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ABSTRACT

Objective: To develop prediction models for intensive care unit (ICU) vs non-ICU level-of-care need within 24

hours of inpatient admission for emergency department (ED) patients using electronic health record data.

Materials and Methods: Using records of 41 654 ED visits to a tertiary academic center from 2015 to 2019, we

tested 4 algorithms—feed-forward neural networks, regularized regression, random forests, and gradient-

boosted trees—to predict ICU vs non-ICU level-of-care within 24 hours and at the 24th hour following admis-

sion. Simple-feature models included patient demographics, Emergency Severity Index (ESI), and vital sign

summary. Complex-feature models added all vital signs, lab results, and counts of diagnosis, imaging, proce-

dures, medications, and lab orders.

Results: The best-performing model, a gradient-boosted tree using a full feature set, achieved an AUROC of

0.88 (95%CI: 0.87–0.89) and AUPRC of 0.65 (95%CI: 0.63–0.68) for predicting ICU care need within 24 hours of ad-

mission. The logistic regression model using ESI achieved an AUROC of 0.67 (95%CI: 0.65–0.70) and AUPRC of

0.37 (95%CI: 0.35–0.40). Using a discrimination threshold, such as 0.6, the positive predictive value, negative

predictive value, sensitivity, and specificity were 85%, 89%, 30%, and 99%, respectively. Vital signs were the

most important predictors.

Discussion and Conclusions: Undertriaging admitted ED patients who subsequently require ICU care is common

and associated with poorer outcomes. Machine learning models using readily available electronic health record data

predict subsequent need for ICU admission with good discrimination, substantially better than the benchmarking ESI

system. The results could be used in a multitiered clinical decision-support system to improve ED triage.
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cine
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INTRODUCTION

For hospitalized patients, unplanned elevation in level of care is as-

sociated with adverse outcomes such as increased morbidity and

mortality.1,2 Overestimation of level of care is associated with sub-

optimal use of resources,3 which is significant during times of high

critical care stress, like the COVID-19 pandemic. Most systems pre-

dicting clinical deterioration, commonly used to aid decisions

around changes in the level of care, are designed for patients already

hospitalized. However, the initial level of care is determined in the

emergency department (ED) for most hospitalized patients, begin-

ning the subsequent anchoring to this determination.

