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Abstract: Worldwide, the anticonvulsant drug carbamazepine (CBZ) is the most frequently identified
pharmaceutical residue detected in rivers. Reported chronic effects of CBZ in non-target freshwater
organisms, particularly fish, include oxidative stress and damage to liver tissues. Studies on CBZ
effects in fish are mostly limited to zebrafish and rainbow trout studies. Furthermore, there are only a
few chronic CBZ studies using near environmental concentrations. In this study, we provide data
on subacute effects of CBZ exposure (28 days) to common carp (Cyprinus carpio), employing a set
of biochemical markers of damage and exposure. CBZ was found to induce a significant change
in the hepatic antioxidant status of fish subjected to 5 µg/L. Moreover, with increasing concentra-
tions, enzymatic and non-enzymatic biomarkers of oxidative defence (catalase (CAT), superoxide
dismutase (SOD), glutathione reductase (GR), DNA strand breaks)), toxicant biotransformation
(ethoxyresorufin-o-demethylase (EROD), glutathione-S-transferase (GST)), and organ and tissue
damage (lactate dehydrogenase (LDH), cetylcholinesterase (AChE)) were altered. The AChE, LDH,
and lipid peroxidation (LPO) results indicate the occurrence of apoptotic process activation and tissue
damage after 28 days of exposure to CBZ. These findings suggest significant adverse effects of CBZ
exposure to common carp at concentrations often found in surface waters.

Keywords: carbamazepine; oxidative stress; fish biomarker; common carp (Cyprinus carpio); chronic effects

1. Introduction

Pharmaceuticals have received a lot of attention recently, being produced, consumed,
and released into the environment in high amounts [1]. Removal or biodegradation of
these compounds and their metabolites is very limited in wastewater treatment plants
(WWTP) [2]. When released into the environment, pharmaceutical residues may bioaccu-
mulate [3] and/or exert noxious effects on living organisms [4], particularly fish [5–7]. Being
biologically active compounds that are intended to interact with specific processes and
biochemical pathways in humans and animals, alterations in similar metabolic pathways
in non-target organisms exposed to pharmaceuticals cannot be ignored [3].

Carbamazepine (CBZ) is an anticonvulsant drug prescribed worldwide for the treat-
ment of bipolar disorder, trigeminal neuralgia, and psychomotor epilepsy [8]. Among
psychiatric drugs, CBZ is one of the most commonly found pharmaceuticals in municipal
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WWTP effluents and urban impacted surface waters [9–11]. Anthropogenic activities serve
as a continuous source of CBZ release to the environment [9]. CBZ is absorbed almost
completely within the human gastrointestinal tract, and the majority (72%) of the received
dose enters sewage systems as a component of human urine [12]. WWTPs are only able
to remove 10% of the CBZ that enters the sewage system [13]. The remaining CBZ is
released with the WWTP effluent into the environment where it undergoes a relatively
slow degradation process with a permanency time of around 82 days in surface waters [14].
Accordingly, CBZ has been detected in surface waters worldwide in concentrations of
150 µg/L in South Korea [15], 12 µg/L in Europe [16], and 0.8 µg/L within the Danube
River in Hungary [17,18].

In humans, CBZ has been shown to interact with potassium and sodium channels
and, in addition, some signalling pathways [19]. It was also shown that CBZ modulates
voltage-gated sodium channels, resulting in decreased neuronal activity [20]. Regarding
the biota of freshwater habitats, some studies have been performed in the last decade to
understand the lethal and sublethal effects of CBZ. Assessments included organisms such
as algae, cladocerans, and fish [7,21–23].

Reported chronic effects include a decline in fecundity, decreased embryo production,
and irregular oocytes. These chronic effects are likely due to altered sex steroid hormones in
the case of zebrafish (Danio rerio) [24], suggesting CBZ can have endocrine-disrupting effects.
Additional CBZ research in zebrafish has shown an increased time for first feeding action
and total food ingestion, modulation of acetylcholinesterase (AChE) and liver glutathione-
S-transferase (GST) activity, decreased catalase (CAT) and lactate dehydrogenase (LDH)
activity, and DNA damage after 63 days of continuous CBZ exposure [7].

