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Abstract 
Spontaneous reporting systems such as the FDA’s adverse event reporting system (FAERS) present a great resource 

to mine for and analyze real-world medication usage. Our study is based on a central premise that FAERS captures 

unsuspected drug-related adverse events (AEs). Since drug-related AEs result for several reasons, no single approach 

will be able to predict the entire gamut of AEs. A fundamental premise of systems biology is that a full understanding 

of a biological process or phenotype (e.g., drug-related AE) requires that all the individual elements be studied in 

conjunction with one another. We therefore hypothesize that integrative analysis of FAERS-based drug-related AEs 

with the transcriptional signatures from disease models and drug treatments can lead to the generation of unbiased 

hypotheses for drug-induced AE-modulating mechanisms of action as well as drug combinations that may target those 

mechanisms. We test this hypothesis using drug-induced pulmonary fibrosis (DIPF) as a proof-of-concept study. 

 

Introduction 
In the United States, more than 2 million cases of prescription drug-related adverse events (AE) occur annually, 

including 100,000 deaths. Spontaneous reporting systems such as the FDA’s adverse event reporting system (FAERS) 

present a great resource to mine for and analyze real-world medication usage (1-5). FAERS represents real-world 

iatrogenic observations which can be clinically validated (2, 6) and indeed has been instrumental in the identification 

of serious drug-related AEs leading to either modification of the product labeling information or market withdrawal 

of an approved drug (7). FAERS data mining has also been shown to be successful in reproducing well-established 

clinical associations (8). Our hypothesis therefore is that systematic deep-mining of the FAERS data can identify novel 

drug pairs that either aggravate or reduce the risk of drug-induced disease (DID). Any clinical phenotype, including 

the drug-related AEs, are a result of perturbations of complex biological interactions. As a result, unimodal approaches 

may not be effective in predicting or in understanding the molecular basis of the entire gamut of drug-related or drug-

induced AEs. Therefore, systems biology-based approaches that allow integration of multiple heterogeneous types of 

data sets can provide an overarching framework to explore the different types of drug-related AEs. Further, studying 

drugs in the context of cellular networks can provide insights into AEs caused by off-targets of those drugs. We 

therefore hypothesize that integrative analysis of drug-related AEs from FAERS with the differential transcriptome 

data sets from small molecules and disease phenotype (human patients and model systems) can lead to generation of 

unbiased hypotheses for DID-mitigating drug combinations and mechanisms of action. 

 

Methods 

AERSMine - FAERS datamining 
We used AERSMine (4) to mine FAERS and identify drugs that are significantly associated with a side-effect. Relative 

risk was calculated using a ratio of the rate of AE occurrence in patients given a certain drug or drug combination over 

the rate of the same AE occurrence in patients not given those drugs. Therefore, a higher relative risk suggests a more 

likely association between a given drug and AE, with 0 being the lowest possible. We also used safety signal, a 

Bayesian probability-based measure to analyze the relationship between a given drug and AE. Positive safety signals 

represent a positive correlation, negative scores denote a negative correlation, and scores close to zero signify 

independence (9). Safety signal was slightly preferred over relative risk, as a low relative risk score is ambiguous, 

potentially signifying either no relationship or an inverse relationship between drug or drug combination and AE. All 

AERSMine queries were performed using a standard Benjamini and Hochberg False Discovery Rate (FDR) correction 

(adjusted p-value < 0.05). 

 

Differentially expressed gene signatures for phenotypes and drugs 

For drug and disease transcription profiles we used curated data sets, including those from NCBI’s GEO database as 

available from Illumina’s BaseSpace Correlation Engine (BSCE; http://www.nextbio.com/b/nextbio.nb; Illumina, 

Cupertino, CA, USA).  
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Gene annotations and functional enrichment analysis 

We used ToppGene Suite (TGS) Knowledgebase (10) for compiling the fibrosis gene sets and for performing the 

functional enrichment analysis. 

 

Results 

Case Study: Drug-induced pulmonary disease (DIPD) 

Drug-induced pulmonary disease (DIPD) is a serious but relatively understated risk for millions of patients in the US 

and globally. Previous research shows that more than 600 FDA-approved drugs may cause DIPD. By one estimate, as 

many as 10% of chemotherapy patients develop DIPD (11). Other classes of DIPD-implicated drugs include 

cardiovascular medications, anti-microbial, and anti-inflammatory drugs. Currently, no alternatives exist for patients 

subjected to chemotherapeutics-induced pulmonary toxicity because the cause of DIPD is the primary medication. On 

the other hand, treatment of complex multifactorial disorders may lead to inadvertent polypharmacy predisposing to 

drug-interaction induced pulmonary disease. Thus, understanding the molecular mechanisms underlying DIPD and 

finding safer and effective therapeutic regimens is of paramount importance. As outlined in the methods, we used the 

drug-related AE data from the FAERS and differential transcriptome data sets for pulmonary diseases and drugs from 

the BSCE compendia as the basis for computational models that integrate network analyses with systems biology 

approaches to find and characterize drug combinations that can reduce the occurrence of DIPD, specifically drug-

induced pulmonary fibrosis (DIPF). 

