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ABSTRACT

We present an update of the FunCoup database
(http://FunCoup.sbc.su.se) of functional couplings,
or functional associations, between genes and
gene products. Identifying these functional
couplings is an important step in the understanding
of higher level mechanisms performed by complex
cellular processes. FunCoup distinguishes between
four classes of couplings: participation in the same
signaling cascade, participation in the same meta-
bolic process, co-membership in a protein complex
and physical interaction. For each of these four
classes, several types of experimental and statis-
tical evidence are combined by Bayesian integration
to predict genome-wide functional coupling
networks. The FunCoup framework has been com-
pletely re-implemented to allow for more frequent
future updates. It contains many improvements,
such as a regularization procedure to automatically
downweight redundant evidences and a novel
method to incorporate phylogenetic profile similar-
ity. Several datasets have been updated and new
data have been added in FunCoup 3.0.
Furthermore, we have developed a new Web site,
which provides powerful tools to explore the pre-
dicted networks and to retrieve detailed information
about the data underlying each prediction.

INTRODUCTION

Understanding gene product interactions is essential to the
understanding of all biological processes. Gene products
interact with each other by temporary binding, the forma-
tion of permanent complexes, as enzymes by modifying
each other or a common substrate or by influencing
each other’s expression. These interactions can be condi-
tional, e.g. only present in a certain cellular compart-
ments, and might require intermediates. A multitude of

experimental techniques have been developed to find the
individual types of interactions or indirect evidence of
their presence. Small-scale experiments provide detailed
high-quality information but require a lot of time and re-
sources to study a few molecules. High-throughput
approaches, on the other hand, are error-prone with
high rates of false positives and false negatives, and
cover only certain aspects like physical binding. Indirect
evidences for interactions can be derived from experiments
like localization assays or expression analysis. But those
come, in addition to being indirect, with their own
problems and limitations like poor resolution and high
noise levels.

To create a global network of interactions, one can
broaden the scope to more general functional couplings.
Functional couplings, also called functional associations,
encompass all types of interactions described earlier, but
also the more abstract case of participation in the same
function. This less specific definition allows one to inte-
grate all kinds of direct and indirect evidence for all dif-
ferent types of interactions and even less specific
information like phylogenetic profiles (PHPs) or synteny.
The underlying premise is that different experimental
errors and biases will cancel each other out and that dif-
ferent types of evidences will complement each other to
yield a global picture (1,2). For an overview of the most
commonly used evidence types, see Lees et al. (3) and Lee
et al. (4).

Several approaches have been proposed to integrate
large-scale experimental datasets and statistical or compu-
tational evidences to infer functional couplings using
mainly not only weighted Bayesian integration (5–7) but
also random forests (8), ridge regression (9) and support
vector machines (10). Each of these approaches requires a
gold standard representing a set of known functionally
associated gene pairs, and how these pairs are chosen in-
fluences the nature of the predicted couplings. Commonly
used gold standards include pairs extracted from Kyoto
Encyclopedia of Genes and Genomes (KEGG) (11)
pathways or gene sets that share selected gene ontology
(GO) (12) terms. In some cases, multiple different gold
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standards are used either as an attempt to predict process-
specific couplings or to differentiate between different
kinds of couplings.

FunCoup (13) predicts four different classes of func-
tional couplings using gold standards derived from
protein complexes, physical protein interactions, meta-
bolic pathways and signaling pathways. Nine different
types of evidence including co-expression, protein–
protein interactions (PPIs), genetic interactions, PHP simi-
larity and co-regulation for 11 model organisms are
integrated into genome-wide networks. Evidences are
transferred between species using orthology assignments
from InParanoid (14). Transferring information across
species allows inference of networks for less well-studied
species like Ciona intestinalis and extends the amount of
available information for every species significantly. A
unique feature of FunCoup is that orthology-transferred
evidence is evaluated using the gold standards of the target
species. This way, it is explicitly learned how much infor-
mation can be drawn from data of a different species. See
Figure 1 for a summary of the FunCoup framework.

