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It has been postulated that mitochondrial dysfunction has a significant role in the
underlying pathophysiology of bipolar disorder (BD). Mitochondrial functioning plays
an important role in regulating synaptic transmission, brain function, and cognition.
Neuronal activity is energy dependent and neurons are particularly sensitive to changes
in bioenergetic fluctuations, suggesting that mitochondria regulate fundamental aspects
of brain function. Vigorous evidence supports the role of mitochondrial dysfunction in
the etiology of BD, including dysregulated oxidative phosphorylation, general decrease
of energy, altered brain bioenergetics, co-morbidity with mitochondrial disorders, and
association with genetic variants in mitochondrial DNA (mtDNA) or nuclear-encoded
mitochondrial genes. Despite these advances, the underlying etiology of mitochondrial
dysfunction in BD is unclear. A plausible evolutionary explanation is that mitochondrial-
nuclear (mitonuclear) incompatibility leads to a desynchronization of machinery required
for efficient electron transport and cellular energy production. Approximately 1,200
genes, encoded from both nuclear and mitochondrial genomes, are essential for
mitochondrial function. Studies suggest that mitochondrial and nuclear genomes co-
evolve, and the coordinated expression of these interacting gene products are essential
for optimal organism function. Incompatibilities between mtDNA and nuclear-encoded
mitochondrial genes results in inefficiency in electron flow down the respiratory chain,
differential oxidative phosphorylation efficiency, increased release of free radicals, altered
intracellular Ca2+ signaling, and reduction of catalytic sites and ATP production. This
review explores the role of mitonuclear incompatibility in BD susceptibility and resilience
against environmental stressors.

Keywords: bipolar disorder, genetics, mitonuclear coevolution, mitonuclear coadaptation, mitonuclear
incompatibility, mitonuclear interaction, epistasis

INTRODUCTION

Mitochondria are multifunctional organelles found in large numbers in almost all human cells.
They are highly effective in producing more than 90% of the cellular energy needed by the body in
the form of ATP (Wallace, 2005). Efficient mitochondrial functioning depends on synchronized
gene expression and protein interactions transcribed from both the mitochondrial (mtDNA)
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and nuclear (nDNA) genomes. This synchronization between
genomes is essential for energy production needed to sustain
life and organ function in addition to regulating a wide
range of cellular pathways including homeostatic regulation
of ionic gradients, cell signaling, and cellular stress response
and survival (Mattson et al., 2008). The mitochondria genome
encodes 13 proteins of the electron transport chain (ETC),
22 transfer RNAs, and 2 ribosomal RNAs (Anderson et al.,
1981). Other mitochondrial proteins are encoded in the two
copies nDNA. Individual mitochondrion typically include 2–
10 mtDNA copies, while the number of mitochondria per cell
varies up to 1,000 (Robin and Wong, 1988) depending on
energy demands, oxidative stress and pathological conditions
(Clay Montier et al., 2009).

Mitochondrial function is particularly important in neurons
due to the high bioenergetic demands of neuronal activities
(Chan, 2006; Mattson et al., 2008). Mitochondrial functioning
plays an important role in regulating synaptic transmission, brain
function, and cognition (Picard and McEwen, 2014). Neuronal
activity is energy-dependent, and neurons are particularly
sensitive to changes in bioenergetic fluctuations, suggesting
that mitochondria regulate fundamental aspects of brain
function. Mitochondrial deficits including energy production,
oxidative stress, oxidation-reduction (redox) imbalance, and
Ca2+ metabolism, have been implicated in the etiology of
psychiatric diseases (Manji et al., 2012; Park and Park, 2012;
Srivastava et al., 2018). It has long been postulated that disruption
of mitochondrial function contributes to the etiology of bipolar
disorder (BD). Kato and Takahashi (1996) and Kato et al.
(1997a,b) demonstrated leukocytes and autopsied brains from
BD individuals exhibited increased levels of the 4,977-bp mtDNA
deletion, as well as abnormal brain energy metabolism in BD
including decreased intracellular pH (Kato et al., 1993, 1998;
Hamakawa et al., 2004), decreased phosphocreatine (Kato et al.,
1992, 1994, 1995), and enhanced response of phosphocreatine
in lithium-resistant BD (Murashita et al., 2000). These findings
led to the mitochondrial dysfunction hypothesis of BD in
2000, theorizing that “mtDNA mutations as well as common
variations may confer a risk of BD by affecting intracellular
calcium signaling systems” (Kato and Kato, 2000). Since then,
mitochondrial abnormalities associated with bipolar disorders
have been extensively reviewed at the structural, molecular and
functional levels (Kato and Kato, 2000; Kato, 2005, 2006, 2008,
2017; Stork and Renshaw, 2005; Quiroz et al., 2008; Shao et al.,
2008; Clay et al., 2011; Konradi et al., 2012; Kim et al., 2015;
Duong et al., 2016; Machado et al., 2016; Scaini et al., 2016;
Cikankova et al., 2017; Morris et al., 2017; Andreazza et al.,
2018; Holper et al., 2018; Srivastava et al., 2018), as well potential
therapeutic strategies (Kato, 2007; Wang, 2007; Quiroz et al.,
2008; Nierenberg et al., 2013; de Sousa et al., 2014a; Callaly et al.,
2015; Cikankova et al., 2017; Pereira et al., 2018).

