability of the CTS mutation from carrier parents to offspring.

It can be seen that the outcome of 45/160 carrier bulls is most

likely for a transmission rate between 0.62:0.38 (mutation

frequency outside Précieux lineage of 0.05) and 0.67:0.33

(mutation frequency outside Précieux lineage #0.01). The fact

that all 105 CST cases traced back to Précieux both on the dam

and sire side, indicates that the mutation frequency outside of the

Precieux lineage is closer to 1% than to 5%. Thus, a carrier animal

is approximately two times more likely to be selected than a non-

carrier sib.

Discussion

We herein describe a frame-shift mutation in the MRC2 gene

causing the CTS syndrome in cattle. Clinical manifestations of

CTS are dominated by skeletal and muscular anomalies. Skeletal

symptoms including growth retardation, abnormally shaped legs

and skulls, are perfectly compatible with the known involvement of

MRC2 in regulating extracellular matrix degradation and

remodeling and its strong expression in developing bone [7].

The muscular symptoms, including muscular hypertrophy, tail

deviation and spastic paresis are more difficult to rationalize,

although a role for the related mannose receptor in myoblast

motility and muscle growth has been recently reported [8]. We

cannot formally exclude the possibility that the muscular

manifestations result from distinct sequence variants in linkage

disequilibrium with the CTS mutation, although we favor the

more parsimonious hypothesis of a single causative mutation.

It is noteworthy that mice homozygous for a targeted deletion of

MRC2 exons 2 to 6 have been generated in two independent

laboratories [9,10]. Both laboratories reported that the mice were

viable and fertile, although more recently a minor deficiency in

long bone growth, bone mineral density and calvarial bone

formation has been demonstrated [7]. Cells derived from these

animals show a clear defect in collagen uptake and degradation.

One reason for the more pronounced clinical manifestations in

cattle than in mice may lie in the distinct nature of the murine and

CTS MRC2 mutations. Cells isolated from the genetically

modified mice express a mRNA species in which exon 1

(containing the signal sequence) is spliced in frame onto exon 7

(containing CTLD2), and in embryonic fibroblasts a truncated

Endo180 protein missing the cysteine-rich, FNII and CTLD1

domains can be expressed [9]. However, little or no truncated

protein is found in postnatal tissues from these knockout mice

[10,11]. Alternatively it may be that there are distinct degrees of

redundancy between members of the mannose receptor family in

different species. Also the more striking phenotype in cattle may be

due the different genetic background and particularly the fact that

the studied animals were all homozygous for a MSTN loss-of-

function mutation [1]. This hypothesis could be tested by mating

Figure 5. Distribution of the number of simulations (out of 10,000) yielding 45 carriers out of 160 Précieux descendants (Y-axis), as
a function of the rate of transmission of the mutation from heterozygous carriers (X-axis). Three curves are given corresponding to
frequencies of the mutation outside of the Précieux lineage of 0, 1, and 5%. The dotted red vertical line corresponds to a transmission rate of 67%,
maximizing the number of simulations yielding 45 carriers for a mutation frequency (outside of the Précieux lineage) of 1%, considered to be an
upper bound in BBCB.
doi:10.1371/journal.pgen.1000666.g005
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the available MRC2 and MSTN knock-out mice. Whatever the

reason, at this point bovine CTS may be the more informative

model to decipher MRC2 function, and to assist in the

identification of as of yet unidentified human pathological

conditions resulting from MRC2 loss-of-function.

We provide very strong evidence of phenotypic manifestations

of the CTS mutation in carriers. This is more than likely reflecting

dosage sensitivity for Endo180, as NMD causes the mutant protein

to be present at near undetectable levels, thus very unlikely to

affect cellular function per se. Enhanced muscularity of CTS

carriers has supposedly contributed greatly to the rapid increase of

the CTS mutation in the BBCB. Indeed, we demonstrate that

carrier animals have approximately two times more chance to be

selected as elite sires than their non-carrier sibs. Note that this is

the level of segregation distortion expected for a gene that

accounts for ,5% of the genetic variance for a trait with

heritability of ,25% and assuming a selection intensity of ,2%

(Table S2).

Such selective sweep is reminiscent of the spread of other

inherited defects in domestic animals as a result of advantageous

traits exhibited by carriers. These include loss-of-function

mutations of the porcine ryanodine receptor and equine skeletal

muscle sodium channel alpha subunit gene causing, respectively,

malignant hyperthermia and hyperkalaemic periodic paralysis in

homozygotes, yet increased muscle mass in heterozygotes [12,13],

or of a FGFR3 mutation causing hereditary chondrodysplasia in

homozygous sheep and increased size in the carriers [14,15].