Here we present an update of the FunCoup framework
to version 3.0. The framework has been completely
rewritten, and its stability and flexibility have been
greatly improved. For instance, the binning procedure
has been made more stringent to prevent small, putatively
uninformative bins that arise from local variations.
Moreover, ambiguously mapped data points were only
allowed to contribute once to the training. Previous
versions of FunCoup used a naı̈ve Bayesian integration
strategy. A newly introduced feature in version 3.0 is
‘redundancy weighted Bayesian integration’, which aims
to downweight redundant information in the evidence.
Redundancy within each evidence type is estimated
directly at the level of the log-likelihood ratios (LLRs);
different evidence types are assumed to be independent.
Many datasets have been added or updated. The new
framework provides a much better scalability, which will
allow us to update the data more frequently in the future.
We have also developed a new Web site with much
improved performance and usability. The Web site has
many powerful query options for exploring the local
network neighborhood of the query genes. The display
of the data underlying the couplings has been greatly
improved so that the sources of each prediction can be
easily traced. See Table 1 for an overview of the new
features in FunCoup 3.0.

FRAMEWORK IMPROVEMENTS

Gold standards

The FunCoup gold standards were constructed as
described earlier (13) but with updated underlying data.
The selection of KEGG pathways for the metabolic gold
standard and the signaling gold standard was changed to
more accurately reflect these two categories. The protein
complex gold standard was extracted from Corum (15)
for Homo sapiens, Mus musculus and Rattus norvegicus;
from Comprehensive Yeast Genome Database (16) for
Saccharomyces cerevisiae; and from UniProt (17) for the

other species. The PPI gold standard was extracted as
interactions in iRefIndex (18) that overlapped with any
of the other gold standards. The random set of negative
pairs is now chosen separately for each class to make the
classes independent of each other.

Weighted LLR integration

Naı̈ve Bayesian integration is the most widely used tech-
nique to integrate functional coupling evidence because it
is robust, requires only a small gold standard and tolerates
large numbers of missing values. However, it does impose
the problematic assumption of statistical independence of
the evidences, and its final predictive value, sometimes
called final Bayesian score (FBS), simply corresponds to
the sum of all individual LLRs. This independent assump-
tion is not satisfied by most types of evidences. For
instance, co-expression analysis of two different micro-
array studies might provide redundant information, de-
pending on the focus of the studies. Several adaptations
to the naı̈ve Bayesian procedure have been proposed to
downweight redundant evidence, either by introducing an
integration with linear (19) or exponential (20) decay rates
or with different priors that reflect the mutual information
between the evidences (21).
Previous versions of FunCoup did not correct for re-

dundancy, but relied on careful manual data selection.
With FunCoup 3.0, we are introducing a novel form of
weighted LLR integration. Different evidence types
capture different aspects of the coupling and are still
assumed to be independent. Therefore, the FBS a,bð Þ for
a gene pair a,b is the sum of all LLR a,bð Þt over all different
evidence types t. The idea behind the weighting scheme is
that evidences of the same type will only increase the total
LLR to the extent that they provide novel information for
the gene pair. The LLRða,bÞt for specific evidence type t is
calculated as the weighted sum of the individual LLR a,bð Þe
for each evidence e of type t as follows:

