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Strain uses gap junctions to reverse stimulation of osteoblast
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Rosemary F.L. Suswillo1 | Behzad Javaheri1 | Simon C.F. Rawlinson2 | Gary P. Dowthwaite1 |

Lance E. Lanyon3 | Andrew A. Pitsillides1
1Comparative Biomedical Sciences, Royal

Veterinary College, London, UK

2 Institute of Dentistry, Barts & The London

School of Medicine and Dentistry, Queen

Mary University of London, London, UK

3School of Veterinary Sciences, University of

Bristol, Bristol, UK

Correspondence

Behzad Javaheri, Department of Comparative

Biomedical Sciences, Royal Veterinary College,

Royal College Street, London NW1 0TU, UK.

Email: bjavaheri@rvc.ac.uk
This is an open access article under the terms of th

the original work is properly cited.

Copyright © 2017 The Authors Cell Biochemistry

56
Identifying mechanisms by which cells of the osteoblastic lineage communicate in vivo is

complicated by the mineralised matrix that encases osteocytes, and thus, vital mechanoadaptive

processes used to achieve load‐bearing integrity remain unresolved. We have used the coculture

of immunomagnetically purified osteocytes and primary osteoblasts from both embryonic chick

long bone and calvariae to examine these mechanisms. We exploited the fact that purified

osteocytes are postmitotic to examine both their effect on proliferation of primary osteoblasts

and the role of gap junctions in such communication. We found that chick long bone osteocytes

significantly increased basal proliferation of primary osteoblasts derived from an identical source

(tibiotarsi). Using a gap junction inhibitor, 18β‐glycyrrhetinic acid, we also demonstrated that this

osteocyte‐related increase in osteoblast proliferation was not reliant on functional gap junctions.

In contrast, osteocytes purified from calvarial bone failed to modify basal proliferation of primary

osteoblast, but long bone osteocytes preserved their proproliferative action upon calvarial‐

derived primary osteoblasts.

We also showed that coincubated purified osteocytes exerted a marked inhibitory action on

mechanical strain–related increases in proliferation of primary osteoblasts and that this action

was abrogated in the presence of a gap junction inhibitor. These data reveal regulatory

differences between purified osteocytes derived from functionally distinct bones and provide evi-

dence for 2 mechanisms by which purified osteocytes communicate with primary osteoblasts to

coordinate their activity.
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1 | INTRODUCTION

There is much evidence supporting the view that osteocytes act as

strain sensors in bones. Osteocytes with an extensive communication

network and unique distribution are well situated within the bone

matrix to sense mechanical loading and initiate a response by commu-

nicating with osteoblast and osteoclasts on bone surfaces.1–14 Various

studies have provided evidence to support this hypothesis. For exam-

ple, it was shown that the level of intracellular glucose‐6‐phosphate

dehydrogenase activity in resident osteocytes was influenced by, and

related to, the level of exposure to mechanical loading in vivo.15
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Moreover, within minutes following mechanical strain, osteocytes

upregulate endothelial NO synthase and cyclooxygenase 2 expression,

which in turn stimulate NO and prostaglandin E2 (PGE2) release,

respectively.16–18 These are important early cellular changes that reg-

ulate downstream events including production of anabolic factors19

such as insulin‐like growth factor 1 and matrix molecules20 including

dentin matrix protein 1. On the basis of such studies, it has frequently

been proposed that osteocyte sensitivity to applied loads, sensed

either as strain, flow, or some other sequelae of loading, provides the

controlling input in the postulated “mechanostat,” which confers bone

with its mechanoadaptive capacity.21,22
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Osteocytes are confined to lacunae, however, and can make little

if any direct contribution to the architectural adaptive bone (re)model-

ling activities that load‐related strains might stimulate. It is assumed

therefore that their influence is achieved via their control of the

remodelling activity of osteoclasts (via osteoblasts and lining cells)

