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Abstract

Through associative reward learning, arbitrary cues acquire the ability to automatically capture visual attention. Previous
studies have examined the neural correlates of value-driven attentional orienting, revealing elevated activity within a net-
work of brain regions encompassing the visual corticostriatal loop [caudate tail, lateral occipital complex (LOC) and early
visual cortex] and intraparietal sulcus (IPS). Such attentional priority signals raise a broader question concerning how visual
signals are combined with reward signals during learning to create a representation that is sensitive to the confluence of
the two. This study examines reward signals during the cued reward training phase commonly used to generate value-
driven attentional biases. High, compared with low, reward feedback preferentially activated the value-driven attention
network, in addition to regions typically implicated in reward processing. Further examination of these reward signals
within the visual system revealed information about the identity of the preceding cue in the caudate tail and LOC, and infor-
mation about the location of the preceding cue in IPS, while early visual cortex represented both location and identity. The
results reveal teaching signals within the value-driven attention network during associative reward learning, and further
suggest functional specialization within different regions of this network during the acquisition of an integrated representa-
tion of stimulus value.
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When a stimulus is learned to predict a reward, that stimulus
acquires the ability to automatically capture visual attention
even when task-irrelevant and physically inconspicuous
(Anderson et al., 2011b). That such attentional orienting is attrib-
utable specifically to reward history suggests a distinctly value-
driven computation of attentional priority (see Anderson, 2013,
for a review). More recent studies have begun to explore the
neural mechanisms by which attention is directed to learned
predictors of reward.

What has arisen from this emerging literature is a consist-
ent set of findings implicating what I will refer to here as a
‘value-driven attention network’; that is, a network of brain re-
gions involved in the signaling of value-based attentional prior-
ity. These regions include the caudate tail (Hikosaka et al., 2013;
Yamamoto et al., 2013; Anderson et al., 2014; see also Anderson

et al., 2016), object-selective visual cortex/lateral occipital com-
plex (LOC; Anderson et al., 2014; Hickey and Peelen, 2015;
Donohue et al., 2016; see also Hopf et al., 2015), and the intrapar-
ietal sulcus (IPS; Peck et al., 2009; Qi et al., 2013; Anderson et al.,
2014), in addition to early visual cortex (MacLean and
Giesbrecht, 2015; van Koningsbruggen et al., 2016; see also Seitz
et al., 2009). When previously reward-associated stimuli are
processed by the visual system, elevated activity within this
network is consistently observed. Whereas the IPS is a part of
the dorsal attention network (Corbetta and Shulman, 2002;
Corbetta et al., 2008) and contains a spatially organized saliency
map (e.g. Bisley and Goldberg, 2003; Balan and Gottlieb, 2006),
the caudate tail and LOC comprise the visual corticostriatal
loop (Seger, 2013) and robustly represent object identity (e.g.
Gill-Spector et al., 2001; Yamamoto et al., 2012). Both receive
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input from early visual cortex (e.g. Corbetta and Shulman, 2002;
Seger, 2013).

Such priority signals in the value-driven attention network
reflect the confluence of visual information (i.e. features of a
cue) and (learned) value information, which raises a broader
and important question concerning the nature of the informa-
tion processing that could support their development. The man-
ner in which visual signals are combined with reward signals
during learning in attention-related brain areas remains un-
known. Some form of reward-modulated visual plasticity would
seem to be involved, as predicted by attention-gated reinforce-
ment learning models (Roelfsema and van Ooyen, 2005;
Rombouts et al., 2015). It is known that reward signals can evoke
prediction-like responses in early visual cortex (Shuler and
Bear, 2006; Arsenault et al., 2013), potentially mediating such
plasticity. However, the stimulus specificity of reward signals in
visual areas has not been explored, nor has the breadth of such
signals throughout a broader attention network, beyond early
visual cortex.

This study explores the hypothesis that, when a reward is
received, the visual representation of the cue that predicted the
reward is re-instantiated within the value-driven attention net-
work, thus producing a value-dependent visual signal that
could support reward-modulated plasticity. This hypothesis
makes two key predictions. First, the receipt of reward should
be accompanied by elevated activity within the value-driven at-
tention network, consistent with a teaching signal (Shuler and
Bear, 2006; Arsenault et al., 2013). Second and most critically,
such elevated activity should contain information about the
specific visual cue that preceded the reward, including its spa-
tial position and identity. The first prediction was evaluated
using an existing dataset (Anderson et al., 2014), the results of
which were then independently replicated using a newly
acquired dataset. Regions commonly activated by reward feed-
back across datasets included the entire value-driven attention
network bilaterally. Subsequent analyses evaluated the veracity
of the second prediction by exploring the stimulus specificity of
the reward signals observed within this network.