While there is mounting evidence supporting the
mitochondrial dysfunction hypothesis of BD, recent BD
GWAS have failed to show significant association with mtDNA
and/or nDNA mitochondria related genes (Prata et al., 2019;
Stahl et al., 2019). The closest BD risk allele to a mitochondrial
core gene is rs74446114, located 63.5 kb downstream of MRPL33,

which encodes Mitochondrial Ribosomal Protein L33 (Stahl
et al., 2019). A greater understanding of the core evolutionary
processes driving mitonuclear and environmental interactions
will provide key insights into the complex etiology underlying
mitochondrial dysfunction in BD.

CO-EVOLUTION AND CO-ADAPTATION
OF MITONUCLEAR GENOMES

Mitochondria are double-membrane structures with their own
maternally inherited, circular genome (16,568 bp) consisting
of transcription, translation, and protein assembly systems
conserved from its endosymbiotic origin (Anderson et al., 1981;
Gray et al., 1999). In the course of evolution, mitochondria
became dependent on the nuclear genome for nuclear-encoded
factors necessary for its integrity, replication and expression
(Gray et al., 1999). While 13 mitochondrial proteins are encoded
by mtDNA, approximately 1,158 mitochondrial proteins are
encoded by nDNA and imported into the mitochondrion (Poyton
and McEwen, 1996; Calvo et al., 2016). Studies suggest that
mitochondrial and nuclear genomes co-evolve to ensure the co-
adaptation and coordinated expression of interacting proteins
vital for mitochondrial biosynthesis and organism survival
(Cosmides and Tooby, 1981; Bar-Yaacov et al., 2012).

Mitonuclear allelic interactions are essential to maintain
evolutionary co-adaptation. Nuclear genes coding for
mitochondrial-related proteins that co-function with mtDNA
gene products, must co-evolve with arising deleterious mtDNA
variants (Hill, 2016). If a mutation arises in mtDNA, the
nuclear genome needs to adapt (i.e., nuclear mutation needs to
arise to off-set the mtDNA mutation) in order to restore the
synergistic interactions between these two genomes. MtDNA
are more susceptible to SNPs, indels, and structural changes
compared to their nDNA counterparts, as it has a higher
mutation rate, lacks recombination, and has an inefficient DNA
repair mechanism. As deleterious mutations reach a frequency
threshold, the host fitness becomes compromised. As these
deleterious mtDNA mutations spread through a population,
other mutations accumulate to restore the host fitness by either
directly compensating the effect of the mtDNA mutation in the
nDNA or by inducing weak compensatory mutations in both
genomes to try to restore fitness through selection (see Chou
and Leu, 2015 for review). This mitonuclear co-evolution results
in differential accumulation of population-specific mitonuclear
mutations over time. While some studies suggested that most
mtDNA variants in populations are selectively neutral to prevent
removal by selective pressure (Gregorius and Ross, 1984;
Wallace et al., 1999), the question remains whether this selective
neutrality is dependent on the ancestral nuclear background.

Mitonuclear genomes are under the regulation of
retrograde and anterograde “cross-talk” signals to modulate
mitochondrial function (Figure 1), most often originating
from the mitochondria to induce specific nuclear responses to
regulate mitochondrial structure and function (Quiros et al.,
2016). Mitochondria generate retrograde response signals to
the nucleus to modulate nDNA gene expression in response

Frontiers in Genetics | www.frontiersin.org 2 March 2021 | Volume 12 | Article 636294

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-636294 March 10, 2021 Time: 14:2 # 3

Gonzalez Mitonuclear Incompatibility in Bipolar Disorder

FIGURE 1 | Mitonuclear communication in bipolar disorder. Mitochondrial dysfunction in bipolar disorder has been attributed to genetic variants in mitochondrial
DNA and nuclear-encoded mitochondrial genes as well as decreased electron transport chain (ETC) and tricarboxylic acid (TCA) cycle activity. Mitochondrial function
is under the regulation of retrograde and anterograde signals and adaptive responses to environmental factors. 1. Retrograde signaling (mitochondria to nucleus)
activated by mitochondrial stress signals including Adenosine Triphosphate (ATP), Reactive Oxygen Species (ROS), Mitochondrial Membrane Potential (MMP), and
calcium levels (Ca2+) to regulate nuclear gene expression to restore mitochondrial homeostasis. 2. Anterograde signaling (nucleus to mitochondria) are
nucleus-controlled regulation of gene expression to modulate mitochondrial activity, mitochondrial biogenesis, and mitochondrial fusion/fission. 3. Environmental
factors such as diet, exercise, and temperature elicit adaptive responses to modulate mitochondrial stress signals and expression of nuclear encoded mitochondrial
related genes.

to mtDNA mutations and to maintain cellular function,
metabolism, and adaptation to environmental stressors such as
diet, exercise, and temperature (Quiros et al., 2016). Alternatively,
anterograde regulation sends signals from the nucleus to the
mitochondria in order to regulate mitochondrial activity and
promote mitochondrial biogenesis through cell growth and
survival. Anterograde signaling can modulate bioenergetics
based on cellular demands via mitochondrial fusion/fission to
regulate mitochondrial copy number, morphology, mitophagy,
and movement (Chen and Chan, 2009; Chan, 2012; Quiros
et al., 2016). Mutations in any of these essential components
may disrupt cross-talk between mitonuclear genomes, affecting
mitochondrial stability and function, and ultimately contributing
to diseases (Poyton and McEwen, 1996).