and osteoblasts on the bone surface. A potential route by which oste-

ocytes could influence the behaviour of overlying osteoblasts in

response to external mechanical stimuli is via the passage of small mol-

ecules through the osteoblast: osteocyte network of gap junctions or

via molecules secreted into the intralacunar fluid. This fluid bathes

osteocytes and the bone‐facing processes of osteoblasts and lining

cells, and its movement through canaliculae results from the pressure

differentials induced by dynamic loads. The repetitive bending of the

bone matrix is thought to generate a “pumping” action forcing fluid

to the bone surface and subsequent dynamic shear strains on

osteocytic processes.10,23–28

Previous studies have shown that gap junctions are expressed in

all different types of bone cells23–35 and are likely candidates for chem-

ical information transfer between bone cells,36,37 providing evidence

that gap junction communications are potentially important in

mechanotransduction.35,37–42

Recent studies have examined the effects of fluid shear applied to

an osteocytic cell line derived from long bone (MLO‐Y4)35,37,41–47 and

shown that at least some consequences of this stimulation can be

transmitted via gap junctions to otherwise unstimulated osteoblasts.48

Indeed, connexin 43 hemichannels have been postulated to serve a

central function in fluid shear–induced PGE2 release from the MLO‐

Y4 osteocytic cell line.49 Moreover, other studies have demonstrated

that fluid flow increases the gap junction expression and function in

the osteocytic MLO‐Y4 cells.35,41,45 In addition, mechanical stimulation

also results in the opening of connexin 43 hemichannels and release of

PGE2
50 and adenosine triphosphate46 from the osteocytes.

Despite the attractive characteristics of these proposed models,

there is, to our knowledge, little if any data that have demonstrated

that purified osteocytes purified directly from different bones can

exert any regulatory influence upon the behaviour of osteoblast.

Furthermore, the mechanisms coordinating these interactions either

under basal conditions or in response to mechanical strain also

remain the subject of some speculation. In the present study, we

have examined these osteocyte‐osteoblast interactions and the role

of gap junction–mediated communication further. This has been

achieved by investigating, for the first time, the influence exerted

by purified embryonic chick bone osteocytes upon the proliferation

of primary osteoblasts in direct contact coculture. We have also

examined whether osteocyte‐osteoblast communication is modified

by pharmacological blockade on functional gap junctions, both under

these basal conditions and following application of mechanical strain

in vitro. It has previously been shown that calvarial bone explants do

not respond to mechanical loads,51 and so initial studies examined

whether the source from which osteocytes were purified determined

their influence upon primary osteoblast behaviour. Our studies rein-

force differences between purified osteocytes derived from func-

tionally distinct bones. In addition, they demonstrate that purified

osteocytes can regulate behaviour of primary osteoblasts and that

the functional outcome of this communication differs markedly
when the proliferative response of osteoblasts to mechanical strain

is examined.
2 | MATERIALS AND METHODS

2.1 | Cell isolation from embryonic chick bones

Purified osteocyte and primary osteoblasts were derived from both

parietal bones and tibiotarsi using modification to methods used previ-

ously,18,52–56 with primary osteoblasts derived and allowed to expand

in culture prior to osteocyte purification. Briefly, parietal bones of the

calvaria and tibiotarsal bones (see Figure 1) were removed from 18‐

day‐old chick embryos and cleared of all attendant soft tissue and

periostea. Medullary cavities were flushed with a Dulbecco phos-

phate‐buffered saline (lacking calcium and magnesium [PBS−];

Invitrogen, Paisley, UK), and resident bone cells were then dissociated

using an adaptation to the method devised by van der Plas and

Nijweide.55 This involved 3 sequential digestions of bone segments

with 1‐mg/mL collagenase type 1 (Clostridium histolyticum, Sigma, Dor-

set, UK) in PBS− followed by 4mM ethylenediaminetetraacetic acid

(Sigma) in PBS−. Digestion was stopped by incubation with 10%

heat‐inactivated chick serum in a Hank balanced salt solution (HBSS)

(Invitrogen), and each of these 3 consecutive fractions was centrifuged

(800 g, 4°C for 5 min) and then resuspended in heat‐inactivated chick

serum in an HBSS on ice and combined, respun, and resuspended to a

single‐cell suspension in PBS− containing 4mM ethylenediaminetetra-

acetic acid and 0.5% bovine serum albumin (BSA; Fraction V, Sigma)

(PEB) to produce a mixed bone‐derived cell population.