Methods
Experiment 1A

Participants.Eighteen neurologically healthy adult volunteers
with normal or corrected-to-normal visual acuity and color vi-
sion were recruited from the Johns Hopkins University commu-
nity to participate, as described in Anderson et al. (2014).
Written informed consent was obtained for each participant. All
procedures were approved by the Johns Hopkins Medicine
Institutional Review Board.

Behavioral task and procedure. The participant completed 5
runs of a cued reward learning task consisting of 60 trials each
(see Figure 1). The experiment utilized a rapid event-related de-
sign. Each trial began with a fixation display for 2000 ms, which
was followed by a search array for 1000 ms and later by a reward
feedback display for 1500 ms. Participants were instructed to
search for a target circle that was unpredictably red or green
and report the orientation of a bar within the target as either
vertical or horizontal via a button press. Half of the trials in
each run contained a red target and half contained a green tar-
get; each target color appeared on each side of the screen (left or
right) equally often. The colors of the non-targets were drawn
from the set (blue, cyan, pink, orange, yellow, white) without re-
placement (as in, e.g. Anderson et al., 2011b, 2014); the

luminance of the colors was not controlled. The order of trials
was randomized for each run.

Following a correct response that fell within a 1000 ms re-
sponse deadline, a small amount of money was added to a bank
total in the reward-feedback display. If participants responded
incorrectly or too slowly (both were scored as errors), the reward
feedback display indicated that 0¢ had been earned for that
trial. One of the two target colors was followed by a high reward
of 25¢ on 80% of the trials on which it was correctly reported,
and by a low reward of 5¢ on the remaining 20% of correct trials
(high-reward color); for the other (low-reward) color, these map-
pings were reversed. The high-reward color was red for half of
the participants and green for the other half. An interval during
which only the fixation cross was visible was presented be-
tween the search array and the reward feedback display for ei-
ther 1000 or 3000 ms (equally-often), and again immediately
following the reward feedback display for 500, 2500 or 4500 ms
(exponentially distributed); the fixation cross disappeared for
the last 200 ms of the second interval to indicate to the partici-
pant that the next trial was about to begin.

Each circle in the search array was 3.4� � 3.4� visual angle in
size. The middle of the three circles on each side of the screen
was presented 10� center-to-center from fixation, and the two
outer circles were presented 8� from the vertical meridian, 6�

above and below the horizontal meridian. Participants pressed
a button held in the right hand for horizontal targets and a but-
ton held in the left hand for vertical targets.

The stimuli were displayed using an Epson PowerLite 7600p
projector with a custom zoom lens onto a screen mounted at
the end of the magnet bore behind the participant’s head.
Participants viewed the screen using a mirror mounted to the
head coil. Stimulus displays were generated using Matlab soft-
ware with Psychophysics Toolbox extensions (Brainard, 1997),
and responses were recorded using two custom-built, fiber-
optic push button boxes.

Each participant practiced the task (without reward feed-
back) and was trained to a performance criterion (accuracy:
85%, mean RT: 750 ms). Fixation on the central cross was
emphasized at all times both during practice and during the

Fig. 1. Sequence and time course of the events for a trial. Participants searched

for a color-defined target (red or green) and reported the orientation of the bar

within the target as vertical or horizontal. Correct responses resulted in a small

amount of money added to the participant’s bank total. One color target yielded

a high reward for correct responses on 80% of trials (high-reward target),

whereas the other color target yielded a high reward on only 20% of correct re-

sponse trials (low-reward target).

462 | Social Cognitive and Affective Neuroscience, 2017, Vol. 12, No. 3

Deleted Text: ,
Deleted Text: ,
Deleted Text: ; Shuler &amp; Bear, 2006
Deleted Text: The present
Deleted Text: Arsenault <italic>et<?A3B2 show $146#?>al.</italic>, 2013; 
Deleted Text: 
Deleted Text: 
Deleted Text: -
Deleted Text: {
Deleted Text: }
Deleted Text: ,
Deleted Text: ,
Deleted Text: &thinsp;&times;&thinsp;
Deleted Text: '


experiment. Data from one run of the training phase was lost
for one participant due to equipment failure (computer crash).