 

DIPF candidate causal drugs 
To identify DIPF candidate causal drugs we queried FAERS using AERSMine to get a list of drugs with the greatest 

safety signal scores (≥2.0) for AE pulmonary fibrosis. We also searched AERSMine with known DIPF-causal drugs 

and found several of them to have either relative risk >2.0 or safety signal >0. For example, bleomycin, amiodarone, 

and gefitinib – all well-known DIPF-causal drugs had safety signal >2.0 (Table 1). To identify potentially novel DIPF-
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causal drugs, we repeated the AERSMine query excluding patients who were on known DIPF-causal drugs. The 

relative risk and safety signal scores from these queries are shown in the table 1. An important step in our approach 

was to exclude patients with any history of pre-existing respiratory disorders. By doing so, our analysis was not 

confounded by lung-related AEs resulting from exacerbation of the underlying clinical condition. We also used the 

Pneumotox database (http://www.pneumotox.com), which tracks and stores drug-induced and iatrogenic respiratory 

disease. Additional confirmation of the causal candidates was accomplished by comparing our findings with the FDA 

drug label warnings (DailyMed) and with data from the Canada Vigilance Adverse Reaction Online Database 

(CVAROD - http://webprod3.hc-sc.gc.ca/arquery-rechercheei/index-eng.jsp). Table 1 shows the top DIPF candidate 

causal drugs, including both novel suspects and those previously reported in FDA label warnings or clinical reports in 

the literature.  

 

DIPF candidate therapeutics 
Following a similar approach as described in the previous section, we compiled a list of pulmonary fibrosis-mitigating 

DIPF candidate therapeutics from AERSMine that had safety signal scores <0. This resulted in several candidate 

drugs. Interestingly, among these were drugs that have been previously reported to have anti-fibrotic effects. We 

checked Pneumotox database and FDA Label warnings to ascertain that the DIPF candidate therapeutics we have 

identified are not reported to cause pulmonary fibrosis. Among the DIPF candidate therapeutics were antidiabetic 

(sitagliptin, linagliptin, liraglutide, and canagliflozin) and antipsychotic medications (ziprasidone, risperidone, and 

paliperidone). Linagliptin is reported to attenuate pulmonary (12) and kidney fibrosis (13). Among the drugs under 

antipsychotics class, ziprasidone, risperidone, and paliperidone show significantly reduced risk for DIPF (Table 2). 

 

DIPF- mitigating or aggravating drugs – Mechanistic hypotheses 

We next tested the hypothesis that integrative analysis of drug-related AEs with drug-induced transcriptomics data 

can lead to generation of mechanistic hypotheses about plausible causes, and intervention, for DIPFs. To delineate 

this, we leverage public gene annotation data sets normalized and integrated as part of our ToppGene Suite (TGS) 

Knowledgebase (10) and BSCE (see Methods). To do this using TGS Knowledgebase, we first compiled a list of 782 

pulmonary fibrosis-related genes based on human and mouse phenotype gene associations as well as known 

pulmonary fibrosis genes from DisGeNet and genetic markers of pulmonary fibrosis from BSCE. We then used BSCE 

to compare these 782 genes against the BSCE compendia of differential transcriptomes. We filtered the results for 

differential transcriptomes from bleomycin mouse models of pulmonary fibrosis. Among the 124 intersecting genes, 

85 genes were significantly overexpressed in the lungs of bleomycin mouse model of fibrosis (Fig. 1). 
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Next, we compared the 782 fibrosis genes with compendia of differential transcriptomes (using BSCE), 

 

Fig. 2. Comparison of the 782 fibrosis gene set with the differential transcriptome of risperidone treatment. Of the 308 

intersecting genes, 195 genes (green box) were significantly downregulated in risperidone study. The numbers do not add 

up accurately because of some genes occurring in both up- and down- regulated gene sets owing to differential expression 

of different probe sets mapped to a same gene. 

 

Fig. 1. BSCE was used to compare the 782 fibrosis gene set with the differential transcriptome of bleomycin mouse 

models of pulmonary fibrosis (BSCE curated data sets including those from NCBI’s GEO database). Of the 124 

intersecting genes, 85 genes (red box) were significantly upregulated in mouse models of pulmonary fibrosis. The numbers 

do not add up accurately because of some genes occurring in both up- and down- regulated gene sets owing to differential 

expression of different probe sets mapped to a same gene. 
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specifically with risperidone (DIPF candidate therapeutic) related data sets. Interestingly, we found a significant 

negative correlation. Of the 308 intersecting genes, 195 genes were significantly downregulated following the 

risperidone treatment (Fig. 2).  