LLRða, bÞt ¼
X

e

LLRða, bÞe
Y

k<e

dek,

where the LLRs are ranked by their absolute value in
decreasing order and dek is the distance between
evidence e and evidence k. Each LLRe is weighted by
the product of the distances dek with k < e, or in other
words, the distance to each evidence on the left side in
this ranking. The distance between two evidences is
defined as dek ¼ � 1�max 0,rekð Þð Þ where rek is the
Spearman correlation between the LLRs for evidence e
and evidence k and � is the baseline redundancy.
Evidence correlations are estimated separately for each
functional coupling class on a random gene pair sample.
This way the redundancy in the usable information is
evaluated directly. The parameter � was introduced to
correct for redundancy underestimation due to noise and
was set to 0.7 based on the performance on a holdout set
(see Figure 2). It can be interpreted as a decay rate, ren-
dering this approach a hybrid between a fixed decay and
pure redundancy-based weighting.
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Figure 1. Overview of the FunCoup framework. FunCoup integrates nine different evidence types. For each evidence type, a unique scoring function
is defined. The scoring functions are applied to the data of known associated gene pairs and random background pairs. The scores for the known and
random pairs are used to partition the score range for each dataset by an adaptive binning procedure. The binning procedure identifies score ranges
that are significantly enriched or depleted for known couplings. For each bin, the LLR between a known coupled pair and a background pair is
estimated. In the next step, the scores for all possible gene pairs are calculated and translated into the corresponding LLRs. For each gene pair, the
LLRs for each data type are combined by redundancy-weighted Bayesian integration. If the resulting FBS surpasses a threshold, a link is introduced
for the gene pair. This way a genome-wide functional coupling network is created. FBSs are converted into more convenient confidence scores that
range between 0 and 1 by using an alternative form of Bayes’ rule and assuming a prior interaction probability of 0.001. FunCoup has four different
sets of known gene pairs representing different classes of functional couplings. The LLRs are estimated independently for each of these classes and four
different networks are created. These are normally combined for searching purposes by keeping the maximum link strength, but they can also be used
individually. FunCoup not only uses data from the species itself but also transfers data between species using orthology assignments from InParanoid.
This is done before the LLRs are calculated; hence, data from a different species are evaluated the same way as data from the same species.

Table 1. Feature comparison of FunCoup 2.0 and FunCoup 3.0

Bayesian integration FunCoup 2.0 naı̈ve FunCoup 3.0 redundancy weighted

TF targets Regulogs ENCODE, modENCODE, YEASTRACT
mRNA correlation Pearson Spearman
Genome versions Data driven Ensembl 64
PPI data IntAct iRefIndex
PPI scoring Per experiment Per publication
PHP scoring Each signature separately Tree-based
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Novel data

We have updated most of the data sources for the new
release. Table 2 summarizes the amount of data integrated
for the different evidence types. We have added several
additional microarray datasets with 1102 additional ex-
perimental conditions. For PPIs, we switched from
IntAct (22) as data source to iRefIndex (18), which sum-
marizes interactions from all major protein interaction
databases and provides a much better coverage. We also
significantly increased the transcription factor (TF) target
data by incorporating chromatin immunoprecipitation
(ChIP)-seq and ChIP–chip data for H. sapiens and
M. musculus from the ENCODE (23,24) project and for
Caenorhabditis elegans and Drosophila melanogaster from
the modENCODE (25,26) project. For H. sapiens and
D. melanogaster, we used preprocessed TF target associ-
ations. For M. musculus, we only included TF targets with
significant peaks in the region 1000 nt upstream to 500 nt
downstream of the transcription start site that were

replicated in at least two experiments. For C. elegans, rep-
licates were already combined, and we integrated the dif-
ferent experiments by taking the union using the same
chromosomal range as in M. musculus. For S. cerevisiae,
curated TF target sites were included from YEASTRACT
(27). See http://FunCoup.sbc.su.se/statistics/#data for full
list of all integrated datasets.

Scoring function changes

To make use of a dataset or computational evidence,
FunCoup requires a score. Every evidence type has its
unique scoring function that transforms the raw
evidence into a continuous signal. The scores are
discretized by an adaptive binning procedure, and LLRs
are estimated for each score bin as described earlier (13).
Switching to a new source for PPI data required a slight
change in the PPI scoring function. Interaction counts
were previously evaluated for each experiment separately,
but because iRefIndex lacks experiment enumeration, they
are now evaluated on the complete publication. Another
change to the PPI scoring is that proteins that have pub-
lished interactions, yet are not found to interact with each
other, are now placed in a dedicated bin. Previously such
interactions were scored 0 and binned along with the inter-
acting pairs.
Besides the PPI metric changes, we developed a

new method for estimating PHP similarity. Inferring
functional couplings from PHP similarity was first
introduced by Pellegrini et al. (28) and relies on the idea
that two functionally coupled genes are more likely to be
co-present or co-absent in a set of species than non-
coupled genes. Several simple methods have been
proposed that directly compare PHPs and do not
account for phylogenetic dependencies (28–30). More
complex model-based methods infer PHP similarities
from evolutionary events (29,31), but are computationally
expensive. Computationally more feasible heuristics that
consider phylogenetic relations include scoring of co-
present runs (32) and collapsing of taxa with identical
profiles (33).
We have developed a new heuristic algorithm using a