MRI data acquisition. Images were acquired using a 3-Tesla
Philips Gyroscan MRI scanner and a 32-channel transmit/re-
ceive sensitivity encoding (SENSE) head coil at the F. M. Kirby
Research Center for Functional Brain Imaging located in the
Kennedy Krieger Institute, Baltimore, MD. High-resolution
whole-brain anatomical images were acquired using a T1-
weighted magnetization-prepared rapid gradient echo pulse se-
quence [voxel size ¼ 1 mm isotropic, repetition time (TR) ¼
8.1 ms, echo time (TE) ¼ 3.7 ms, flip angle ¼ 8�, acquisition ma-
trix ¼ 212 � 172, 150 axial slices, 0 mm gap, SENSE factor ¼ 2].
Whole-brain functional images were acquired using a T2*-
weighted echoplanar imaging (EPI) pulse sequence (voxel size ¼
2.5 mm isotropic, TR ¼ 2000 ms, TE ¼ 30 ms, flip angle ¼ 70�, ac-
quisition matrix ¼ 76 � 76, 36 axial slices, 0.5 mm gap, SENSE
factor ¼ 2). Each EPI pulse sequence began with four dummy
pulses that were not recorded in order allow magnetization to
reach steady-state. Each of 5 runs lasted 8.2 min during which
242 volumes were acquired.

Pre-processing of MRI data. All pre-processing was conducted
using the AFNI software package (Cox, 1996) except where
otherwise noted. Each EPI run for each participant was slice-
time corrected and then motion corrected using the last image
prior to the anatomical scan as a reference. EPI images were
then coregistered to the corresponding anatomical image for
each participant. Using ANTs (Avants et al., 2011) nonlinear
warping software, the images for each participant were warped
to the Talairach brain (Talairach and Tournoux, 1988). Finally,
the EPI images were converted to percent signal change normal-
ized to the mean of each run, and then spatially smoothed
using a 5 mm full-width half-maximum Gaussian kernel.

Experiment 1B

Participants. Twenty-two new participants meeting the same in-
clusion criteria were recruited.

Behavioral task and procedure. The behavioral task and pro-
cedure were identical to those of Experiment 1A, with the ex-
ception that participants completed 4 runs of the task, the high
reward was increased to 30¢, the low reward was replaced with
no reward (0¢), and responses that were incorrect or too slow
followed by corresponding feedback (i.e. the words ‘Incorrect’ or
‘Too Slow’) to differentiate between errors and the absence of
reward for a correct response. Therefore, the high-reward color
was followed by 30¢ reward on 80% of correct trials, whereas
the low-reward color was followed by 30¢ reward on 20% of cor-
rect trials (and not rewarded otherwise).

MRI data acquisition. The MRI data acquisition was identical
to Experiment 1A, with the exception that four rather than five
runs of the task were completed.

Pre-processing of MRI data. Preprocessing of the MRI data was
identical to Experiment 1A.

Data analysis

Behavioral performance. Mean RT and accuracy were computed
separately for high- and low-reward targets and compared via t-
tests. Only correct trials were included in the RT analyses and
RTs more than 2.5 SD above and below the mean for a given
condition for a given participant were trimmed.

Activation of the value-driven attention network by reward.
All statistical analyses on the fMRI data were performed using
the AFNI software package. Data for each participant were

subjected to a general linear model (GLM) that included six
task-related regressors: (i) high-reward target on the left, (ii)
high-reward target on the right, (iii) low-reward target on the
left, (iv) low-reward target on the right, (v) high-reward feed-
back, (vi) and low-reward feedback. These regressors were mod-
eled using a canonical hemodynamic response function (HRF),
each being represented by a simple HRF onset to the appearance
of the corresponding event. Regressors of non-interest included
six motion parameters and drift in the scanner signal.

The resulting beta-weight estimates for high- and low-
reward feedback were compared via a t-test separately for
Experiments 1A and 1B. Images were then thresholded at a vox-
elwise P < 0.001 uncorrected, and voxels active in both experi-
ments were maintained to produce a region of interest (ROI)
mask. Subsequent analyses were then performed on particular
regions within this mask comprising the value-driven attention
network (bilateral IPS, LOC, caudate tail, and early visual cortex)
along with the caudate head and anterior cingulate cortex
(ACC). These regions were identified and labeled based on their
anatomical coordinates and in consideration of prior studies on
the neural correlates of value-driven attention; the labels do not
reflect independent functional localization and are intended for
descriptive purposes (see Figure 2).