It has been suggested that population admixture may
introduce mitonuclear discordance, in which mitochondrial and
nuclear genomes originate from differentiated ancestries. Chou
and Leu (2015) argued that if co-evolution in mtDNA and
nDNA commonly occur in diverse populations, the balance

between deleterious mtDNA mutations and compensatory
nDNA variants may be dependent on their nuclear ancestral
background, which may lead to genetic incompatibility between
populations (Chou and Leu, 2015; Rand and Mossman, 2020).
Individuals who have ancestors from different continental
populations may have certain mtDNA genetic variants from one
continental population, but might not have the corresponding
adaptive mutation in the nuclear genome from the same
continental population. Zaidi and Makova (2019) recently
reported a significant increase in the local genetic ancestry at
mitochondrial related genes in nDNA toward the corresponding
mtDNA ancestry in African American and Native American
admixed populations, providing empirical evidence that selective
pressure helps restore mitonuclear compatibility in human
admixed populations.

The evidence for differential lifetime prevalence of BD
based on race/ethnicity is conflicting (Grant et al., 2005;
Substance Abuse and Mental Health Services Administration,
2020) and specific prevalence of BD in admixed individuals
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are lacking. However, results from the 2019 National Survey
on Drug Use and Health reports that the prevalence of any
mental illness (AMI) and severe mental illness (SMI) is highest
among adults reporting two or more races (AMI = 31.7%
compared to 22.2% White adults; SMI = 9.3% compared
to 5.7% White adults) (Substance Abuse and Mental Health
Services Administration, 2020), suggesting admixed individuals
are at higher risk for SMI, including BD. SMI is also
higher in American Indian/Alaska Natives (6.7%) compared
to White adults (Substance Abuse and Mental Health Services
Administration, 2020). Lifetime mood disorders are significantly
more prevalent among the American Indian/Alaska Natives
population compared to Whites, with American Indian/Alaska
Natives men showing greater trend toward BDI and women
toward BDII (Brave Heart et al., 2016). American Indian/Alaska
Natives admixed with two or more races reported a higher
lifetime prevalence of diagnosed depressive disorder, more days
of poor mental health, and more frequent reporting of mental
distress compared to both American Indian/Alaska Natives-
single race and White-single race groups. These results remained
significant after adjustment for sociodemographic covariates
(Asdigian et al., 2018), suggesting that increased prevalence
mood disorders and related clinical characteristics reported in
American Indian/Alaska Natives may be caused in part by
increased population admixture.

While current evidence of mitonuclear discordance stems
from crosses of various model organisms (Ballard, 2005;
Kurbalija Novicic et al., 2015; Mossman et al., 2016b; Loewen and
Ganetzky, 2018), human cytoplasmic hybrids (cybrids) (Esteves
et al., 2008; Lin et al., 2012; Silva et al., 2013; Kenney et al.,
2014a; Nashine et al., 2016; Shrivastava and Subbiah, 2016; Zhou
et al., 2017) and conplastic animals (Yu et al., 2009; Weiss
et al., 2012; Kumarasamy et al., 2013; Houstek et al., 2014;
Latorre-Pellicer et al., 2016) studies are increasingly being used
to demonstrate the mitonuclear effects of mtDNA variants in
different nuclear ancestral backgrounds. Cybrids and conplastic
animals are constructed using identical nuclei and external
mitochondria with different mtDNA haplogroups in order to
investigate resulting bioenergetic and physiological effects. These
models also allow for investigations into environment-specific
modulation of intraindividual mitonuclear interactions (Dowling
et al., 2007; Soh et al., 2007; Zhu et al., 2014; Mossman et al., 2017;
Rand et al., 2018; Dong et al., 2019).