A diagnostic test for the CTS mutation has been developed and

already applied on more than 4,000 BBCB samples. The resulting

information should have an immediate and positive impact on the

incidence of CTS, and protect animals and breeders against the

pathological condition and ensuing economic losses.

This work is yet another illustration of the value of domestic

animal populations in enriching the phenotype-genotype map. It

adds to a recent list of positional cloning successes in poultry [16],

dog [17,18], horse [19] and bovine [2].

Materials and Methods

Mutation scanning
Coding exons of positional candidate genes were amplified from

genomic DNA of a CTS case and a matched control using standard

procedures. The primers used for the MRC2 gene are listed in Table

S3. PCR products were directly sequenced using the Big Dye

terminator cycle sequencing kit (Applied Biosystem, Foster City,

CA). Electrophoresis of purified sequencing reactions was per-

formed on an ABI PRISM 3730 DNA analyzer (PE Applied

Biosystems, Foster City, CA). Multiple sequence traces from

affected and wild-type animals were aligned and compared using

the Phred/Phrap/Consed package (www.genome.washington.edu).

59 exonuclease diagnostic assay of the CTS mutation
A Taqman assay was developed to genotype the CTS mutation,

using 59-GCG CAA CAG CAC CAG AGA-39 and 59-CTC CCT

ACC TTG TTC AGG AAC TG-39 as PCR primers, and 59-CTG

CCG CCC AC[* *] GGG-39 (CTS) and 59-CTG CCG CCC

AC[A G]G-39 (wild type) as Taqman probes. Reactions were

carried out on a ABI7900HT instrument (Applied Biosystems,

Foster City, CA) using standard procedures.

Allelic imbalance test of NMD
Total RNA was extracted from lung, heart and skeletal muscle

of a two month old heterozygote c.2904_2905delAG animal using

Trizol (Invitrogen). The RNA was treated with TurboDNase

(Ambion). cDNA was synthesized using SuperscriptTMIII First

Strand Synthesis System for RT-PCR (Invitrogen). A portion of

MRC2 cDNA, encompassing the deletion, was amplified using

MRC2 specific primers (Table S4). The PCR products were

directly sequenced as described above.

Real-time quantitative RT-PCR test of NMD
Total RNA from lung and skeletal muscle was obtained from

animals of the three genotypes (+/+, +/CTS and CTS/CTS). After

DNase-treatment (Turbo DNA-free, Ambion), 500 ng total RNA

was reverse transcribed in a final volume of 20 ml using the iScript

cDNA Synthesis Kit (Bio-Rad). PCR reactions were performed in a

final volume of 15 ml containing 2 ml of 2.5-fold diluted cDNA

(corresponding to 20 ng of starting total RNA), 7.5 ml of 26master

mix prepared from the qPCR Core Kit for SYBR green I

(Eurogentec), 0.45 ml of 1/2000 SYBR green I working solution

prepared from the qPCR Core Kit for SYBR green I (Eurogentec),

forward and reverse primers (250 nM each) and nuclease free water.

PCRs were performed on a an ABI7900HT instrument (Applied

Biosystems, Foster City, CA) under the following cycling conditions:

10 min at 95uC followed by 40 cycles at 95uC for 15 sec and 60uC
for 1 min. Two primer sets were used to test MRC2 expression

(MRC2_59QRT_UP/DN and MRC2_39QRT_UP/DN) and sev-

en genes were included as candidate endogenous controls: (1) Beta

Actin (ACTB), (2) Glyceraldehyde-3-phosphate Dehydrogenase

(GAPD), (3) Hypoxanthine Phosphoribosyltransferase 1 (HPRT1),

(4) Ribosomal Protein Large P0 (RPLP0), (5) Ribosomal Protein S18

(RPS18), (6) Succinate Dehydrogenase Complex Subunit A

Flavoprotein (SDHA), and (7) Tyr-3- & Trp-5-Monooxygenase

Activation Protein Beta (YWHAB). After analyse of the results with

geNorm [20], the four following genes were selected as best

endogenous controls: ACTB, RPLP0, RPS18 and YWHAB. The

corresponding primer sequences are given in Table S4. All sample/

gene combinations were analyzed in triplicate. Relative MRC2

expression levels, for the 59 & 39cDNA parts, in the samples of the

three genotypes were computed using the qBase software package

(http://medgen.ugent.be/qbase/)(Hellemans et al., 2007).