In common carp (Cyprinus carpio), Li et al. [23] reported reduced activity in superoxide
dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) combined
with increased lipid peroxidation (LPO) in the sperm of common carp following high
CBZ concentration exposure (between 0.2 and 2 mg L−1) [23]. The same research showed
increased lipid peroxidation in brain tissues of rainbow trout (Oncorhynchus mykiss) accom-
panied by decreased SOD and GR, while GPx and CAT presented a non-linear response
over time with an increase then subsequent decrease in their activities [25]. Li et al. [23]
showed that high concentrations of CBZ, between 0.2 and 2 mg/L, cause an increase in the
degree of LPO and carbonylated proteins in addition to a reduction in the activity of SOD,
GR, and GPx activity in Cyprinus carpio sperm after two hours of in vitro exposure. In a
recent study, Gasca-Pérez et al. [26] reported increases in LPO, hydroperoxide, and protein
carbonyl content with a decrease in the activity of antioxidant enzymes (SOD, GPx, CAT)
after sub-acute (7 days) treatment with 2 mg/L of CBZ.

Cyprinus carpio is a convenient bioindicator, having appropriate sensitivity to xenobi-
otic exposure, adaptability to laboratory conditions, wide global distribution, and economic
significance [26–29]. Most recent studies on CBZ effects in fish are mostly limited to ze-
brafish and rainbow trout [30]. Additionally, there is a lack of chronic CBZ studies using
near environmental concentrations. Thus, our study provides data on the potential risk
of CBZ to common carp through chronic exposure (28 days) at environmentally relevant
concentrations using a set of biochemical markers of damage (DNAsb, LDH, LPO, VTG),
and exposure (CAT, EROD, GST, GR, SOD).

2. Materials and Methods
2.1. Chemicals

CBZ (CAS 298-46-4) was purchased from Sigma-Aldrich (Darmstadt, Germany). All
other reagents used in the study were of analytical grade.

2.2. Fish Maintenance

Common carp juveniles were kept in an individually designed recirculating fish hous-
ing system of the Department of Environmental Toxicology at the Hungarian University of
Agriculture and Life Sciences (Gödöllő, Hungary). The fish were kept in 10 m3 tanks with
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constantly maintained water quality parameters (22 ± 2 ◦C, pH 7.8 ± 0.2, redox potential,
230± 2 mV, dissolved O2-level, 6.8± 1 mg/L) and a light:dark period of 14 h:10 h. The carp
were fed 10 g/kg body weight AquaGarant Aquastart (Aqua Garant, Pöchlarn, Austria)
pelleted feed (1.2–1.5 mm) two times a day.

2.3. Experimental Design

For the subacute, 28 days, juvenile fish test, males and females (weight 7.37 ± 1.35 g)
were randomly distributed into fifteen experimental tanks, each containing 50 L of the test
solution (nominal concentrations are as follows: 0, 1, 5, 50, or 100 µg/L of CBZ). Fifteen
fish (3 replicates of 5 fish each) were used per treatment. The lowest and highest CBZ
concentrations tested, 1 µg/L and 100 µg/L, were selected based on the recent paper by da
Silva Santos et al. [7]. The carp were exposed for 28 days to the test solutions while also
being fed a 10 g/kg body weight AquaGarant Aquastart (Aqua Garant, Pöchlarn, Austria)
pelleted feed (1.2–1.5 mm) two times a day. The test media was completely renewed
every three days. Water quality parameters were kept within the ranges described in
the preceding “Fish maintenance” section. To ensure agreement between nominal and
actual compound concentrations in the aquaria, water samples were analysed during the
experimental period by LC–MS/MS. Water samples were collected from the test aquaria
after 1 h and 36 h of renewing the test solutions. The mean concentration of CBZ in the
water samples was consistently within 20% of the intended concentration.

On the 7th, 14th, and 28th day of exposure, five fish from each exposure concentration
and replicate were sacrificed. The brain, liver, and intestine of each fish were isolated and
stored in microtubes at −80 ◦C for later biochemical analyses.

2.4. Biochemical Determinations

Homogenization was performed using a small bead mill (TissueLyser LT, Qiagen,
Germantown, MD, USA). Enzymatic activities were evaluated in triplicate using a Thermo
Varioskan™ LUX multimode microplate reader at 25 ◦C (Thermo Fisher Scientific, Waltham,
MA, USA).