OXIDATIVE PHOSPHORYLATION
DYSREGULATION IN BIPOLAR
DISORDER

Mitochondria generate cellular energy through the OXPHOS
system via the ETC, consisting of five multiprotein complexes
(complex I–V) within and across the inner mitochondrial
membrane. Thirteen ETC proteins are encoded by mtDNA genes,
while > 1,000 proteins that make up the mitochondria are
encoded by genes in the nuclear genome (Mattson et al., 2008;
Calvo et al., 2016). OXPHOS involves respiration, an oxidative
exergonic pathway, which leads to the phosphorylation of ADP

into ATP. OXPHOS dysregulation has been previously reported
in BD (Konradi et al., 2004; Iwamoto et al., 2005; Sun et al.,
2006; Beech et al., 2010). Konradi et al. (2004) reported a
significant decrease in mRNA expression levels of mitochondrial
genes in the hippocampus of BD subjects, including genes
regulating OXPHOS and proteasomal degradation. Iwamoto
et al. (2005) found that 15.1% of 676 mitochondria-related genes
were differentially expressed in BD. However, they concluded
the reported global downregulation of mitochondrial genes
was possibly a consequence of pharmaceutical effects, as BD
medication-naive patients exhibited an up-regulation of a subset
of 27 mitochondrial-related genes, including COX15, UQCRC2,
ETFDH, and NDUFS1 involved in mitochondrial respiratory
chain (Iwamoto et al., 2005). Using a modified Gene Set
Enrichment Analysis (GSEA) computational screen to estimate
collaborative candidate pathways co-expressed with OXPHOS
dysregulation related to BD pathogenesis, Sawai et al. (2015)
suggested that aberrant mitochondrial OXPHOS may induce
dysregulation in the ubiquitin-proteasome pathway. Another
study reported susceptibility to bioenergetic alterations within
distinct brain regions in BD. They reported significant reductions
in mitochondrial function in the PFC of patients with BD
and increase in function in the hypothalamus and cerebellum,
suggesting that mitochondrial dysfunction in brain specific
regions may lead to increased oxidative stress, thus triggering
compensatory mechanisms to offset oxidative damage of mtDNA
(Bodenstein et al., 2019).

While several studies have reported associations of BD
with various mtDNA variants and mitochondrial haplogroups
(Kato et al., 2001; Munakata et al., 2004; Kazuno et al.,
2009; Rollins et al., 2009; Frye et al., 2017), no mtDNA
variants have reached GWAS thresholds of significance. In
addition, mitonuclear co-adaptation could result in spurious
associations of disease with mtDNA variants due to population
stratification (Hagen et al., 2018). Several researchers have
postulated that investigations focused on mitonuclear epistatic
interactions may reveal additional genes associated with BD
risk. Ryu et al. (2018) reported mitonuclear epistatic allelic
interactions with nominal evidence for BD risk and/or early-
onset BD based on European American GWAS data from the
GAIN BD study. They reported nominal evidence of epistatic
associations involving mitochondrial encoded ETC complex I
genes mt-CytB and mt-ND4 with BD risk and risk of early
onset BD. Mitonuclear epistatic allelic interactions associated
with BD risk were reported for mt-CytB and MGAM, mt-CytB
and AK5, and mt-ND4 and MGAM. For early onset BD risk
among BD patients, the top association signals were detected
in mt-CytB and CTNNA2, mt-CytB and IL34, and mt-ND4
and IL34 interactions (Ryu et al., 2018). Schulmann et al.
(2019) reported on the association between the risk of SZ and
mitonuclear allelic interactions in an Irish cohort. They reported
34 mitonuclear epistatic allelic interactions with significant joint
effects between 10 mitochondrial and 21 nuclear genes, where six
of the mitochondrial genes encoded ETC complex I components
(Schulmann et al., 2019).

Several cybrid studies have utilized mtDNA-naive ρ0 human
cells fused with platelets resulting in cell lines with identical
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nuclei and different mtDNA haplogroups in order to evaluate
mtDNA variant and haplotype effects on mitochondrial energy
production (Kenney et al., 2014a,b; Zhou et al., 2017). Zhou
et al. (2017) reported several mtDNA SNPs associated with
differential endogenous mitochondrial respiratory activity
and uncoupled mitochondrial respiration. Different East
Asian haplogroups exhibited differential effects on mtDNA
copy number (mtDNAcn), transcription efficiency, complex
III expression, and coupled and uncoupled mitochondrial
respiration (Zhou et al., 2017). Kenney et al. compared OXPHOS
related gene expression of mtDNA-encoded respiratory complex
genes between West Asian and European mitotype cybrids (J
and H haplotypes, respectively). West Asian mitotype cybrids
exhibited lower OXPHOS utilization compared to European
mitotype cybrids. They also compared cybrids with African,
European, and West Asian mitotypes haplogroups (L, H, and
J haplotypes, respectively). Haplogroups exhibited unique
bioenergetic profiles with differential effects on mtDNAcn,
OXPHOS gene expression, ATP turnover, and spare respiratory
capacity. African mitotype cybrids displayed more efficient
OXPHOS system, as evidenced by higher expression levels
of mtDNA-encoded respiratory complex genes, decreased
ATP turnover rates and lower reactive oxygen species (ROS)
production (Kenney et al., 2014b). Cybrids with European
mitotype had elevated ATP production and decreased lactate
levels compared to West Asian mitotypes cybrids (Kenney
et al., 2013). West Asian mitotypes cybrids exhibited altered
bioenergetic profiles compared with European mitotype cybrids,
including significantly decreased expression in mtDNA encoded
respiratory genes encoded by mtDNA. In addition, West
Asian and European mitotype cybrids had significantly altered
expression of eight nuclear genes involved in inflammatory
response and apoptosis (Kenney et al., 2013, 2014a). While these
studies proposed that effects are dependent on mitochondrial
haplotypes, the underlying ancestries of the ρ0 cells used
in these studies must also be taken into consideration. For
example, Zhou et al. (2017) utilized 143B ρ0 cells which are
derived from an individual with an admixed nuclear genetic
ancestral background consisting of South European (59%),
South Asian (37%), and South East Asian (4%) genomic
ancestries (Dutil et al., 2019) and compared the effects of
differing East Asian mtDNA genetic backgrounds. Differences
in OXPHOS and mitochondrial bioenergetics may reflect
disruptions in co-adaptation of population specific mitonuclear
interactions rather than effects of mitochondrial variants or
haplotypes alone.