Osteocytes were purified from this mixed population using

Ob7.3(5) mouse antichick osteocyte antibody as previously described

(Nijweide, Leiden, the Netherlands).52 This involved addition of

Ob7.3(5) to the cell suspension and incubation for 15 minutes on a

“rotaspin” at 4°C. After centrifugation (800 g, 4°C for 5 min), cells

were resuspended, washed in PEB, and incubated for 15 minutes

at 4°C with MACS goat antimouse IgG microbeads (Miltenyi Biotech

GmbH, Bergisch Gladbach, Germany). These cell suspensions were

next passed through a prewashed mini‐MACS column with a mag-

netic collar (Miltenyi Biotech GmbH) and cells expressing epitopes

bound by the Ob7.3(5) antibody (Ob7.3(5)+) and beads retained

within the column, whilst other unbound cell types passed through

to be collected (Ob7.3(5)− cells). The column was washed with 5 vol-

umes of PBS/BSA to remove all weakly bound, trapped, or other-

wise unspecifically retained cells, and finally, removal of the mini‐

MACS column from the magnetic field allowed Ob7.3(5)+ cells to

be eluted. These methods achieved enrichment of chick osteocytes

in samples immunomagnetically purified using monoclonal Ob7.3(5)

antibody.

Enriched primary osteoblast cultures were obtained from the

Ob7.3(5)− cell preparation by immunomagnetic depletion of fibroblasts

(using an antifibroblast antibody) to produce an osteoblast population

of fibroblast‐depleted Ob7.3(5)− cells. Using long bones and calvariae

as primary sources therefore allowed Ob7.3(5)− osteoblasts (LOBs

and COBs) and Ob7.3(5)+ osteocytes (LOCs and COCs) to be

separated.



FIGURE 1 Experimental strategy used. Eighteen‐day‐old Alizarin Red S– and Alcian Blue GX–stained chick embryo depicting the harvest sites for
both tibiotarsal and calvarial primary osteoblasts and osteocytes. Primary osteoblasts from both tibiotarsal long bone (LOBs) and calvariae (COBs)
were either cultured alone or cocultured with osteocytes. The latter were also derived from both bone sites and were cocultured in either
“homotypic” (LOCs + LOBs or COCs + COBs) or “heterotypic” (LOCs + COBs or COCs + LOBs) conditions
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2.2 | Cell culture and characterisation

All bone‐derived cells were cultured in Dulbecco Modified Eagle

Medium minus phenol red, 5% heat‐inactivated chick serum, 2mM

L‐glutamine, 50 μg/mL gentamicin (Invitrogen); 50 μg/ml L‐ascorbic

acid; 5.6 mM glucose (Sigma). Samples of each of the Ob7.3(5)+ and

Ob7.3(5)− cells had their phenotype confirmed by examination of

morphology using scanning electron microscopy, immunocytochemi-

cal labelling with the Ob7.3(5) antibody, alkaline phosphatase activity,

and in vitro mineralisation. For immunocytochemistry, cells seeded

onto glass coverslips were incubated with 0.25% BSA in HBSS for

5 minutes to block nonspecific binding, incubated for 30 minutes at

room temperature with Ob7.3(5) diluted 1:5 with BSA/HBSS, and

washed and fixed in 4% buffered formaldehyde (VWR/Merck) in HBSS

for 10 min at 4°C. The cells were then washed in 0.25% BSA in HBSS

prior to 30‐minute incubation at room temperature in horse antimouse

biotinylated secondary antibody (Vector Labs Limited, Peterborough,

UK) (1:100 in BSA/PBS). After being washed, cells were incubated in

the dark for 30 minutes at room temperature with streptavidin‐coupled

CY‐3 (Vector, 1:500 in BSA/PBS), washed, and mounted in DAKO

fluorescent mounting medium (DAKO Corporation, Carpinteria, CA,

USA). Nuclear counterstaining was achieved using 4′‐6‐diamidino‐2‐

phenylindole. Control samples were treated similarly but were

incubated in the absence of either primary or secondary antibody.