species tree constructed by neighbor-joining with distances
derived from InParanoid (14) as described in Berglund
et al. (34). Of the 99 eukaryotes in InParanoid (version
7), 6 were excluded from the tree reconstruction, as their
topology did not agree with the National Center for
Biotechnology Information phylogeny. The resulting tree
was used to estimate positive evidence based on co-present
subtrees and negative evidence based on mutually exclu-
sive subtrees. For both positive and negative evidence, a
score is calculated as the fraction of the branch lengths of
the full tree; see Figure 3 for more details. The two scores
are binned into six equally sized bins, which we found to
be a good compromise between resolution and generaliza-
tion, that are combined into 21 unique bin pairs. For each
such bin pair, a separate LLR is estimated. Treating
positive and negative scores separately has the advantage
that the relation and importance of the two scores can be
learned directly for every species and coupling class.
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Figure 2. Optimizing redundancy-weighted Bayesian integration. For
each gold standard, 20% of the positive and negative pairs were
omitted from the training and used as a holdout set to estimate the
performance of the framework. Performance was measured as increase
of the area under the curve of receiver operating characteristic curves
for the different holdout sets relative to no redundancy reduction
(shown as red line at 0). Only the receiver operating characteristic
curve until the first 10% of false positives was considered. The
reason for doing this is that because of the huge amount of possible
couplings, a small false-positive rate will produce a large error. The
figure shows the average relative increase across all networks for dif-
ferent values of a in the redundancy reduction, where a=1 corres-
ponds to the softest redundancy reduction and a=0 to the hardest,
i.e. only using the strongest evidence for each type. The dashed outline
shows the lower and the upper quartiles. The variation between the
different networks is high because for some networks of the PPI and
protein complex classes, the performance is already close to the
optimum, leaving little room for further improvements. The
maximum improvement was achieved at a=0.7, which is highlighted
by a green dot in curve.
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NETWORKS

The methodology for building functional coupling
networks has been substantially revised in release 3.0 of
FunCoup. Table 1 lists the major changes in method or
data source. Each change was motivated either by
increased stability, coverage or prediction accuracy. The
evidences for functional coupling are drawn from the same

nine types of data as before, but using updated data (see
Table 2).

The new expression, PPI and TF target site datasets are
substantially expanded, which has increased the coverage
in FC 3.0 (See Table 3). Compared with the previous
release, the predicted networks have grown significantly
for most of the species as can been seen in Table 3.

To avoid inflating functional coupling scores due to
multiple overlapping sources of evidence, a new method
for redundancy reduction was introduced. This clearly
improved the performance of the framework on a gold
standard holdout set as can be seen in Figure 2. Setting
the ‘decay’ parameter a to 0, which corresponds to
including only the strongest evidence from each type,
gave better accuracy than no redundancy reduction at
all. This indicates that redundancy is a real issue, and
that it reduces the prediction quality. An a value of 0.7
was found to give optimal performance on the holdout set.

Compared with FunCoup 2.0, the relative impact of the
expression evidence decreased, despite adding more ex-
pression data, as can be seen in Figure 4. This is an
effect of the redundancy reduction. Although the redun-
dancy is usually fairly low for expression datasets, the data
have high coverage and there are many different expres-
sion datasets. This leads to many co-expression evidences
for each individual link. For FunCoup 2.0, these were
treated as independent evidences, but for FunCoup 3.0,
the redundancy reduction downweights the LLR score of
each evidence that is added. An example for this is the
coupling between MCM5 and FARSA (UniProt P33992
and Q9Y285), which got an FBS score of 15.5 in FunCoup
2.0 that was mainly caused by many weak to medium-high
expression correlations. In FunCoup 3.0, this pair only
gets an FBS score of 6, which more accurately reflects
the true amount of evidence for the pair.