Finally, using BSCE’s meta-analysis, we directly compared the differentially expressed pulmonary fibrosis 

mouse model data set with that of the risperidone differential transcriptome. This resulted in an overlap of 789 genes, 

of which 263 and 202 genes were reciprocally related. In other words, 263 genes upregulated in pulmonary fibrosis 

mouse model were downregulated in the risperidone data set while 202 genes downregulated in pulmonary fibrosis 

mouse model were upregulated in the risperidone differential transcriptome data set (Fig. 3). Functional analysis of 

the 263 genes (upregulated in bleomycin mouse model of pulmonary fibrosis but downregulated following risperidone 

treatment) using ToppFun application of TGS showed enrichment (FDR p-value 0.05) for pathways and biological 

processes such as ECM, fibroblast proliferation and migration, collagen binding, abnormal alveolar morphology, etc. 

– all hallmarks of pulmonary fibrosis. 

 

Discussion 
Spontaneous reporting systems such as FAERS present a great resource to mine for and analyze real-world 

concomitant medication usage. FAERS data mining has been shown to be successful in reproducing well-established 

clinical associations (e.g., statins and muscular events, oxaliplatin and peripheral sensory neuropathy, proton pump 

inhibitors and hypomagnesaemia, etc. (14)). Further, even though polypharmacy – the concurrent use of multiple 

medications – has been shown to have both positive and negative outcomes, there have been no studies to find and 

investigate the role of polypharmacy in DIPD systematically. Polypharmacy is ubiquitous – an estimated 29% of the 

elderly patients use at least 5 prescription medications while 46% of prescription users also used over-the-counter 

medications (15). 

Similar to any phenotype, drug-related AEs or phenotypes also result because of several, and largely 

unknown and yet to be discovered, genetic and environmental components, and their interactions. Therefore, any 

single approach will fail to predict the entire range of drug-induced AEs. Systems biology-based integrative 

 

Fig. 3. Correlation of the differential transcriptomes of mouse model for pulmonary fibrosis and risperidone treatment. Of 

the 789 intersecting genes, 465 (263 + 202) genes (blue box) are reciprocally regulated. The numbers do not add up 

accurately because of some genes occurring in both up- and down- regulated gene sets owing to differential expression of 

different probe sets mapped to a same gene. 
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approaches that permit joint analysis of individual heterogeneous elements and their interactions can enable a 

relatively complete understanding of the underlying molecular basis of drug-induced AESs. Further, studying the 

drugs in the context of cellular networks can provide insights into AEs caused by off-targets of drugs (16, 17). 

Our study has certain limitations. Since FAERS is a spontaneous reporting system, apart from the data 

quality-related issues, there can be potential reporting biases. Confounding (18-21), for instance, impacts 

understanding true correlations and presents a significant challenge for drug-AE hypothesis generation. To limit the 

effects of confounders, a priori clinical knowledge can be applied to exclude known confounders. However, 

confounders are not always known beforehand. Hence, automatic confounder control methods (22) based on 

propensity scores, direct adjustment, similarity matching and ensemble resampling can assist in mitigating the effects 

of unknown confounders. In addition, clinical data from EHRs can serve as a “gold standard” while also 

complementing and strengthening drug-related AE hypotheses. Last but not least, FAERS data lacks the denominators 

(i.e., total number of patients using the drug globally but did not experience an AE) to estimate the true attributable 

risks. In the current study, we relied on BSCE for drug and disease phenotype transcription profiles. However, there 

is a possibility that some of the drugs we discover to be potentially increasing or decreasing DIPF risk may not be 

represented in BSCE. 

 

Conclusion 

Delineating and characterizing the AE-mitigating effects of drugs and drug combinations through these systematic 

pharmacological approaches has a direct impact on precision medicine when combined with genomic sequencing and 

electronic medical records in clinical settings. Although we have focused on DIPF in this current study, the same 

methodology can be extended for elucidating other drug-induced system-wide AEs. As part of ongoing and future 

studies, we are focusing on identifying drug combinations that are potential DIPF risk modifiers. Using the DIPF 

candidate causal (DIPF+ve) and therapeutic (DIPF-ve) drugs identified, we will generate pairwise combinations (DIPF 

modifier matrices) and re-query FAERS data using AERSMine as described previously for the incidence of DIPF in 

patients on these combinations. In other words, if we have m DIPF+ve drugs and n DIPF-ve drugs, we will generate 

m X n combinations to facilitate an unprecedented deep-dive into the realm of DIPF therapeutics. 
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