Unfolding of reward responses in the value-driven attention net-
work over time. To examine the temporal unfolding of the
observed reward responses in the value-driven attention net-
work, the same GLM used to define these reward responses (see
above) was performed separately over each run of the task.
Then, the difference in the beta-weights for high- and low-
reward feedback was extracted from ROIs (as defined earlier) for
each run and then compared across runs via a linear trend ana-
lysis. Because Experiment 1A contained one more run than
Experiment 1B, the difference scores for the last two runs in
Experiment 1A were averaged for the purposes of this analysis.

Representation of cue position. To examine whether the re-
ward signals in the value-driven attention network represent
the spatial position of the preceding cue (i.e. the reward-
predictive target), a different GLM was performed in which the
regressors for high- and low-reward feedback were further div-
ided based on whether the preceding target was presented on
the left or right side of the display. There were now eight task-
related regressors: (i—iv) the same target regressors coding
value by position, (v) high-reward feedback following a target

Fig. 2. The value-driven attention network as revealed by contrasting high- vs

low-reward feedback. Voxels shown were more active in response to high vs low

reward at P < 0.001 in each of the two experiments, reflecting a robust reward

signal in visual areas. LOC, lateral occipital complex; IPS, intraparietal sulcus.
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on the left, (vi) high-reward feedback following a target on the
right, (vii) low-reward feedback following a target on the left
and (viii) low-reward feedback following a target on the right, in
addition to motion and drift regressors. Then, the beta-weights
for high-reward feedback following a right- and left-lateralized
target were compared within the value-driven attention net-
work ROIs, and the same comparison was done using the beta-
weights for low-reward feedback. For each region (e.g. right
LOC), the difference in response to reward feedback following
contralateral and ipsilateral targets was computed and then
averaged across each hemisphere of a region to create a per-
region contralateral vs ipsilateral comparison (see Figure 3).

Representation of cue identity. To examine whether the reward
signals in the value-driven attention network represent the
identity (in this case, color) of the preceding cue (i.e. the reward-
predictive target), a different GLM was performed in which the
regressors for high- and low-reward feedback were further div-
ided based on whether the preceding target was red or green.
This resulted in eight task-related regressors: (i–iv) the same
target regressors coding value by position, (v) high-reward feed-
back following a red target, (vi) high-reward feedback following
a green target, (vii) low-reward feedback following a red target
and (viii) low-reward feedback following a green target, in add-
ition to motion and drift regressors. This GLM was performed
on each run separately, providing one beta-weight estimate per
condition per run. Then, beta-weights for high-reward feedback
following a red and green target were extracted within each (bi-
lateral) ROI and subjected to multivariate pattern analysis
(MVPA) using the linear support vector machine (SVM) func-
tions in Matlab. Linear SVM was performed using leave-one-
run-out cross-validation, such that the SVM was iteratively
trained on the beta-weights from n-1 of the runs and tested on
the left out run for each participant. Then, mean classification
accuracy across participants was computed. This was then re-
peated using the beta-weights for low-reward feedback. The
probability of the observed mean classification accuracy under
the null hypothesis was determined using a randomization pro-
cedure in which a distribution of mean classification accuracy
was computed under conditions in which the training labels
were randomly shuffled for each participant (10 000 iterations).

Analysis of reward prediction errors. A similar GLM was per-
formed as for the representation of cue identity, but in this case
collapsing over all trials (rather than performed separately for

each run to facilitate MVPA), with the reward feedback coded in
terms of whether it was expected or unexpected by virtue of the
value assigned to the preceding target. This resulted in eight
task-related regressors: (i–iv) the same target regressors coding
value by position, (v) unexpected high-reward feedback, (vi) ex-
pected high-reward feedback, (vii) unexpected low-reward feed-
back and (viii) expected low-reward feedback, in addition to
motion and drift regressors. Two subsequent contrasts were
performed on the beta-weights over the four reward feedback
conditions: one reflecting the interaction between value and ex-
pectation (valence-dependent prediction errors) and another re-
flecting the main effect of expectation (valence-independent
prediction errors). Contrast images were thresholded at voxel-
wise P < 0.005 uncorrected, and the resulting clusters were as-
sessed for statistical significance using the AFNI program
3dClustSim (n iterations ¼ 10 000; clusters defined using nearest
neighbor method; cluster threshold: P < 0.05).