The relative impact of PPI evidence and TF co-regula-
tion has strongly increased compared with the previous
release. This mainly reflects the addition of new data
and also the decrease in co-expression evidence. There
was not much TF target data in FunCoup 2.0, so the
additional data represent mostly novel information. For
PPI, the coverage is generally low, and additional data
provide a lot of novel information despite fairly high
levels of redundancy for these data type. Overall, the
evidence type utilization is much more balanced for
FunCoup 3.0 (see Figure 4). This gives more robust
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Figure 3. FunCoup 3.0 introduces a novel heuristic method for
estimating PHP similarity. A neighbor-joining species tree is created
for all except six eukaryotes in InParanoid using inter-species distances
derived from the fraction of genes with orthologs as described in
Berglund et al. (34). This tree is then rooted at the species for which
the couplings are predicted. The PHP score has two components: the
positive evidence and the negative evidence. The figure shows a
simplified example with seven species. For the positive evidence, the
score is the branch length of the green highlighted subtree where
both genes have orthologs in InParanoid divided by the total branch
length of the full tree. Whereas co-conservation provides positive
evidence, negative evidence can be drawn from species where only
one of the two genes has orthologs. The negative evidence score is
therefore the sum of branch lengths of mutually exclusive species, high-
lighted in blue, divided by the total branch length of the tree. Branches
that are covered by the positive evidence subtree are excluded from the
negative evidence calculation, e.g. for species e, only the branch to the
ancestor of c, d and e is included. This corresponds to the simplified
assumption that genes can only be lost but not regained, and because
species c has orthologs to gene A and gene B, we assume that the
orthologs were also present at all ancestors of c. Both positive and
negative scores have a value range between 0 and 1 and their sum is
bound to maximum of 1. The two scores are binned into six fixed-size
bins and an LLR is learned for every combination of a positive and a
negative evidence bin. The score bins for positive and negative evidence
span a 6� 6 triangular matrix with 21 bins, which is significantly less
than the 1024 bins for PHP in the previous release.

Table 2. Summary of the data integrated in FunCoup 3.0

Data type Number of conditions Number of data points Number of objects

mRNA expression 3949 samples 2.6� 109 gene pairs 218 644 genes
Protein–protein interactions 43691 publications 1.5� 106 protein pairs 53 886 proteins
Subcellular localizations 1762 locations 1.4� 109 protein pairs 151 439 proteins
microRNA targets 898 microRNAs 0.4� 109 gene pairs 62 304 genes
Transcriptions factor targets 432 TFs 0.6� 109 gene pairs 70 975 genes
Protein expression 66 locations 0.1� 109 protein pairs 12 238 proteins
Genetic interactions 0.3� 106 gene pairs 4458 genes
Domain interactions 1.3� 104 domain pairs 3562 domains
PHP similarity 93 species 1.7� 109 gene pairs 188 068 genes

The numbers are summed up across all 11 species. For protein–protein interactions, genetic interactions and domain interactions, the number of data
points/objects is trimmed to the number of informative pairs, whereas for the other data types, all possible pairs are counted.
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predictions due to a decrease in single-evidence links. For
6.4 million of all 22.7 million couplings in release 2.0,
>90% of the evidence came from one type. Despite the
increase to 37.8 million couplings in release 3.0, this is only
the case for 4.4 million couplings.

A new algorithm was developed for using phylogenetic
profiling as evidence of functional coupling (see Figure 3
for more details). This new PHP scoring function
improves the performance on a holdout set compared
with the old scoring function by �0.5% on the first 5%
of the area under the curve. It has the advantage that it
requires substantially fewer bins (21 instead of 1024),
reducing the risk for overtraining, and that it uses 93
instead of 11 species, which increases its robustness to in-
correct orthology assignments.