Alkaline phosphatase activity was assessed using the Naphthol

AS‐BI and Fast Blue BB method57 and was followed by counterstaining

with a Meyer haemalum (VWR/Merck). Mineralisation potential was
assessed with and without the addition of 50 μg/mL L‐ascorbic acid

and 10mM β‐glycerophosphate (Sigma). These samples were reacted

with alkaline phosphatase, counterstained with von Kossa and Safranin

O (VWR/Merck), and visualised using an Olympus BH‐2 microscope.
2.3 | Coculture and assessment of proliferation

Proliferation was assessed in both monoculture and in cocultures with

cells seeded at a density of 20 000 total cells per well, in 24‐well plates

(Nalge Nunc International). Preliminary experiments established an

optimum osteocyte‐to‐osteoblast ratio of 4:1 and that primary osteo-

blasts should be allowed to adhere prior to the addition of osteocytes

in coculture, prior to being allowed to settle overnight. After overnight

serum depletion to synchronise proliferative activity, cultures were

pulsed with methyl L[5‐3H]‐thymidine (1 μCi/mL per well, Amersham

International, UK) and incubated for 18 hours. Rates of DNA synthesis

were assessed by measuring [5‐3H]‐thymidine incorporation as previ-

ously described.58,59 Briefly, cells were washed 3 times with ice‐cold

PBS−, detached from the substrate with 0.25% trypsin (Sigma) and

100 μL of carrier DNA solution (1 μg of salmon sperm DNA; Sigma/

1‐μL PBS) and 1 mL 10% trichloroacetic acid (TCA) added. The samples

were vortexed and incubated for 16 hours at 4°C, and the TCA‐insol-

uble fraction was recovered by 3 sequential 1500 g centrifugations

at 4°C, for 30 minutes, and washed with ice‐cold 5% TCA. The resul-

tant pellet was dried with ice‐cold 90% ethanol and dissolved in a

20% formic acid (VWR/Merck) and 80% ACSII scintillant mixture

(Amersham, Buckinghamshire, UK). Radioactive disintegrations per
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minute were counted using a 1214 Rackbeta liquid scintillation coun-

ter (LKB Wallac, London, UK). In experiments examining the effects

of gap junction blockade, cells were incubated in a medium containing

20μM 18β‐glycyrrhetinic acid (Sigma).60
2.4 | Application of mechanical strain

Mechanical strain was applied to cells seeded onto specially prepared

(Nalge Nunc International, Naperville, Illinois) plastic cell culture–

treated slides (75 × 25 mm), maintained in charcoal dextran (VWR/

Merck) stripped medium and allowed to equilibrate in a humidified

atmosphere of 95% air/5% CO2 after being placed in a custom‐

designed jig, which loaded the strips in 4‐point bending.4,61 Each strip

was subjected to 600 cycles of applied load at 1 Hz, with each cycle

producing a maximum longitudinal strain on the surface of the strip

of 3000με. Control cells, on otherwise unperturbed slides, were

treated identically but without strain stimulation. Following the period

of strain, the slides were returned to plastic dishes, together with their

surrounding medium and incubated for a further 18 hours after the

addition of 1 μCi/mL of [3H]‐thymidine (an index of cell prolifera-

tion)62–68 to the medium.
2.5 | Statistical analysis

Statistical analyses were performed using either Microsoft Excel or

GraphPad Prism 6 (GraphPad Software, Inc., San Diego, California).

Data are presented as mean ± SEM and were considered statistically

significant when P ≤ .05. A 2‐sample, unpaired t test was used to

compare means between control and treated groups.
FIGURE 2 Calvarial and tibiotarsal osteocytes retain a morphologically
characteristic phenotype. Ob7.3(5)+ LOCs and COCs populations
(A and B) show the distinct stellate shape of the osteocytic phenotype.
Immunocytochemical Ob7.3(5) antibody labelling of bone cells was
assessed to ascertain population purity, with negative labelling in the
fibroblast‐depleted Ob7.3(5)− population (C) and positive staining in
the Ob7.3(5)+ population (D). E, Proliferation potential of Ob7.3(5)+

and fibroblast‐depleted Ob7.3(5)− populations was assessed by 18‐h
pulse treatment with [3H]‐thymidine and incorporation. Both LOCs
and COCs were shown to display negligible rates of proliferation.
Conversely, LOBs and COBs proliferate avidly; disparity of