While the use of human cybrids are commonly used to
study mitochondrial dysfunction in neurodegenerative disorders
such as Alzheimer’s (Onyango et al., 2006; Yu et al., 2016,
2017; Weidling et al., 2020), and Parkinson’s disease (Keeney
et al., 2009; Cronin-Furman et al., 2013; Reeve et al., 2015;
Pignataro et al., 2017), there is a paucity of cybrid research
in BD and other psychiatric disorders. Munakata et al. (2004)
reported that the m.3644T > C variant in the mt-ND1 gene was
associated with BD and 3644C cybrids exhibited mitochondrial
dysfunction including decreases in mitochondrial membrane
potential (MMP) and complex I activity compared to 3644T

cybrids. Verma et al. (2016) determined that cybrids developed
by fusing platelets from ADHD patients with SH-SY5Y ρ0-
cells resulted in altered mitochondrial bioenergetics including
significant decreases in mitochondrial respiration, ETC complex
V activity, MMP, and increases in oxidative stress. A recent
study reported potential therapeutic benefits of mitochondrial
transplantation in SZ. Robicsek et al. (2018) demonstrated that
the transfer of healthy mitochondria into SZ-iPSC differentiated
neurons and rat SZ-models increased mtDNAcn and improved
cellular respiration, MMP, mitochondrial distribution, and
neuronal differentiation.

Compelling evidence in animal models suggests that
population admixture with differing mtDNA can intensify
oxidative stress and DNA damage, affect fitness, and bioenergetic
activity due to mitonuclear discordance, and these effects can be
modulated by environmental factors including temperature, diet,
and exercise. In copepod (Tigriopus californicus) populations,
Barreto and Burton (2013) studied 28 hybrid strains derived
from 12 parental lines. Hybrids displayed a significant decrease
in fitness and enhanced oxidative stress compared to the parental
strains. In addition, admixed populations that showed evidence
of decreased fecundity exhibited enhanced oxidative stress
compared to those with no discernable change in fitness. Hybrid
strains with high levels of mitonuclear discordance exhibited
significant increases oxidative DNA damage, while hybrid
lines with low mitonuclear discordance showed no significant
difference from parental lines (Barreto and Burton, 2013).

Baris et al. (2016) reported persuasive evidence that
natural selection to variable thermal environments maintains
mitonuclear interactions regulating OXPHOS metabolism in
admixed populations of mummichog fish (Fundulus heteroclitus)
with northern or southern mitochondrial haplotypes. Effects
of acute temperature change were dependent on northern and
southern mitochondrial haplotypes. While fish with the southern
mt-haplotype had acute effects in OXPHOS metabolism at low
and high acclimation temperatures, little to no acute temperature
effect was reported with fish with the northern mt-haplotype.
Significant differential responses to acute temperature change
were dependent on mitochondrial haplotypes at high acclimation
temperatures for ADP stimulated respiration, mitochondrial
uncoupling, and complex I and II respiration (Baris et al., 2016).
Mummichog fish with a high level of mitonuclear discordance
with northern mt-haplotype exhibited enhanced OXPHOS
efficiency while those with a southern mt-haplotype showed
decreased OXPHOS efficiency (Baris et al., 2017).

Environmental factors have also been shown to modulate
mitonuclear responses in Drosophila. Hoekstra et al. (2013)
crossed D. simulans with D. melanogaster to create four
distinct mitonuclear genotype strains by combining two mtDNA
alleles with two nuclear alleles previously shown to exhibit
epistatic mitonuclear interactions (Montooth et al., 2010).
One of the mitonuclear genotype strains resulted in delayed
development, decreased fitness, height reduction, and inefficient
bioenergetics that were directly proportional to temperature
(Hoekstra et al., 2013). Montooth et al. (2019) also demonstrated
that mitonuclear incompatibility in Drosophila adversely affects
fertility in males developed at warmer temperatures and these
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deleterious effects could be partly reversed by diet. Dowling et al.
(2007) reported significant mitonuclear interactions contributed
to adult female fitness in a D. melanogaster population, in
which main effects could not be attributed to mitotype or
nuclear background alone. They also reported that minor
variations in environment including temperature, humidity,
and diet contributed to mitonuclear effects on relative fitness
(Dowling et al., 2007). Soh et al. (2007) studied the effects
of dietary intake on normal and extended longevity strains as
well as introgressed mitonuclear hybrid strains in Drosophila.
The extended longevity strains exhibited lower levels of ROS,
enhanced mitochondrial bioenergetic efficiency, heightened
antioxidant response, and reduced oxidative damage (Arking
et al., 2002). Nutrition levels resulted in differential longevity
dependent on mitonuclear combinations. Hybrids with the more
efficient “extended longevity” mitochondria exhibited enhanced
longevity in males but decreased longevity females under non-
starvation nutritional diets (Soh et al., 2007). A study utilizing
admixed D. simulans strains with differing mitotypes from
mitonuclear compatible control strains also concluded that
compensation for mitonuclear discordance may be temperature-
dependent (Pichaud et al., 2013).