Fish intestines and approximately half of the liver tissue were homogenised in a
general buffer (25 mM Hepes-NaOH, 130 mM NaCl, 1 mM EDTA, 1 mM dithiothreitol,
pH = 7.4) at a weight to volume ratio of 1:5. Subsamples of homogenates were frozen at
−80 ◦C for lipid peroxidation analysis (LPO), DNA strand breaks (DNAsb), vitellogenin-
like proteins (Vtg), and ethoxyresorufin-o-demethylase (EROD). The remaining liver tissues
were homogenised in 100 mM of phosphate buffer (pH = 7.4, KCl 100 mM, EDTA 1 mM,
dithiothreitol (DTT), 0.5 M sucrose, and 40 µg/mL aprotinin) and centrifuged at 12,000× g
for 30 min at 4 ◦C. The supernatants (S12) were collected, and aliquots were kept at −80 ◦C
until GR, GPx, GST, CAT, LDH, and SOD analyses could be conducted. Brain tissues
were homogenised in 0.1 M phosphate buffer (pH = 7.2; 1:10 w/v) and subsequently
centrifugated at 6000× g for 3 min at 4 ◦C. The protein concentration of the samples was
determined, in triplicate, by the Bradford method [31], adapted to microplate, using bovine
serum albumin as a standard. The absorbance was recorded at 595 nm after an incubation
period of 15 min.

Lipid peroxidation was evaluated based on the formation of malonaldehyde in tissue
homogenates by the thiobarbituric acid method elaborated by Wills [32]. A 150 µL ho-
mogenate was mixed with 300 µL of 10% trichloroacetic acid containing 1 mM FeSO4 and
150 µL of 0.67% thiobarbituric acid. The mixture was heated to 80 ◦C for 10 min, then precip-
itates were removed by centrifugation (10,000× g for 10 s). The supernatant was subjected
to fluorescence measurement at 516 nm excitation/600 nm emission. Blanks and standards
of tetramethoxypropane were prepared in a homogenization buffer. Results were expressed
as µmoles of thiobarbituric acid reactants per milligramme of homogenate protein.

The determination of AChE activity was carried out according to the method of
Ellman et al. [33] and adapted to microplate [34]. A 96-well microplate was loaded with
3 replicates of 50 µL of homogenate supernatant and 250 µL of a solution made with 0.075 M
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acetylthiocholine iodide and 10 mM 5,5 dithio-bis(2-nitrobenzoic acid) in phosphate buffer
(0.1 M, pH = 7.2). In assay blanks, samples were substituted with phosphate buffer and
electric eel acetylcholine esterase was used as a positive control. Absorbance was measured
every minute at 414 nm for a total of 15 min. Enzymatic activity was calculated from the
slope of the absorbance curve and was expressed in units (U) per mg of protein content (1 U
being 1 µmol of substrate hydrolysed/min).

CAT activity was measured in triplicate following the method of Aebi [35]. Decreases
in the absorbance of a 50 mM H2O2 solution (ε =−0.0436 mM−1 cm−1) in 50 mM phosphate
buffer (pH 7.8) and 10 µL of tissue supernatant (S12) were continuously recorded at 240 nm
at 10 s intervals for 1 min. The results were expressed as U/mg protein; a unit of CAT was
defined as the amount of enzyme that catalysed the dismutation of 1 mmol of H2O2/min.

GST activity was determined by the method of Habig et al. [36], adapted to microplate,
whereby a solution of 100 mM glutathione (GSH) in phosphate buffer (pH = 6.5) and a
second solution of 60 mM 1-chloro-2,4-dinitrobenzene (CDNB, ε = 9.6 mM−1 cm−1) in
ethanol was prepared just before the assay. The reaction mixture consisted of phosphate
buffer, GSH solution, and CDNB solution in a proportion of 4.95 mL (phosphate buffer):
0.9 mL (GSH): 0.15 mL (CDNB). In the microplate, 0.2 mL of the reaction mixture was
added to 0.1 mL of the sample (S12), and the GST activity was measured immediately
at 20 s intervals, at 340 nm, for a period of 5 min. GST from equine liver was used as a
positive control. Enzymatic activity was calculated from the slope of the absorbance curve
and was expressed in units (U) per mg of protein content (1 U being 1 µmol of substrate
hydrolysed/min).

GR activity was measured by the decrease of NADPH at 340 nm for 1 min and
expressed as µM/mg prot./min according to Carlberg and Mannervik [37]. The reaction
medium contained 100 mM phosphate buffer (pH = 7.4), 0.1 mM NADPH and 30 µL of the
supernatant (S12). GR activity was expressed as U per mg of protein (a U corresponding to
1 µM NADPH hydrolysed/min).

LDH activity was measured according to the methodology described by Vassault [38],
adapted to microplate by Diamantino et al. [39]. A volume of 25 µL samples and 125 µL
of a 300 µM reduced nicotinamide adenine dinucleotide solution (NADH) were added to
20 µL of a 4.5 mM pyruvate solution. Reading of the microplates was performed at 340 nm
for intervals of 40 s over a period of 5 min, following a decrease in absorbance resulting
from the oxidation of NADH. LDH activity was expressed as U per mg of protein (a U
corresponding to 1 µM NADPH hydrolysed/min).