proliferation allows for the study of osteoblast proliferation in mixed
osteocyte‐osteoblast cultures. F, Homotypic cultures of Ob7.3(5)+

and fibroblast‐depleted Ob7.3(5)− cells were pulse treated with [3H]‐
thymidine. The presence of LOCs in the LOB cultures resulted in an
increase of proliferation. Conversely, the presence of COCs in COB
culture had no effect on COB proliferation rate. Data are presented to
show incorporation of 3H‐thymidine over an 18‐h period, and all 6
wells of a 6‐well plate were used for each variable culture condition
(n = 4 experiments in total). The asterisk denotes significance vs
osteoblast monocultures (P < .05)
3 | RESULTS

3.1 | Morphologically characteristic phenotypes
retained in vitro in purified osteocytes

Using scanning electron microscopy, we found that Ob7.3(5)+ cells

from both calvarial and tibiotarsal bones were generally smaller,

exhibited a lower cytoplasmic area, had a distinct stellate appearance,

and contained many more long slender processes radiating from a

central cell body (Figure 2A and B). Furthermore, efficiency of purifi-

cation and phenotypic stability were first confirmed by comparing

Ob7.3(5) monoclonal antibody immunolabelling, which demonstrated

negligible immunocytochemical labelling of isolated primary

osteoblasts (Figure 2C), and unambiguous positive expression of the

Ob7.3(5)‐directed epitope in osteocytes (Figure 2D and Table 1). This

confirms the persistence of the osteocyte phenotype in Ob7.3(5)+

cells in vitro.

Another characteristic of resident osteocytes is their postmitotic

phenotype. To verify this postmitotic behaviour of immuno-

magnetically purified Ob7.3(5)+ cells, we compared their proliferation

rates to Ob7.3(5)− primary osteoblasts by measuring [3H]‐thymidine

incorporation. We found that Ob7.3(5)+ purified from both

calvariae and tibiotarsi showed negligible proliferation compared with

Ob7.3(5)− cells and that the latter showed similar rates of proliferation

irrespective of whether they were sourced from tibiotarsi or calvariae



TABLE 1 Phenotype of Ob7.3(5)+ and fibroblast‐depleted Ob7.3(5)−

cell populations

Marker Osteoblast Osteocyte

Monoclonal antibody Ob7.3(5) Negative Positive

Proliferation Positive Negative

Alkaline phosphatase activity Positive Negative

Mineralisation Positive Negative

The fibroblast‐depleted Ob7.3(5)− population displayed positive response
for proliferation, alkaline phosphatase activity, and mineralisation reflecting
an osteoblast phenotype. Ob7.3(5)+ cells were negative for these
parameters.

FIGURE 3 Long bone osteocytes enhance calvarial osteoblast
proliferation. To assess whether COBs are unable to respond to
osteocyte‐derived proliferative stimuli, COBs were maintained in
heterotypic cultures with LOCs. LOCs induced proliferation of COBs,
whilst COCs were unable to influence the proliferation of LOBs. This
suggests the potential for fundamental differences signalling
methods/signals derived from LOCs and COCs. Data are presented
to show incorporation of 3H‐thymidine over an 18‐h period and all 6
wells of a 6‐well plate were used for each variable culture condition
(n = 3 experiments in total). The asterisk denotes significance vs
osteoblast monocultures (P < .05)
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(Figure 2E). Further distinction between Ob7.3(5)+ osteocytes and

osteoblastic cells was confirmed by higher alkaline phosphatase

activity and mineralisation potential in Ob7.3(5)− cells and by a com-

plete lack of such activities in Ob7.3(5)+ cells (Table 1). Henceforth,

Ob7.3(5)+ osteocytes derived from calvarial or tibiotarsal long bones

will be referred to as COC and LOC, respectively, and osteoblast‐like

cells as COB (calvarial) and LOB (long bone).

3.2 | Stimulation of primary osteoblast proliferation
through coculture with long bone purified osteocytes

It is broadly held that osteocytes act as mediators of the changes in (re)

modelling induced by load‐induced strain or fluid flow in vivo.1,2,4–8 Evi-

dence for osteoblast regulation by purified osteocytes was therefore

sought, and we found that the coculture of LOC with homogenic LOB

significantly enhanced proliferation to levels greater than the expected

sum attributable to osteoblasts and osteocytes cultured independently

(LOB=20909; LOC=394; LOB+LOC=29863dpm;P≤ .05; Figure2F).