Results
Behavioral performance

Neither mean RT nor accuracy was significantly modulated by
the value of the target, ts < 0.60, Ps > 0.55, consistent with prior
studies using this paradigm (e.g. Anderson et al., 2011a, 2012,
2013). Overall performance was high (mean accuracy: 92%,
mean RT: 595 ms), providing amble opportunity to experience
and learn from the stimulus–reward contingencies. It should be
noted that the participants in Experiment 1A completed a sub-
sequent test phase which was the focus of a prior study demon-
strating behavioral and neural evidence of attentional priority
for the reward-associated colors (Anderson et al., 2014), suggest-
ing that participants do associate the targets colors with reward
in this paradigm. Successful learning of the cue–reward pairings
was also corroborated by an analysis of reward prediction errors
(see below).

Activation of the value-driven attention network by
reward

Each region of the value-driven attention network, including
the caudate tail, LOC, IPS and early visual cortex, was more ac-
tive bilaterally following high-reward feedback than low reward
feedback (Figure 2), even though the identity and position of tar-
gets were separately modeled. These reward signals in the
value-driven attention network were robust, being independ-
ently evident in each Experiment (see ‘Methods’ section).
Reward signals were also evident outside of the value-driven at-
tention network in regions typically associated with reward and
feedback processing, including the caudate head (e.g. Kim and
Hikosaka, 2013; Hikosaka et al., 2014) and ACC (e.g. Carter et al.,
1998; Kiehl et al., 2000; Hickey et al., 2010), which were not of
interest in this study and were not further analyzed. The reward
signals in the value-driven attention network gradually
increased over the course of the experiment, exhibiting a linear
trend over runs of the task, F(1,39) ¼ 5.42, P ¼ 0.025, gp

2 ¼ 0.057,
consistent with a learning-dependent representation. By com-
parison, such a trend was not observed in the caudate head or
ACC, Fs < 0.25, Ps > 0.60, consistent with their role in the online
monitoring of feedback (e.g. Carter et al., 1998; Kiehl et al., 2000;
Hickey et al., 2010) and in representing current rewards (Kim
and Hikosaka, 2013; Hikosaka et al., 2014).

Fig. 3. Mean beta-weights for responses to high-reward feedback when the pre-

ceding target was presented in the contralateral vs ipsilateral hemifield by re-

gion. Reward signals in both the IPS and early visual cortex were modulated by

the position of the preceding target. Error bars reflect the SEM *P < 0.05.
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Stimulus specificity of the reward signals

Spatial position. A 4 � 2 analysis of variance (ANOVA) with re-
gion (caudate tail, LOC, IPS and early visual cortex) and preced-
ing target location (contralateral vs ipsilateral) as factors was
performed on the beta-weights for high-reward feedback (see
‘Methods’ section). This analysis revealed a main effect of re-
gion, F(3,117) ¼ 99.30, P < 0.001, gp

2 ¼ 0.718, reflecting stronger
reward responses in early visual cortex. There was no main ef-
fect of location, F(1,39) ¼ 0.14, P ¼ 0.713; however, location inter-
acted robustly with region, F(3,117) ¼ 6.48, P < 0.001, gp

2 ¼ 0.142
(Figure 3). Pairwise comparisons revealed greater activation by
reward when the preceding target was presented in the contra-
lateral hemifield for the IPS, t(39) ¼ 2.55, P ¼ 0.015, d ¼ 0.40,
whereas early visual cortex showed the opposite pattern,
t(39)¼�3.19, P ¼ 0.003, d ¼ 0.50. LOC and the caudate tail
showed no evidence of spatial encoding of the prior target, ts <
0.84, Ps > 0.40. The same analysis performed on the mean beta-
weights for low-reward feedback revealed no reliable inter-
action between region and location, F(3,117) ¼ 1.30, P ¼ 0.279, al-
though there was a trend towards the same effect in early
visual cortex, t(39)¼�1.91, P ¼ 0.064 (other regions: ts < 0.68, Ps
> 0.30).