EROD activity was determined according to the method described in Burke and
Mayer [40]. Subsamples of tissue homogenates were centrifuged at 12,000× g for 30 min at
4 ◦C. Fifty microliters of the resulting supernatant were incubated at 30 ◦C for 60 min in a
150 µL mixture containing 100 mM phosphate buffer (pH = 7.4), 100 µM reduced NADPH,
and 10 µM 7-ethoxyresorufin. The reaction was initiated by the addition of NADPH and
halted by the addition of 100 µL of 0.5 M NaOH. The resultant 7-hydroxyresorufin was
determined by fluorometry at 520 nm excitation/590 nm emission wavelengths. Calibration
was performed with serial dilutions of 7-hydroxyresorufin. Results were expressed as pM
7-hydroxyresorufin generated in one minute per mg of protein.

DNA strand breaks were quantified by an adaptation of the alkaline precipitation assay
of Olive [41]. A 25 µL tissue homogenate was mixed with 200 µL of 2% SDS containing
10 mM EDTA, 10 mM Tris-base, and 40 mM NaOH. The resulting mixture was then shaken
for 1 min. Two hundred microliters of 0.12 M KCl were added to the mixture and then
heated at 60 ◦C for 10 min, mixed by inversion, and then cooled at 4 ◦C for 30 min. Finally,
the total mixture was centrifuged at 8000× g for 5 min at 4 ◦C. Fifty microliters of the
resulting supernatant were then added to 150 µL of Hoechst dye (1 µg mL−1, in buffer
containing 0.4 M NaCl, 4 mM sodium cholate and 0.1 M Tris-acetate, pH 8.5–9, and mixed
for 5 min on a plane shaker). Fluorescence was measured at 360 nm excitation/450 nm
emission wavelengths. Sample blanks contained identical constituents, with 25 µL Hepes
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buffer replacing the tissue homogenate. A salmon sperm DNA standard (Sigma) was used
for DNA calibration and the results were expressed as µg DNA_sb mg−1 protein.

Vitellogenin-like proteins (Vtg) were determined in the 12,000 g microsomal fraction
following the alkali-labile phosphate (ALP) method developed by Blaise et al. [42]. Two
hundred microliters of sample homogenate were mixed with 54 µL of acetone (35% final
concentration) for 10 min and centrifuged at 10,000× g for 5 min. The retained pellet was
then dissolved in 50 µL of 1 M NaOH and mixed for 30 min at 60 ◦C. The total phosphate
was then determined by the colorimetric phosphomolybdenum method developed by
Stanton [43]. To a 20 µL sample, 125 µL H2O, 5 µL 100% TCA, 25 µL of molybdate reactive,
and 25 µL of 1% ascorbate were added and then mixed for 10 min. The absorbance was read
at 815 nm and 444 nm. Rainbow trout vtg was used for calibration and aliquots of NaOH
(1 M) were used as blanks. Vtg levels were expressed as µmoles of ALP per milligramme
of protein.

Total SOD activity was measured using the xanthine oxidase/cytochrome c method
proposed by Crapo et al. [44] in the S12 fraction. Cytochrome c reduction by superoxide
anions, generated by the xanthine oxidase/hypoxanthine reaction, was detected at 550 nm
at ambient temperature. Enzyme activity was expressed as U/mg protein; a unit of SOD
was defined as the amount of sample producing 50% inhibition under the assay conditions.
The reaction mixture contained 46.5 mM KH2PO4/K2HPO4 (pH = 8.6), 0.1mM EDTA,
195 mM hypoxanthine, 16 mM cytochrome c, and 2.5 mU xanthine oxidase. The enzymatic
activity was calculated from the slope of the absorbance curve.

The values of each biomarker were normalized against the protein content of either
the whole homogenate or supernatant [31].

2.5. Statistical Analysis

All data were analysed using the statistical software package OriginPro, version 2019
(OriginLab Corporation, Northampton, MA, USA). To examine the interactive effects of
different CBZ concentrations and exposure times on biochemical markers, a two-way
analysis of variance (ANOVA) was used, where time (t = 7; t = 14; t = 28 days), treatment
(control, 1, 5, 50, 100 µg/L), and their interaction were categorical predictor factors, while
the measured biomarkers were considered as dependent variables. When the interaction of
CBZ concentration and the exposure time was detected, a one-way ANOVA was conducted
to examine the effects of one main factor at a specific level of the other main factor. Factors
determined to be significant were further analysed using a post-hoc Tukey test for multiple
comparisons at a significance level of 0.05 (p < 0.05). Before statistical analyses, raw
data were diagnosed for normality of distribution and homogeneity of variance with the
Kolmogorov-Smirnov test and Levene’s test, respectively.