Investigations involving introgressive hybridized seed beetles
(Callosobruchus maculatus), also investigated mitonuclear
and environmental effects on fitness. Three mitochondrial
haplotypes were backcrossed with nuclear genetic backgrounds
from Brazil, California, and Yemen. The three mitotypes
displayed significant differences in relative fitness. Strains with
concordant mitonuclear genomes exhibited increased relative
fitness compared to strains with differing mitonuclear genomes.
At colder temperatures, Brazilian and Yemen mitotypes
introgressed with California nuclear genomes showed opposite
effects in fitness, again suggesting that temperature contributes
to mitonuclear effects on relative fitness (Immonen et al., 2020).

Kumarasamy et al. (2013) constructed conplastic rat strains
using two common rat models for cardiovascular disease,
in which the mtDNA of the Dahl salt-sensitive (S) rat was
exchanged with the mtDNA of the spontaneously hypertensive
rat (SHR) and vice versa. The S.SHRmt and SHR.Smt conplastic
strains displayed significant increases in mtDNAcn, decreases in
mitochondrial ROS levels, and increases in aerobic fitness and
survival compared to the S rat. The S.SHRmt conplastic strain
also showed significant increases in mtDNAcn compared to the S
rat (Kumarasamy et al., 2013). In toto, these results indicate that
cellular bioenergetics, mtDNAcn, transcription efficiency, fitness,
and survival are greatly affected by mitonuclear interactions
modulated by environmental factors.

ALTERED MITOCHONDRIAL CALCIUM
REGULATION IN BIPOLAR DISORDER

Mitochondria play a critical role in intracellular Ca2+

homeostasis and Ca2+-mediated signaling processes (Mattson
et al., 2008). Mitochondrial dysregulation is more pronounced in
neurons, as the brain is the largest source of energy consumption
due to the high bioenergetic demands of neuronal functions,

and can lead to an imbalance in calcium homeostasis (Chan,
2006; Mattson et al., 2008). Mitochondria regulate rapid changes
in intracellular Ca2+ dynamics. Increases in intracellular
Ca2+ and uptake into the mitochondria matrix results in
altered mitochondrial membrane permeability, ETC efficiency,
and Ca2+-mediated signaling processes modulating gene
expression, leading to dysregulation of several neuronal systems
including neurotransmitter release, regulation of neuronal
action potentials, dendritic developmental and remodeling,
synaptic plasticity, regulation of gene expression, and apoptosis
(Greer and Greenberg, 2008; Feissner et al., 2009; Peng and
Jou, 2010; Trevelyan et al., 2010; Srivastava et al., 2018), and
can alter neuronal function through the production ROS
(Sena and Chandel, 2012).

Altered mitochondrial calcium regulation may contribute
to the pathophysiology of neuropsychiatric disorders including
BD (Kato et al., 2003; Kazuno et al., 2006; Kubota et al.,
2006; Kato, 2007, 2008). Mertens et al. (2015) reported
direct correlations between mitochondria defects, altered Ca2+

signaling, and hyperexcitability of neurons in BD. Hippocampal
neurons differentiated from iPSCs from BD lithium responders
and non-responders exhibited enhanced mitochondrial function
as evidence by higher MMP and upregulated mitochondrial
gene expression compared to control neurons. Ca2+ signaling
pathways were altered in BD neurons compared to controls.
Based on patch-clamp recording and somatic Ca2+ imaging
in BD neurons, increased mitochondrial activity resulted in
neuronal hyperexcitability, which was reduced by lithium in
neurons from BD lithium responders, but not in BD non-
responders (Mertens et al., 2015).

Kazuno et al. (2006) examined the phenotypic effect of
mtDNA using calcium indicator cybrids 143B.TK−ρ0206 that
stably expresses two ratiometric fluorescent proteins. Using these
cybrids, they identified two mtDNA variants which altered
mitochondrial pH and calcium concentration. In fluorescent
images of cybrids, mitochondria exhibited increased calcium
concentrations and pH in the mitochondrial matrix compared
to cytosolic levels, suggesting m.10398A in the mt-ND3 gene
of complex I and m.8701A in the ATPase6 gene of complex V
alter mitochondrial pH and intracellular calcium homeostasis.
Cytosolic calcium response to histamine stimulation also differed
between cybrid cells carrying the m.10398A and m.8701A
variants (Kazuno et al., 2006). The m.10398A mutation has
been reported to be associated with BD (McMahon et al., 2000;
Kato, 2001; Kato et al., 2001; Washizuka et al., 2003), as well as
valproate (Kazuno et al., 2008) and lithium response (Washizuka
et al., 2003), which suggests that these variants may contribute to
the etiology of BD.