In contrast, homogenic calvarial cocultures (COB + COC) did not show

similar enhancement in proliferation (Figure 2F).

To address whether this osteocyte‐induced promotion of primary

osteoblast proliferation is selective to purified osteocytes from long

bones or an inherent characteristic of long bone osteoblasts, we also

assessed proliferation rates in heterogenic cocultures (LOB + COC

and COB + LOC). This showed that cocultures of COB with LOC

showed significantly higher 3H‐thymidine incorporation levels than

the sum of independent cultures (COB = 17 741; LOC = 554;

COB + LOC = 22 065; P < .04; Figure 3). Such coculture‐related

enhancement was not evident, however, when LOBs were cultured

with heterogenic COCs (LOB = 19 073; COC = 109;

LOB + COC = 21 719; P = .1; Figure 3), suggesting a selective influence

of LOC on primary osteoblast proliferation. Together, these data indi-

cate that osteocytes purified from long bones, but not those from

calvariae, stimulate the basal proliferation of primary osteoblasts

derived from either bone source.

3.3 | Mechanical strain use of gap junctions to
reverse proliferative influence of purified osteocytes
on primary osteoblasts; gap junction–independent
osteocyte‐related osteoblast proliferation

We found, consistent with previous studies, that mechanical strain

application increases proliferation of primary osteoblasts cultured alone

(Figure 4A). Surprisingly, however, we found that mechanical strain
exposure evoked significant suppression of LOB proliferation when

they were cocultured with LOC (Figure 4). To determine whether gap

junction communication is required for LOC‐induced LOB proliferation

and whether it contributes to bone cell responses to mechanical strain,

we examined the effect of the gap junction blocker, β‐glycyrrhetinic

acid (β‐GA), in homogenic long bone cocultures (LOC + LOB) both with

and without mechanical strain stimulation. This revealed that LOC‐

induced LOB proliferation in the absence of a mechanical strain stimu-

lus was unaffected by β‐GA (Figure 4A) but, in contrast, that the

mechanical strain–related suppression of osteocyte‐induced LOB

proliferation was abrogated, and indeed reversed, in the presence of

β‐GA (Figure 4B). Thus, treatment of mechanically strained cocultures

(LOB + LOC + strain) with β‐GA results in similar levels of osteocyte‐

induced proliferation as untreated, nonstrained LOC + LOB cocultures

(Figure 4B). These data suggest that the influence of the purified oste-

ocytes to regulating strain‐induced proliferation of primary osteoblasts

is mediated by functional gap junctions but that their promotion of pri-

mary osteoblast proliferation in the absence of a strain stimulus is

achieved independently of gap junction–mediated communication.

4 | DISCUSSION

Monoculture systems are used most commonly to examine the mech-

anisms involved in bone cell biology. However, bone is an organ con-

taining various cell types, and attempts to better replicate in vivo

relationships have recently been shown to be pertinent.69 Osteocytes

are considered as the mechanosensors of bone.1–14 It is frequently

asserted that they act to influence osteoblast (and osteoclast)



FIGURE 4 Proliferation in mechanically strained, not static, cultures is
regulated by gap junctions. A, Mechanical strain increased LOBs
proliferation in the absence of gap junction blocker. Somewhat
surprisingly, the addition of LOCs in homotypic cultures resulted in a
reduction in the proliferation rate following a period of mechanical
straining. This effect was dependant on functional gap junctions as
this was inhibited by the presence of the gap junction blocker, β‐
glycyrrhetinic acid (β‐GA). B, Histogram showing the difference in
osteocyte‐derived [3H]‐thymidine incorporation in data presented in
A. These experiments identify differential methods of communication
between osteocytes and osteoblasts in strained and nonstrained
conditions. Data are presented to show incorporation of 3H‐
thymidine over an 18‐h period, and 3 cell straining strips were used
for each variable culture condition (n = 3 experiments in total; the
asterisk denotes significance)
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behaviour to control remodelling activity to ensure mechanical compe-

tence, but evidence for this contention is sparse and unequivocal proof

is lacking. A recent study performed in chick and mouse calvarial pari-

etal bone shows, through FRAP analysis, the existence of cell‐to‐cell

communication via gap junctions in the 3D morphology of the osteo-

cyte network.70 Our use of primary osteoblast‐osteocyte cocultures,

however, reveals additional relationships that would otherwise not

be apparent in monoculture.