3. Results

None of the fish, control, and CBZ exposed, died during the experimental assay at any
of the tested conditions.

3.1. AChE Activity

The results of AChE activity in Cyprinus carpio after exposure to CBZ are shown in
Figure 1. Compared to the controls, exposure to CBZ induced time-dependent changes
in AChE activities. After seven days, AChE activity significantly (p < 0.05) decreased at
concentrations above 5 µg/L (50, 100 µg/L). Conversely, AChE activity increased as the
CBZ concentration increased after 14- and 28-day exposures. This increasing trend in AChE
activity after the first week was statistically (p < 0.05) confirmed to be time-dependent and
not concentration-dependent.
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3.2. Biotransformation Enzymes

After 7 days of exposure, hepatic EROD activity levels in the test animals showed a
concentration-dependent increase (peaking at a concentration of 100 µg/L CBZ) after first
starting with a non-significant decrease in the case of 1 µg/L CBZ exposure as compared
to controls. Fourteen days of CBZ exposure resulted in no significant differences being
detected as compared to the controls and also between different CBZ concentrations. By the
28th day of CBZ exposure, a significant (p < 0.05) increase in EROD activity was measured in
exposure concentrations above 1 µg/L (5, 50, and 100 µg/L) CBZ (Figure 2A). Interestingly,
EROD activity levels measured after 28 days of exposure to 100 µg/L CBZ appeared lower
than in the case of 50 µg/L measured activities; however, this difference was not significant
(p < 0.05).
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While GST activity values showed an increasing, concentration-dependent tendency
during the 28-day exposure; however, a significant elevation in GST activity was measured
only at the highest exposure concentration (100 µg/L) after the fourth week.

3.3. Antioxidant Defence

CAT activity changes followed a time- and concentration-dependent pattern during
the 28-day CBZ exposure. Significant (p < 0.05) differences, as compared to controls, first
appeared in the case of 100 µg/L CBZ concentration after 7 days of exposure and again in
the 50 µg/L and 100 µg/L CBZ concentrations after 14 days of exposure. After 28 days, a
significant increase in CAT activity was measured at all CBZ exposure concentrations (1, 5,
50, and 100 µg/L) (Figure 3).
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Figure 3. Changes in the CAT activity in the liver of Cyprinus carpio exposed to CBZ for 7, 14, and 28 d.
Data are expressed as mean ± standard deviation of three replicates (n = 3). Same letters designate
no significant differences at p < 0.05 after a two-way ANOVA followed by Tukey’s post-hoc test.

Measurements of GR activity showed a significant and concentration-dependent
increase as compared to control values after 7 days of 5 and 50 µg/L CBZ exposure. In
the case of 100 µg/L CBZ concentration, GR activity dropped back to similar values to
the controls. After 14 days of CBZ exposure, GR activity levels remained slightly lower as
compared to controls, showing time and concentration dependency, but the decrease in GR
activity proved to not be significantly different to the controls (Figure 4).
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Figure 4. Changes in the GR activity in the liver of Cyprinus carpio subjected to CBZ for 7, 14, and 28 d.
Data are expressed as mean± standard deviation of three replicates (n = 3). Different letters designate
significant differences at p < 0.05 after a two-way ANOVA followed by Tukey’s post-hoc test.
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SOD activity changes exhibited a very similar response pattern to GR activity. After
seven days of 5, 50, and 100 µg/L CBZ exposure, a significant (p < 0.05) and concentration-
dependent increase was detected. After 100 µg/L CBZ concentration exposure, activity
was significantly lower compared to 5 and 50 µg/L CBZ concentration exposure but higher
than control values. After 14- and 28-days exposure in all groups treated with CBZ, a
decrease in SOD activity was detected as compared to control values, but this decrease was
not significant (p < 0.05) (Figure 5).
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Figure 5. Changes in the SOD activity in the liver of Cyprinus carpio exposed to CBZ for 7, 14, and 28 d.
Data are expressed as mean± standard deviation of three replicates (n = 3). Different letters designate
significant differences at p < 0.05 after a two-way ANOVA followed by Tukey’s post-hoc test.