Western blotting
A series of available antibodies directed against the human

Endo180 were tested by Western blotting for cross reactivity with

bovine Endo180 on commercial bovine aortic endothelial cells

(BAOEC, Cell Applications). A positive control corresponding to a

lysate of MRC5 human fibroblast cell line expressing Endo180

was included in each experiment. The tested antibodies were the

following: (i) seven mouse monoclonal antibodies (for details see

[21–23]), (ii) a rabbit polyclonal antibody (DEX) directed against

the full length human protein [21] and (iii) two rabbit polyclonal

antibodies (CAT1 and CAT2) against a peptide from the human

C-terminal cytoplasmic domain (CATEKNILVSDMEMNEQ-

QE) conjugated to KLH [6]. After initial testing, only the CAT2

antibody was retained for further experiments. Flash-frozen

skeletal muscle and lung tissues from animals of the three MRC2

genotypes (see above) were disrupted and homogenized with a

tissue lyser system II (Quiagen). Crude protein extracts were

obtained and total protein concentrations determined using a

colorimetric test (Pierce BCA Protein Assay kit, Thermo

Scientific). Fifteen mg were diluted in 15 ml final volume (16
SDS gel-loading buffer) and loaded on a 5% stacking – 10%

resolving Tris-glycine SDS-Polyacrylamide gel. Proteins were

separated by electrophoresis at 120 V-250 mA during 3 hours,

visualized by Coomassie blue staining, and electro-transferred

overnight to Hybond P PVDF membranes (GE Healthcare).

Membranes were blocked with 5% skim milk in PBS-Tween 20
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(PBS-T) followed by incubation with primary CAT2 antibodies

(1:200) in a total volume of 3 ml for 1 h30 min. After washing, the

specific signal was detected by using Alkaline Phosphatase

conjugated secondary rabbit antibodies (Sigma) following the

instructions of the manufacturer.

Statistical analysis
Phenotypes corresponded to 22 type traits related to muscularity,

skeletal conformation, size and leg soundness that are systematically

recorded in the BBCB [24]. These were analyzed using a mixed model

including genotype at the MRC2 locus (2), year at scoring (2), body

condition (4) as fixed effects, age at scoring as covariate (quadratic

regression), the additive genetic animal effect and the residual effect as

random effect [25]. The number of animals in the relationship matrix

was 6,356. Variance components were estimated using the DFREML

method (Derivative-Free Restricted Maximum Likelihood) [26]. The

part of the genetic variance due to MRC2 genotype was estimated as

the difference between the variance due to the animal model with and

without MRC2 genotype in the model. The allele substitution effects

(contrast) were calculated as the difference between the genotypic

means (+/+ and +/M) obtained from the mixed model equations.

Evidencing a selective sweep
We simulated the segregation of a heterozygous mutation from

Précieux to its 160 [2003–2005] sire offspring. Variable parameter

values were (i) the transmission rate of the mutation from carriers to

their offspring (0.5 to 0.75), (ii) the frequency of the mutation outside of

the Précieux lineage. 10,000 simulations were conducted for each set of

parameter values. Only non-affected genotypes were sampled from

matings between heterozygous parents.

Supporting Information

Table S1 Statistics of number of carriers under the neutral

model (no selection)(10,000 simulations).

Found at: doi:10.1371/journal.pgen.1000666.s001 (0.07 MB PDF)

Table S2 The table shows, for varying values of d, the

proportion of the phenotypic (P-PV) and genetic variance (P-

GV) explained by the QTN in the general population. Assume a

normally disturbed trait with 25% heritability, influenced by a

QTN with MAF 1 of 0.25 and with two possible genotypes in the

population (+/+ and +/M) as is the case for the CTS mutation.

Assume that the average phenotype of the +/+ population is -d/2

and of the +/M population is +d/2. Assume also that the residual

variance is 1. The table shows, for varying values of d, the

proportion of the phenotypic (P-PV) and genetic variance (P-GV)

explained by the QTN in the general population. Assume that one

selects future AI sires amongst offspring of popular +/M

heterozygous sires. The table shows, for five hypothetical

phenotypic threshold values for selection T = 1.00–2.00, the

proportion of sons selected (Prop-Sel), and amongst the selected

sons, the ratio of carrier (+/M) versus non-carriers (+/+) (C/NC).

Dams were assumed to be +/+ for simplicity. It can be seen that

the observed ,2:1 segregation ratio observed for CTS implies a

selection intensity of the order of 0.02 for a QTN that accounts for

,0.05 of the genetic variance in the general population. The

corresponding cells are highlighted in gray.

Found at: doi:10.1371/journal.pgen.1000666.s002 (0.11 MB PDF)

Table S3 Primer pairs for the MRC2 gene.

Found at: doi:10.1371/journal.pgen.1000666.s003 (0.08 MB PDF)

Table S4 Allelic imbalance and quantitative RTPCR primer

pairs for the detection of NMD.

Found at: doi:10.1371/journal.pgen.1000666.s004 (0.08 MB PDF)
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