Object identity. For the activity evoked by high-reward feed-
back, the color of the preceding target could be successfully
decoded in LOC (58.2%, P < 0.001), the caudate tail (56.3%, P ¼
0.004), and early visual cortex (56.8%, P ¼ 0.001), but not IPS
(52.1%, P ¼ 0.179). Classification in the LOC, caudate tail, and
early visual cortex remain significant when applying Bonferroni
correction for multiple comparisons (a ¼ 0.0125). For the activity
evoked by low-reward feedback, decoding of the preceding tar-
get color was unsuccessful; although there was a trend towards
successful classification in early visual cortex (54.1%, P ¼ 0.03),
this did not pass correction for multiple comparisons (other re-
gions < 52.7%, Ps > 0.12 uncorrected).

Analysis of reward prediction errors

To confirm learning of the stimulus–reward associations, beta-
weights for reward feedback were computed in terms of value
(i.e. the magnitude of the reward) and expectation (i.e. whether
a reward of that magnitude would have been expected or unex-
pected given the probabilities assigned to the preceding target).
If participants had learned the stimulus–reward contingencies,
then reward prediction errors should be evident. An interaction
between value and expectation could be seen in right orbito-
frontal cortex (OFC) (see Figure 4), consistent with the coding of
reward prediction errors in this region (e.g. O’Doherty, 2004);
that is, the difference in the response evoked by high vs low re-
ward was greater when these values were unexpected than
when they were expected given the preceding target. A main ef-
fect of expectation was also evident in a region encompassing
the posterior cingulate cortex (PCC) and ventral precuneus, with
expected reward eliciting greater responding than unexpected
reward (see Pearson et al., 2011).

Discussion

The signaling of value-based attentional priority is reflected in
the activation of a network of brain regions including the LOC,
IPS, caudate tail and early visual cortex by a learned reward cue
(see Anderson, 2016, for a review). Although this value-driven
attention network is known to play a role in attentional orient-
ing once stimulus–reward relationships have been learned, how

signals combining visual information with value information
arise in these brain areas during the course of learning remains
unaddressed. Reward prediction-like signals have been
observed in early visual cortex (Shuler and Bear, 2006; Arsenault
et al., 2013), potentially reflecting a broader principle that could
mediate reward-induced plasticity within the visual system
(Roelfsema and van Ooyen, 2005; Rombouts et al., 2015), and
reward-prediction signals are known to play an important role
in the development of attentional biases towards reward cues
(Anderson et al., 2013; Sali et al., 2014). However, the stimulus
specificity of reward signals in visual areas is not known, nor
has the extent of such signals throughout a broader attention
network been examined.

Integration of cue and value information

In this study, I observed robust reward signals throughout the
value-driven attention network, extending prior findings in
early visual cortex (Shuler and Bear, 2006; Arsenault et al., 2013).
These reward signals became stronger with experience with the
stimulus–reward associations, the learning of which was con-
firmed via reward prediction error signals in other regions of
the brain. Importantly, these reward signals within the value-
driven attention network carried information about the features
of the preceding reward cue, namely its position and identity.
The observed reward signals therefore represent the key com-
ponents necessary for signaling value-based attentional priority
(e.g. Anderson et al., 2011b, 2014; Anderson, 2013), reflecting a
candidate reinforcement signal that could serve to potentiate
stimulus-specific representations as a function of their ability
to predict reward.

My findings also suggest functional specialization within the
value-driven attention network during the process of learning
stimulus–reward associations. Specifically, although both the
position and identity of reward cues is represented in each of
the regions of the value-driven attention network during the
capture of attention after reward learning has occurred (Peck
et al., 2009; Qi et al., 2013; Yamamoto et al., 2013; Anderson et al.,
2014; MacLean and Giesbrecht, 2015), such information is separ-
ately represented along the dorsal/ventral stream during learn-
ing. Specifically, the IPS represents spatial position but not
object identity, whereas the opposite is true of the LOC and
caudate tail, reflecting known principles of functional special-
ization within the visual system (e.g. Gill-Spector et al., 2001;
Corbetta and Shulman, 2002; Bisley and Goldberg, 2003; Balan

Fig. 4. Regions in which reward prediction error signals were evident. (A) A sig-

nificant interaction between value (i.e. the magnitude of reward feedback) and

expectation (based on the reward probabilities assigned to the target color) was

evident in the right OFC. (B) A main effect of expectation, with a stronger re-

sponse for expected rewards, was evident in a region encompassing the poster-

ior cingulate and ventral precuneus.
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and Gottlieb, 2006; Yamamoto et al., 2012); both receive input
from early visual cortex (e.g. Corbetta and Shulman, 2002; Seger,
2013), which was found to represent both position and identity
during learning. Value-based attentional priority reflects the in-
tegration of these reinforcement signals throughout the value-
driven attention network, creating a bound representation that
is sufficient to elicit stimulus-specific orienting.