MITOCHONDRIAL DNA COPY NUMBER
IN BIPOLAR DISORDER

Alterations in mtDNAcn signify changes in mitochondrial
bioenergetics, energy demands, and compensatory effects (Picard
et al., 2018). Several studies have found altered mtDNAcn in
BD patients compared to controls. Significantly lower mtDNAcn
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have been observed in BD leukocytes (Chang et al., 2014; Yamaki
et al., 2018; Wang et al., 2020), postmortem hippocampus (Fries
et al., 2019), and left frontopolar cortex (Tsujii et al., 2019). Chung
et al. (2020) reported lower mtDNAcn in BDI patients compared
to higher mtDNAcn in BDII patients compared to controls.
However, Yamaki et al. (2018) reported that both BDI and BDII
patients had significantly decreased mtDNAcn versus controls. In
contrast, de Sousa et al. failed to find significant differences in
mtDNAcn in BD subjects compared to controls or before and
after lithium treatment. They did, however, report a trend for
decreased mtDNAcn in BDI compared to controls and BDII (de
Sousa et al., 2014b). Wang et al. (2018) reported a significant
reduction in leukocyte relative mtDNAcn in BD patients with
manic and depressive symptoms compared to controls. There
were no significant changes in mtDNAcn between euthymic BD
patients and controls. In addition, they found that mtDNAcn was
negatively correlated with total number of manic episodes (Wang
et al., 2018). While higher levels of mtDNAcn in BD have also
been reported (Fries et al., 2017), a meta-analysis for previous
BD-mtDNAcn studies (Chang et al., 2014; de Sousa et al., 2014b;
Fries et al., 2017; Wang et al., 2018; Yamaki et al., 2018) did
not find any significant association with mtDNAcn, although
mtDNAcn was significantly decreased in BD patients in an Asian-
specific meta-analysis (Yamaki et al., 2018). A post-mortem study
of suicide completers reported higher mtDNAcn in peripheral
blood and decreased mtDNAcn in post-mortem PFC samples
from suicide victims versus controls (Otsuka et al., 2017).

Zaidi and Makova reported that mtDNAcn was negatively
correlated with mitonuclear discordance across mtDNA
haplogroups of different geographic origins, consistent with
mitonuclear incompatibility in admixed individuals. The
authors also reported enrichment of ancestry at nuclear-encoded
mitochondrial genes in African Americans and Puerto Ricans
toward the corresponding ancestry of mtDNA haplogroups,
suggesting a compensatory method of selection in restoring
mitonuclear compatibility (Zaidi and Makova, 2019).

Human cybrid lines also show variation in mtDNAcn. Cybrids
containing mtDNA variants m.249del, m.13708A, m.13928C,
and m.16304C resulted in a decrease in mtDNAcn, while
cybrids encompassing variants m.489C, m.8701G, m.10398G,
and m.10400T resulted in increased mtDNAcn. The majority
of these SNPs are diagnostic of a specific mtDNA haplogroup
in East Asia mtDNAcn (Zhou et al., 2017). Variants m.13708A
and m.13928C displayed decreased mtDNAcn compared to other
SNPs, and have been previously associated with increased risk
of disease (Yu et al., 2008; Korkiamaki et al., 2013), while
m.489C, m.10398G, and m.10400T exhibit increased mtDNAcn
and have been reported to have protective effects against disease
(Darvishi et al., 2007).

BD environmental stressors have also been associated with
alterations mtDNAcn. Lower mtDNAcn have been reported in
response to maternal psychosocial stress, pollution, poor dietary
(Ma et al., 2020) and inactive lifestyles, and tobacco use (Brunst
et al., 2017; Wong et al., 2017; Kaali et al., 2018; Revesz et al.,
2018; Breton et al., 2019; Wu et al., 2019; Duan et al., 2020; Hu
et al., 2020; Vyas et al., 2020). In contrast, prior evidence indicates
an increase in mtDNAcn in relation to history of early life stress

and childhood trauma (Cai et al., 2015; Tyrka et al., 2016; Ridout
et al., 2019, 2020). Discrepancies in the literature pertaining to
mtDNAcn alterations in both BD and environmental modulators,
specifically stressful life events, may be explained in part by
tissue-specific alterations. Baek et al. (2019) investigated the
effects of chronic immobilization stress in C57BL/6 male mice on
mtDNAcn in 12 tissues. While they reported that chronic stress
resulted in an increase in mtDNAcn in leukocytes, mtDNAcn
was significantly decreased in prefrontal cortex, suggesting that
mtDNAcn variability is tissue-specific (Baek et al., 2019).