Despite major changes in both data and methods, the
high-confidence networks of FunCoup 2.0 and FunCoup
3.0 overlap substantially; 80% of the FunCoup 2.0 links
with a confidence score >0.99 are still present in FunCoup

3.0. There are several reasons why some of the high-con-
fidence links in FunCoup 2.0 are now considered incorrect
and are no longer part of the network. For most of the
missing links, the main evidence source was co-expression.
The redundancy reduction balances the impact of the evi-
dences, and obtaining a high FBS from a single evidence
type alone is now much more difficult. Another improve-
ment that eliminated some false predictions is more
careful data mapping. FunCoup 3.0 does not consider
data that are mapped to two genes by the same identifier
as evidence for functional coupling between them. In
FunCoup 2.0, such data were included, which led to
over-predictions and false predictions. An example for
this is the link between SERINC4 and ELL3 (UniProt
A6NH21 and Q9HB65) that is not present in FunCoup
3.0 or STRING 9.05 (6) but has a high FBS in FunCoup
2.0. Both genes are mapped to the same probes on mRNA
microarrays in human and mouse, which led to
artifactually perfect co-expression evidence for the pair.

NOVEL WEB SITE

We have designed a completely new Web site for
FunCoup 3.0, with a more intuitive and user-friendly
tab-based interface. The basic query, retrieval of the
most strongly coupled genes to a set of query genes, is
considerably faster than before. It is possible to restrict
this search to only consider evidences of certain types or
from certain species. The retrieved subnetwork can be
further restricted to genes with a certain GO term or
KEGG pathway annotation. For example, the subnet-
work may be limited to genes known to be associated
with the process cell adhesion. Only GO terms from the
broadest three levels are selectable, but genes with any
child term of the search term will be found.
Comparative analysis of functional coupling networks

across species is a powerful tool to gain insight into
conserved functional modules (35–38). The FunCoup
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Figure 4. Relative positive contribution of the evidence types in the summary networks of FunCoup 3.0 and FunCoup 2.0. The total amount of
evidence (LLRs) was normalized to sum up to 1. Evidence types are MEX, mRNA co-expression; PHP, phylogenetic profile similarity; PPI, protein–
protein interaction; SCL, sub-cellular co-localization; MIR, co-microRNA regulation by shared microRNA targeting; DOM, domain interactions;
PEX, protein co-expression; TFB, shared TF binding; GIN, genetic interaction profile similarity. Compared with FunCoup 2.0, the relative influence
of MEX is lower, which is a direct effect of the redundancy reduction. Both PPI and TFB have become more influential because of the additional
data.

Table 3. Network sizes as number of links and number of genes/

nodes for links with a confidence above 0.1 for the different species

in FunCoup 3.0

Species Number of links Number of genes

H. sapiens 4 477 041 (0.96) 18 113 (0.86)
M. musculus 5 314 496 (1.23) 19 226 (0.95)
R. norvegicus 5 460 769 (1.78) 18 562 (1.13)
S. cerevisiae 1 353 169 (3.01) 5766 (1.08)
Gallus gallus 2 037 840 (1.80) 12 317 (0.99)
D. melanogaster 1 987 503 (1.56) 11 398 (0.98)
Danio rerio 4 168 563 (2.08) 15 003 (1.15)
C. intestinalis 1 137 425 (2.86) 5 642 (1.25)
Canis familiaris 3 537 089 (2.02) 17 239 (0.98)
C. elegans 3 206 664 (1.93) 12 389 (0.92)
Arabidopsis thaliana 5 106 648 (2.63) 16 375 (1.07)

The numbers in brackets show the relative increase or decrease
compared with the previous version.
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Web site allows querying multiple species at once to find
conserved subnetworks. We have developed a new proced-
ure to expand the subnetwork of a query gene. The new
procedure minimizes the rank sum of the interactors and
their orthologs, so that subnetwork genes are selected that
are most strongly connected to the query and to the query
orthologs. The comparative query requires that the
species’ own evidence reaches the chosen cutoff to
prevent biased predictions from orthology transfer.
Another new feature of this release is the incorporation

of MaxLink (39) as an alternative query option. MaxLink
searches a network with a list of query genes to find genes
that are more strongly connected to the query set than
expected by chance, and ranks the found genes by the
number of links to the query set genes. The idea is to
use the network to find novel genes that are central to a
known pathway, process or otherwise co-functioning
group of genes. For example, MaxLink has been success-
fully applied to predict novel cancer-related genes in
H. sapiens (39). The subnetwork retrieved by MaxLink
is presented in the same way as regular search results
but also displays MaxLink significance and score in the
Interactors view. A detailed description of the search
options can be found in the help section of the Web site.
The search results are presented in five different tab