VTG levels increased following a concentration-dependent pattern after the first
seven days of exposure. A significant (p < 0.05) elevation of VTG content in the samples
was detected in fish subjected to 50 and 100 µg/L CBZ exposure. After 14 days, VTG
levels returned to a level similar to the control groups, but no significant differences were
observable. After the 28th exposure day, no significant (p < 0.05) elevation in VTG levels
was detected compared to the control groups (Figure 6).
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Figure 6. Changes in the VTG levels in the gonads of Cyprinus carpio exposed to CBZ for 7, 14,
and 28 d. Data are expressed as mean ± standard deviation of three replicates (n = 3). Different
letters designate significant differences at p < 0.05 after a two-way ANOVA followed by Tukey’s
post-hoc test.
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3.4. Damage Markers

The DNAsb measured in liver samples was slightly decreased as compared to controls
during the first two weeks of exposure to CBZ, with differences in measured levels di-
minishing by the fourth week of exposure. Differences (decrease) in experimental DNAsb
levels compared to the control groups proved significant only with 1 µg/L CBZ concentra-
tion exposure after 7 days of exposure. Statistically, there was no time- or concentration
dependence (Figure 7A).
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Figure 7. Changes in the DNA strand breaks (A), LDH activity (B), and level of lipid peroxida-
tion (C) in the liver of Cyprinus carpio exposed to CBZ for 7, 14, and 28 d. Data are expressed as
mean ± standard deviation of three replicates (n = 3). Same letters designate no significant differences
at p < 0.05 after a two-way ANOVA followed by Tukey’s post-hoc test.

LDH activity in the experimental groups showed a significant decrease compared to
the measured activity in the control groups at 1 µg/L concentration after 7 days of exposure.
However, at higher exposure concentrations (5, 50, and 100 µg/L) of CBZ, there were no
significant changes measured. After 14 days of exposure, no activity changes, compared to
controls, were detectable. After 28 days of exposure, an increasing trend in LDH activity
was observed. In this group, LDH activity peaked at 50 µg/L CBZ concentration, but at
100 µg/L CBZ concentration, LDH levels showed no significant difference compared to
control levels (Figure 7B).

LPO levels showed no difference compared to control measured values until after
28 days of exposure. On the 28th exposure day, LPO levels markedly increased, sig-
nificantly peaking at 100 µg/L CBZ (p < 0.05) (Figure 7C). Although a concentration-
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dependent pattern was visible in the 28-day exposure group, statistically significant differ-
ences as compared to controls were only confirmed in the highest exposure concentration
(100 µg/L CBZ).

4. Discussion

In a recent study, CBZ was determined to be the most frequently identified and the 9th
highest in concentration among pharmaceutical residues detected in rivers worldwide [11].
CBZ has been shown to exert harmful chronic effects on non-target organisms, particularly
fish, even in very low concentrations [7,45]. In our study, the sub-chronic effects of CBZ
were assessed in Cyprinus carpio at environmentally relevant concentrations.

The AChE inhibition observed after 7 days of CBZ exposure in this study is in
agreement with the significant reduction in AChE activity previously found in R. philip-
pinarum [46], in the monogonont rotifer (Brachionus koreanus) [47], and in crucian carp
(Carassius carassius) [45] after short-term (<7 days) exposure to CBZ. Reduced AChE activ-
ity is attributed to neurotoxic agents, and it is a commonly applied biochemical marker
of neurotoxic environmental pollutants [48]. However, in this study, following 14- and
28-day exposure to CBZ, a time and concentration-dependent increase was observed
in AChE activity. Increased AChE activity is often associated with the production of
free radicals and oxidative stress [49] and ongoing apoptotic processes in the test organ-
isms [50,51]. Yan et al. [52] showed that CBZ, at environmentally relevant concentrations
(1, 10, 100 µg/L), causes apoptosis in the liver of Chinese rare minnows (Gobiocypris rarus).
Accordingly, the elevated AChE activity measured in this study may be a consequence of
apoptotic processes. Elevated AChE activity causes a fast degradation of the neurotrans-
mitter acetylcholine and a subsequently decreased stimulation of acetylcholine receptors
affecting the cognitive functions of the organisms [53]. Additionally, a similar increase in
AChE activity was found after 63 days of CBZ exposure in zebrafish [7].