Using coculture, we sought evidence that purified osteocytes con-

tribute to regulating primary osteoblast behaviour and whether any

such contribution was reliant upon functional gap junctions. We found
that postmitotic purified osteocytes were indeed capable of stimulat-

ing enhanced rates of proliferation by primary osteoblasts. Our data

showed that osteocytes purified from mechanically responsive long

bone, but not those from nonresponsive skull bones, exhibit a capacity

to promote proliferation of primary osteoblasts. Using a pharmacolog-

ical blocker (18β‐glycyrrhetinic acid) under these basal conditions, we

also show that this osteocyte‐mediated promotion of proliferation of

primary osteoblast was not dependent on functional gap junctions.

Further to blocking gap junctions, 18β‐glycyrrhetinic acid has been

reported to exert additional pharmacological actions including on

11β‐hydroxysteroid dehydrogenase 1, pannexin channel activity as

well as high‐mobility group box protein 1 action, and glucocorticoid

metabolism.71–74 This is a limitation of our studies, and future exami-

nation of gap junction requires a more specific method of blocking

these junctions. In marked contrast, we found that application of phys-

iological levels of dynamic mechanical strain to cocultured long bone

cells efficiently abrogated proliferation of primary osteoblast, with

gap junction blockade indicating that strain‐related transfer of an

inhibitory stimulus between purified osteocytes and primary osteo-

blasts involves functional communicating gap junctions.

The Ob7.3(5) antibody, which was used herein to isolate osteo-

cytes, has been shown to be specific for the phosphate‐regulating

gene with homology to endopeptidases on the X chromosome protein

that is abundant in osteocytes.52 We find that cells isolated from chick

bone (tibiotarsal or calvarial) using this antibody exhibit low, nonsignif-

icant incorporation of [3H]‐thymidine when maintained in monocul-

ture. This demonstrates their postmitotic characteristics and further

supports the osteocyte specificity of the antibody and the purity of

the resident cells isolated and used herein. Previous studies

established and fully optimised this osteocyte immunomagnetic purifi-

cation, and we, and others, have previously used these purified cells

extensively to describe osteocyte in vitro behaviours.18,52–56 Future

characterisation using other markers including sclerostin and keratocan

would provide additional evidence authenticating this cell population,

but the phenotypic features and in vitro behaviour are consistent with

terminally differentiated osteocytes. Use of MLO‐Y4 osteocyte‐like

cell lines in our studies would have made it unfeasible to conduct our

simple coculture studies as they, like primary osteoblasts, display avid

proliferation in monoculture. Use of such a cell line, which was derived

from one functional skeletal source (limb bone), would also make com-

parisons between osteocytes derived from functionally distinct

calvarial bones impossible and may have obscured the specific influ-

ence that long bone–derived osteocytes exert on osteoblast behav-

iour. Indeed, the specificity of this influence is emphasised by the

fact that osteocyte‐induced osteoblast proliferation is achieved in

coculture only by osteocytes extracted from tibiotarsi and not by those

extracted from calvariae and that osteoblasts derived from either

source appear to behave similarly. These data not only rule out the

possibility of some noncell, coculture effect but also pinpoint osteo-

cytes derived from load‐responsive long bones rather than predomi-

nantly protective skull bones as distinct in their proproliferative

osteoblast influence. They also suggest that the proliferative response

to coculture with long bone–derived osteocytes is retained in primary

osteoblasts derived from either bone site. The use of [3H]‐thymidine is

widely reported as a method to assess proliferative capacity of bone



FIGURE 5 Schema depicting osteocyte‐derived signalling on osteoblasts. The results suggest that the proproliferative influence of osteocytes
upon osteoblasts is reversed by the application of strain and that only this reversal is gap junction mediated
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cells66–68,75; however, it is possible that cell survival is also affected.