views. A network view shows the subnetwork of the
query genes and their interactors in the interactive
jSquid network viewer (40). The second view is the new
interaction view that can be seen in Figure 5, which lists all
links in the subnetwork. For each link, detailed informa-
tion of how the coupling was derived is shown. The links
can be expanded to see the predictions for the different
functional coupling classes. Green and red boxes indicate
positive and negative LLRs for the evidence types and
species. If one clicks on the boxes, a table will open dis-
playing the experimental and computational evidences for
the coupling. Again, green or red boxes show the LLRs of
the individual evidences. A free text next to those boxes
describes the evidences; for instance, which TFs co-
regulate the gene pair or which publications report inter-
actions between the genes. Hyperlinks for the individual
data points provide some follow-up information. The
example shown in Figure 5 further demonstrates that
FunCoup can predict functional couplings that are only
described in small-scale experiments not included in the
network integration.
The objective of FunCoup is the prediction of novel

functional couplings, but known couplings that are sup-
ported by reliable physical interaction data or complex
membership are highlighted in the interaction view with
blue boxes. The search results can be extended to include
all known couplings in the advanced search options. The
next view shows a table with the query genes and the
retrieved associated genes. Descriptions, annotations and
cross-references for the genes are given. A new feature is
that enriched GO terms or KEGG pathways in this gene
set are listed, providing information about predominant
functions in the subnetwork. The subnetwork genes rep-
resent the most strongly functionally related genes to the
query. Individual annotations of interactors or enriched
functional terms allow inferring possible novel

annotations for the query genes. The next view gives
download options for the genes and the subnetwork in
different formats. Finally, the last view brings back the
current search and allows to modify keywords or to
query parameters.

SUMMARY AND OUTLOOK

The completely re-implemented FunCoup 3.0 framework
was greatly improved and several new features were added.
The most important change was the replacement of the
naı̈ve Bayesian integration with an integration procedure
that downweights datasets with redundant information.
This improved the robustness of the framework and
reduced the prediction bias toward co-expression evidence.

A novel method for estimating PHP similarity was de-
veloped that is based on an InParanoid-derived species
tree and combines positive evidence from co-conservation
and negative evidence from missing orthologs. In the
previous version, LLRs were estimated for every
possible co-conservation profile. With 10 species, this led
to >1000 different LLRs, causing a high risk for over-
training. The new PHP score considers almost 100
species and includes not only co-conservation but also
absence of one of the two genes. Moreover, it produces
much fewer bins, which reduces the risk for overtraining.

Overall, the framework has been made more robust with
several small improvements including more careful data
mapping and a more stringed binning procedure.
Additional data, especially for PPI and TFB, have been
added, and existing data sources have been updated. For
FunCoup 2.0, the main evidence source was co-expression.
The redundancy weighting and the additional data resulted
in a more balanced data type utilization. The various im-
provements have greatly increased the coverage of the
FunCoup networks, making FunCoup one of the most
comprehensive resources for functional couplings.

The FunCoup Web site was completely redesigned, with
greatly improved query times, a cleaner look and much
improved usability. The guilt-by-association method
MaxLink (39) has been integrated as batch query option
to find related genes to large set of query genes.
Significantly enriched functional annotations are dis-
played for the retrieved subnetwork, providing a func-
tional characterization of the query results.

The re-implementation of the FunCoup framework
enabled the above-described improvements and also laid
the groundwork for future improvements and extensions.
One problematic issue of the current FunCoup framework
is the evidence score binning procedure. Although we have
made some improvements to make it more robust, the
fundamental problems of binning, namely, limited reso-
lution and robustness, remain. One of our goals for the
future is therefore to replace the binning with a continuous
approach. However, a strength of the binning procedure is
that it is non-parametric and can therefore adapt to any
kind of signal distribution. A continuous approach will
impose some assumptions about the distribution and a
good compromise between power and flexibility has to
be found.
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The static structure of functional coupling networks
and many other types of biological networks poorly
reflects the true dynamic nature of biological systems.
This is another aspect in which we are planning to
improve FunCoup in the future, for instance, by
introducing attributed links or process-specific links.
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