The phase I biotransformation enzyme EROD is a member of the aryl hydrocarbon
(AhR) receptor-regulated P450-dependent mono-oxygenase CYP1A family, and is widely
used as a biomarker in fish for screening the uptake of environmental organic pollutants [54].
The significant increase in EROD activity after 28 days of exposure to 50 and 100 µg/L
CBZ concentrations indicates that CYP1A enzymes were biosynthesized to detoxify and
metabolise CBZ. These results are in accordance with a previous study with Carassius
carassius, where 2 and 10 µg/L CBZ concentrations were shown to induce hepatic EROD
activity after 1, 4, and 7 days [45]. Our observation of a decrease in EROD activity after
28 days of exposure to a concentration of 100 µg/L CBZ, as compared to fish exposed
for 28 days to 50 µg/L CBZ, may be attributed to liver damage, as proposed in the case
of AChE.

GST, a member of the Phase II biotransformation enzyme group, is implicated in the
conjugation of xenobiotics with glutathione, increasing their solubility and excretion [4].
The significant increase in GST activity measured during our study suggests an oxidative
stress-induced adaptive response or, alternatively, the conjugation and excretion processes
of CBZ in the liver of common carp. This result is in agreement with a previous study
performed by Nkoom et al. [45], where 2 and 10 µg/L CBZ concentration exposure was
shown to cause a significant increase in the activity of GST in the liver of Carassius carassius
after 1, 4, and 7 days. The data obtained for the biotransformation enzymes (EROD and
GST activities) in our study indicates that CBZ was both biotransformed and metabolised
in the liver of common carp.

Reactive oxygen species (ROS) are present at low concentrations in organisms with
a normal functioning metabolism. High concentrations (a possible result of the presence
of some xenobiotics) may inflict adverse effects on cellular components, such as lipids,
proteins, carbohydrates, and DNA. Therefore, the equilibrium of the redox state is fun-
damental for the proper functioning of organisms [55]. This vital balance is maintained
by antioxidants (e.g., reduced glutathione), antioxidant enzymes (e.g., SOD, CAT, GPx,
and GR), and enzymes able to reduce the oxidised form of glutathione (e.g., GR) [55]. In
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this study, the alterations in antioxidant defence system enzyme activities measured in the
liver of common carp illustrate the strong oxidative stress effect of CBZ. After an initial
increase in the activity of SOD and GR during the first seven days of CBZ exposure, their
activity dropped below levels measured in the control group after 14 days and remained
suppressed in the 28-day treatment group. CAT activity increased significantly through the
28 days of exposure compared to the activity levels measured in the control group. These
results are in accordance with preceding studies. For instance, several previous studies
reported significantly increased SOD, CAT, and GR activities after short-term (<7 days)
exposure to CBZ in rainbow trout [25] and Carassius carassius [45]. The initial increase in
the activity of antioxidant enzymes could be explained by elevated ROS concentrations
actuating the antioxidant system and SOD activity in the tissues of fish in order to initiate
the dismutation of ROS derived from drugs (such as superoxide anion radical O2

−•) to
molecules which are less toxic (such as H2O2). In prior studies, increasing levels of prod-
ucts from this process, together with H2O2 produced by oxidase enzymes (e.g., xanthine
oxidase, amino acid oxidase, and NAD(P)H oxidase), upregulated CAT activity and excess
H2O2 was converted to H2O and O2 [55–57]. The cooccurring increase in the activity of GR
subserves the conversion of oxidised glutathione (GSSG) to reduced GSH; reduced GSH
can directly scavenge ROS and is subsequently reduced to GSSG in an energy-demanding
process utilising NADPH [57]. The detected drop after an initial increase in SOD and GR
enzymes may be attributed to the following: lipid peroxidation and the direct attack of
reactive oxygen species, proteins decreasing ROS [58], or an energy (NADPH) shortage
following prolonged exposure to CBZ [57,58]. CAT activity may have remained at a higher
level due to H2O2 originating from sources other than SOD activity.

Low-intensity oxidate stress can induce cells to produce antioxidant enzymes that are
able to eliminate ROS, while severe oxidate stress can overwhelm these protective enzymes,
resulting in oxidative damage of cell components like lipids, proteins, and even DNA [55].
TBARS is the most widely used indicator of lipid peroxidation (LPO) triggered by oxidative
stress in fish [59]. Our results showed a significant elevation of TBARS only at the end of
the tests in the case of the highest applied CBZ concentration (100 µg/L); however, the
continuous elevation of TBARS levels in our data as compared to control values hints at
an ever-growing oxidative stress pressure due to a malfunction of the antioxidant defence
system. This finding corresponds to other studies, for example, Li et al. [58], that reported
oxidative stress and elevated TBARS levels in rainbow trout after 21- and 48-day exposure
to 20 and 200 µg/L CBZ.