Although no evidence of an increased rate of cell death was observed

in our experimental protocols, further studies to assess apoptosis

directly would determine whether lack of proliferation might be asso-

ciated with increased cell death.

The proproliferative influence of postmitotic osteocytes on

cocultured osteoblasts is perhaps most readily interpreted, owing to

the lack of apparent gap junction involvement, to suggest the involve-

ment of an osteocyte‐derived soluble mediator. There are many

candidate soluble mediators that are produced by osteocytes, which

may account for this osteoblast stimulation. These include secretory

phospholipase A2, which evokes increased PGE2 and prostaglandin I2

release from osteoblasts in nonloaded long bone organ explant

cultures5 and factors such as transforming growth factor‐β and nitric

oxide, which are produced by osteocytes.76–78 It is pertinent to empha-

sise that these proproliferative effects were limited to osteocytes

derived from long bones but that those derived from calvariae, with dis-

tinct origins and protective rather than load‐bearing functions, had no

effect on osteoblasts derived from either source. This is a fascinating

and informative finding, suggesting differing physiological characteris-

tics for osteocytes in bones with (parietal) and without (tibiotarsus) a

cranial neural crest component. Data indicating that bone from these

2 distinct functional/embryological sites has distinct transcriptomes

support this speculative conclusion.79

Few studies have used a coculture approach to study the signalling

between bone cells, and fewer have incorporated an attempt to inte-

grate mechanoresponse pathways. Organ culture models have been

used with limited success.5,6,80,81 Longer‐term cultures using MLO‐Y4

osteocytes and osteoblast‐like cell lines have established functional

gap junctions betweenMLO‐Y4:MLO‐Y4 andMLO‐Y4:MC3T3‐E1 cul-

tures.37 In a clever cell arrangement, MLO‐Y4s were mechanically stim-

ulated without perturbing cocultured hFOB osteoblasts; osteoblast

activity was regulated by functional gap junctions in response to osteo-

cytes subjected to fluid shear strains.48 MLO‐Y4 osteocytes also influ-

ence osteoclastogenesis: In undisturbed cultures, MLO‐Y4 cells

promote osteoclast formation,82 whereas mechanically stimulated

MLO‐Y4 cells inhibit osteoclastogenesis,83 possibly via matrix extracel-

lular phosphoglycoprotein.84 Our studies allow additions to the growing
evidence that osteocytes can promote osteoblast proliferation, that this

influence can be restricted by the application of strain, and that only the

latter, osteocyte strain‐related control of osteoblast proliferation is

dependent upon gap junctions (Figure 5).69

If our findings were to be directly extrapolated to the in vivo

scenario, they would imply that, at rest, osteocytes act via transcellular

signalling to maintain an active osteoblast population on the bone sur-

face. Unlike the situation in culture, even at rest, osteocytes are con-

stantly subjected to mechanical inputs, amongst which the most

continuous is fluid shear strain stimuli driven by the circulatory system.

In stark contrast, however, these proliferative signallingmolecules ema-

nating from osteocytes must rather be completely “overruled” in

response to mechanical loading of bones, by information transferred

to osteoblasts via gap junctions to promote an appropriate (re)model-

ling event. This implies that there is continual osteocyte‐derived

signalling to cells on the bone surface maintaining the delicate balance

of formation and resorption.

It is worth emphasising that the application of themechanical strain

stimulus is only transient in our studies, and yet this is nevertheless suf-

ficient to significantly restrict the proliferation of osteoblasts induced

by osteocytes. We interpret our findings to reflect the mechanism by

which osteocytes and mechanical inputs together act to regulate the

proliferation of osteoblasts. Thus, with increased loading, inhibition of

proliferation would have to precede osteoblast differentiation at loca-

tions where new bone is required to withstand increased mechanical

demands. An alternative interpretation is that osteocytes exert some

hitherto unresolved suppression of the increases in proliferation that

normally ensue periods of loading. In conclusion, our studies suggest

that purified osteocytes, derived from load‐bearing long bones, exert

a direct proproliferative influence upon primary osteoblasts and that

mechanical strain may use gap junctions to reverse this osteocyte‐

derived stimulatory effect.
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