Limitations and future directions

The existence of value-based attentional priority signals as-
sumes some integration of value information with visual infor-
mation during learning in the areas involved in signaling such
priority, but the mechanisms of such integration have remained
unaddressed. Although the present study sheds new light on
this issue by outlining a clear example of such integration, the
findings should not alone be taken as an explanation for the de-
velopment of value-dependent attentional bias. Future research
is needed to iron out the dynamics of these candidate teaching
signals and how they might be translated into an enduring bias.

The degree to which the observed reward signals depend on
task-specific motivation is also unclear. The reward cues are
task-relevant targets in this study and in the training phase of
many other studies examining attentional biases for learned re-
ward cues (see Anderson, 2013, 2016, for reviews). However,
value-dependent attentional biases have been observed for
stimuli that were never presented as targets but none-the-less
predict reward (e.g. Le Pelley et al., 2015). Thus, the observed re-
ward signals could reflect voluntary and motivated learning, or
automatic associative learning. The relationship between vol-
untary processes and the development of automatic processes
remains a largely open question in research on value-driven at-
tention. Similarly, these signals could depend on covert selec-
tion of the prior target, overt selection, both, or neither (i.e.
independent of prior selection), as fixation was not enforced in
this experiment. However, spatial content was clearly evident.

The ability to decode previously experienced cue features
during feedback processing was evident predominantly follow-
ing high reward, suggesting a reward-mediated process rather
than a more general principle of feedback processing or a conse-
quence of prior target selection per se (such that the nature or
presence of feedback is superfluous). Given the probabilistic re-
ward structure with two levels of reward, complete learning of
the relative value of the targets is possible when anchoring
learning specifically to the probability of high-reward feedback.
Examination of the nature of stimulus-specific feedback signals
in the context of more complex reward structures (e.g.
Navalpakkam et al., 2010) would be interesting and could reveal
a richer source of value-dependence.

Interestingly, the spatially-specific reward signals in early
visual cortex reflected preferential responding in the hemi-
sphere ipsilateral to where the reward cue was presented,
which contrasts with the contralateral bias observed in IPS and
typically thought to reflect an enhancement of stimulus-evoked
activity (e.g. Anderson et al., 2014; Peck et al., 2009; Qi et al., 2013).
Although somewhat paradoxical, the reward responses in early
visual cortex clearly contained spatial information about the
preceding cue and replicate the pattern previously observed by
Arsenault et al. (2013). In that study, unexpected reward gener-
ated a prediction error signal that reflected suppression of vox-
els sensitive to the reward cue in early visual cortex. Reduced
activation in contlalateral compared with ipsilateral visual cor-
tex could also be explained by suppression of the reward cue
representation, which might reflect a broader principle

governing plasticity within this brain region. Perhaps such sup-
pression serves in the interest of reducing interference from on-
going visual input during the process of consolidating visual
memory at later stages of processing (including in LOC, IPS and
caudate tail). The significance of such seemingly paradoxical re-
ward signals in the early visual cortex is an intriguing question
that clearly warrants further investigation.

Conclusions

The findings from the present study highlight a mechanism by
which value information is combined with visual information
in the human attention system. When high rewards are
received, the feature representations activated by the preceding
cue become re-activated (or suppressed). These reward signals
are evident throughout the visual system, within a network of
brain regions corresponding very closely to those known to be
involved in attentional orienting to learned reward cues (e.g.
Peck et al., 2009; Yamamoto et al., 2013; Anderson et al., 2014
Anderson, 2016), which could drive the plasticity hypothesized
to underlie value-driven attention (Rombouts et al., 2015;
Anderson, 2016). Such reward signals could also conceivably
have an immediate impact on stimulus priming, thereby pro-
viding a common mechanism linking value-driven attentional
capture by learned reward cues (Anderson et al., 2011b, 2014;
Anderson, 2013, 2016) and reward-mediated priming (Hickey
et al., 2010, 2014; Hickey and van Zoest, 2012, 2013).
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