DISCUSSION

While mtDNA variants can contribute to disease in humans
(Taylor and Turnbull, 2005; Tuppen et al., 2010) and mtDNA
haplogroups have been reported to associate with various
disorders including psychiatric (Magri et al., 2007; Kazuno
et al., 2009; Rollins et al., 2009), cardiovascular (Benn
et al., 2008; Veronese et al., 2019), and metabolic diseases
(Chinnery et al., 2007; Tavira et al., 2014; Mitchell et al.,
2017; Zhao et al., 2019), these studies fail to encompass the
complexity surrounding mitonuclear epistasis and environment
interactions (Mossman et al., 2016a). Mitonuclear genetic
variation embodies extraordinarily complex epistatic, pleiotropic
and GxE interactions that function in non-additive ways to
modify organismal fitness and survival. It has been argued
that models optimized to study mitonuclear and environmental
interactions are needed to better understand the underlying
genetic architecture of complex phenotypes and to evaluate the
nature of the polygenic models governed by mitonuclear cross-
talk (Friedman and Nunnari, 2014; Chou and Leu, 2015; Quiros
et al., 2016; Rand and Mossman, 2020).

This review postulates that disruptions in the co-evolution of
the mtDNA and nuclear genomes, in addition to environmental
factors, leads to mitochondrial impairment and increased risk of
BD. Identification of the evolutionary mechanisms and genetic
etiology underlying mitochondrial dysfunction is important in
order to better understand the pathophysiology of the disease,
to identify novel biomarkers of BD, to develop medications for
treatment of BD, and to improve diagnostic predictive testing in
diverse populations. Future BD research utilizing human cybrid
lines, conplastic animals, and admixed human populations offer
promising advancements in the field.

Experiments with human cybrids have shown that mtDNA
representing populations from different geographic origins
have differential OXPHOS efficiency and may play a role in
susceptibilities to diseases (Lin et al., 2012; Kenney et al.,
2014a,b). Incompatibilities between mtDNA and nuclear-
encoded mitochondrial genes results in inefficient electron
flow down the respiratory chain leading to increased release
of free radicals, and a reduction of catalytic sites and ATP
production (Lane, 2011; Meiklejohn et al., 2013). Mitochondrial
haplogroups accumulate population-specific mtDNA variants
which represent ancestral origins. Human cybrids studies using
identical nuclei and common BD haplogroups can be used to
investigate and potentially identify deleterious effects of mtDNA
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variants underlying bioenergetic deficiencies, altered OXPHOS
metabolism, and deficient Ca2+ homeostasis when they are
introduced into a new nuclear ancestral background lacking
population specific nDNA suppressors.

Conplastic animal models can also help elucidate how
mtDNA variation influences organismal pathophysiology and
mitochondrial functioning. Previous studies investigating
physiological and phenotypic variability influenced by
mitochondria have reported that different mtDNA haplotypes
can influence mitochondrial functioning, cellular processes,
and behaviors that have been previously implicated in BD.
These include the regulation of OXPHOS enzyme levels,
reduced cellular ATP levels, pathological morphology of
mitochondria, ROS generation, impaired glucose tolerance,
reduced glucose-induced insulin secretion, and increased
anxiety-related behavior, resulting in significant differences
in health and longevity between various conplastic strains
(Yu et al., 2009; Weiss et al., 2012; Houstek et al., 2014;
Latorre-Pellicer et al., 2016).

Admixed populations, such as Hispanic and African
Americans, also provide a unique opportunity to
examine the role of mitonuclear discordance in BD,
as they are genetically heterogeneous with varying
proportions of European, African, and Native American
ancestries (Bertoni et al., 2003). Therefore, mitonuclear
incompatibility in these populations represents a possible
disruption of 20,000–150,000 years of co-evolution between
mitonuclear genomes. The increased genetic diversity in
human admixed populations due to divergent underlying
ancestral populations of mtDNA and nDNA may lead to
increased collection and sharing of GWAS, transcriptome,

and mtDNA sequence data from under-represented
minority populations.

Research methods designed to capitalize on mitonuclear
interactions and detect incompatibilities as outlined in this review
can be applied to other psychiatric disorders, as mitochondrial
dysfunction is well documented in schizophrenia (Goncalves
et al., 2015; Hjelm et al., 2015; Monpays et al., 2016; Ben-
Shachar, 2017; Ni and Chung, 2020; Roberts, 2020), depression
(Bansal and Kuhad, 2016; Allen et al., 2018; Caruso et al.,
2019; Forester et al., 2019), autism (Rossignol and Frye, 2012;
Goh et al., 2014; Varga et al., 2018; Bennuri et al., 2019;
Citrigno et al., 2020; Frye, 2020; Gevezova et al., 2020), and
anxiety (Chakravarty et al., 2013; Khalifeh et al., 2016; Babenko
et al., 2018). The studies outlined in this review suggest that
mitochondrial dysfunction underlying BD and other psychiatric
disorders with genetic overlap may be the consequence of
mitonuclear incompatibility, and may be enhanced in admixed
populations with mitonuclear genomes originating from different
ancestral populations (Chou and Leu, 2015).
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