CBZ was shown to cause alterations in the genetic material of Chinese rare minnows
(Gobiocypris rarus) after 28 days of 1, 10, and 100 µg/L CBZ exposure [52]. In the present
study, strand break levels showed a slight decrease during the 28-day tests in common
carp compared to control groups. The observed lower level of DNA strand breaks could be
attributed to repair or recovery mechanisms [60] initiated by oxidative stress effects. An
inhibitory effect on cell division may also be involved in the observed responses [61].

The LDH is a widely used marker of organ and tissue damage reflecting metabolic
activity (e.g., carbohydrate metabolism), as well as structural and morphological alterations
of tissues that are closely associated with pathological processes [62]. In our study, LDH
activity was slightly increased in 50 µg/L CBZ concentration experimental groups after
28 days of exposure and decreased in 100 µg/L CBZ groups, although these changes were
not significantly different from control activity values. Increased LDH activity in the liver
and gills of common carp caused by 5700 µg/L CBZ exposure from 7 to 28 days was
previously attributed to metabolic changes and tissue hypoxia due to the disruption of
respiratory epithelium, resulting in a decrease in oxidative metabolism [63]. In another
study, da Silva Santos et al. [7] reported elevated LDH levels in zebrafish after 63 days of
10,000 µg/L CBZ exposure and no change after 10 µg/L CBZ concentration. Our results
agree with the above-mentioned studies and may be attributed to metabolic changes in
liver cells. Our observed drop in LDH activity in the 100 µg/L, 28-day CBZ exposure
group as compared to the LDH activity peak in the 50 µg/L CBZ group may also provide
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evidence for apoptotic damage in the liver tissues, as is also suggested in our results from
the AChE, EROD, and antioxidant enzyme analyses.

CBZ was previously shown to have negative effects on fish reproduction. For instance,
Li, et al. [23] showed that exposure to CBZ may inflict oxidative stress in common carp sper-
matozoa and impair sperm quality parameters. Da Silva Santos et al. [7] have shown that
CBZ affects the reproductive success of zebrafish through the induction of pre-ovulatory
follicles and increases the occurrence of atretic oocytes after 63 days of exposure to 10 and
10,000 µg/L CBZ concentrations. Moreover, in their study, histopathological analyses of
ovarian tissues showed a significant increase in the proportion of vitellogenic follicles. The
authors suggested that CBZ may have similar effects as other non-steroidal pharmaceuticals
and pointed out that atretic oocytes are often reported as a toxic effect on reproduction
caused by estrogenic compounds. Vitellogenin (VTG) from fish is a glycolipophosphopro-
tein produced in the liver and its production is induced by 17β-estradiol or compounds
that are capable of interacting with the estrogen receptor [64]. In this study, significant
increases in VTG levels were measured in fish subjected to 100 µg/L CBZ after seven days
as compared to control values. In addition, our findings showed a statistically significant
concentration dependence on VTG levels. This finding also corroborates the suggestion
that CBZ’s toxic mechanistic routes may be similar to estrogenic compounds.

Preceding researches showed significant alteration of oxidative stress marker enzyme
activities (SOD, CAT) and damage markers (LPO, DNA, LDH) after acute (<7 days) expo-
sure to elevated concentrations (>200–10,000 µg/L) of CBZ in rainbow trout [25], Carassius
carassius [45] and common carp spermatozoa [23]. Here, stress marker results after seven
days of environmental relevant CBZ concentration exposure show a very similar pattern,
as follows: antioxidant enzyme activities were elevated, and damage markers (DNAsb,
LPO, and LDH) were not affected. After prolonged exposure to CBZ, our results hinted
at the damage of cell components and apoptotic processes even in the case of the lowest
exposure concentration (1 µg/L). Thus, the chronic adverse outcomes inflicted by exposure
to environmentally relevant concentrations of CBZ observed in this study may be attributed
mostly to prolonged oxidative stress effects.

5. Conclusions

In summary, chronic exposure to environmentally relevant concentrations of CBZ
inflicted biochemical and, presumably, physiological effects in common carp. In this study,
fish subjected to 5 µg/L of CBZ exhibited a significant change in hepatic antioxidant status.
With increasing CBZ concentrations, enzymatic and non-enzymatic biomarkers of oxidative
defence (CAT, SOD, GR, DNAsb), toxicant biotransformation (EROD, GST), and organ
and tissue damage (LDH, AChE) were altered. The AChE, LDH, and LPO results are
suggestive of apoptotic processes and tissue damage after 28 days of exposure to CBZ. The
findings of the present study suggest significant adverse effects of CBZ on common carp at
concentrations often found in surface waters.
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