Each year, roughly 2 million ED visits in the United States result

in intensive care unit (ICU) admissions.4 The number of ED visits

over the past 20 years has increased twice as fast as population

growth.5–8 In the ED setting, after a physician confirms a patient

needs inpatient care, they triage the patient and admit them to the

ICU or general wards. These triage decisions largely depend on hu-

man judgment in a high-stakes, evolving ED environment, where the

patient’s clinical course is most variable. Undertriaging occurs when

a patient is assigned to a level of care lower than which they require,

delaying eventual ICU admission and increasing mortality risk.9,10

ICU admission delay contributes up to 44.8% of mortality risk,

with each hour of delay associated with a 1.5% increase in the risk

of ICU mortality.11 A national survey indicates that 14% of

unplanned ICU transfers are from non-ICUs.12 Furthermore, most

of the 80% of preventable unplanned transfers seem to result from

inappropriate admission triage.13

Undertriaged patients also directly affect safe nurse-to-patient ra-

tios, potentially overloading admitting nurses and nursing units. In-

creasing ICU capacity in response may not fully solve this resource

allocation problem due to the unintentional creation of additional

ICU demand.14 Multiple factors affect accurate triaging of patients

to particular levels of care. Vital signs and diagnosis make up a ma-

jority of the clinical reasoning, though gestalt and recall biases play

a significant role, in addition to consultant opinion and available

resources. As a result, triage decisions often are highly variable,

based on limited communication and information.15–17

The most common triage tool in EDs across the US is the Emer-

gency Severity Index (ESI),16,18 which is routinely used to prioritize

time-sensitive care among ED patients. It is often considered a corre-

late for the likelihood of hospital admission and level of care. How-

ever, this index relies heavily on clinical judgment, lacks accuracy

and interrater reliability,10,16,17,19 and is not designed to determine

the care level for subsequent inpatient admissions. In addition, while

the majority of hospitals report having written triaging guidelines in

place for ICU transfer,20 several studies indicate that decision-

making remains rooted in qualitative clinical judgement and is not

based on these written guidelines.21,22 Naturally, this intuition-

based and subjective decision-making raises concerns for uninten-

tional biases.23 The difficulty of ED triaging, coupled with inherent

biases in decision-making, highlights the need and opportunity for

computer-aided clinical decision support to manage difficult triage

decisions that otherwise place undue pressure on decision-makers

with potentially dire consequences for both under- or overtriaging.

While guidelines recommend that the role of the skilled physician

and their multidisciplinary care team never be replaced with algo-

rithms,9 the lack of data-driven or quantitative decision-making

tools gives rise to solutions that can aid physicians at the point of

care. Rather than replacing the decision-making of the ED triage

team, research and implementation efforts are focused on augment-

ing triage capabilities such as training guidelines24 and machine

learning prediction of diagnosis, mortality, readmission, and length

of stay.25 While predicting hospital admission is also a common ap-

plication of machine learning in emergency medicine,26–33 predic-

tion of ICU care need for admitted adult ED patients is a burgeoning

area of research.17,19,34–37 The few studies that have been published

on this topic either use national survey data,19,34,35 include all mor-

tality to the composite critical outcome,17,19,34,36 or only subset

adult patients in a narrow range of illness severity.36

Electronic health record (EHR) data offer historical information

for clinical insights and allow decision-support algorithms to be

updated over time.38 Our study used EHR data for a large patient

population with a full range of illness severity and expanded feature

sets, focusing on admission level of care as the outcome. Using data

available prior to the point of triage, we applied machine learning to

develop a predictive model for clinical decision support of ED triage.

The model can be applied at the beginning of the patient’s hospital

visit when a diagnosis may be unclear, and clinicians must rely

heavily on patient presentation. The output of the model is the prob-

ability of ICU admission within 24 hours of the original inpatient

admission, which can be utilized as a priority score. This score could

serve as a data-driven tool to aid timely decision-making, facilitating

resource utilization and improving safety, care quality, and effi-

ciency.

OBJECTIVE

Our objective is to develop a prognostic model to predict the level of

care (ICU vs non-ICU) needed within 24 hours of inpatient admis-

sion for ED patients using EHR data. Specifically, we aim to predict

a patient’s highest level of care within 24 hours and level of care at

24 hours following inpatient admission, using only data available

prior to the time when the admission order was written.

MATERIALS AND METHODS

Data source and cohort
The data consist of deidentified EHR data for patient encounters

from a tertiary academic hospital and Level I Trauma Center be-

tween 2015 and 2019. All adult patients 18 years or older admitted

to the hospital as inpatients from the ED were included. The unit of

analysis was an inpatient admission. We excluded patients who

were not full code, such as do-not-resuscitate and do-not-intubate

status, because level of care assignments for these patients may not

correspond to their clinical presentation. Figure 1 visualizes the pa-

tient process through the ED and our predictive model pipeline.

Outcomes
The primary outcome was a patient’s highest level of care within 24

hours following inpatient admission. A positive label was assigned

for patients who were admitted to ICUs directly from the ED, and

those initially admitted to non-ICUs (acute care units and intermedi-

ate care units) but subsequently transferred to ICUs within 24 hours.

The secondary outcome was a patient’s level of care at the 24th

hour since inpatient admission, considering both directions of pa-

tient transfer in and out of the ICUs. Admission was defined as the

time when an initial inpatient admission order was written. We
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chose 24 hours as the cutoff time, consistent with previous stud-

ies.36,40

Features
We extracted these features prior to admission order time: (1) pa-

tient demographics, such as Emergency Severity Index (ESI), vital

signs, and laboratory test results, from the current visit; (2) count of

specific microbiology orders, counts of specific imaging, procedure,

medication, and lab orders within 1 prior year; and (3) count of all

patient-specific historical diagnoses prior to the current visits. The

ESI system was started by the US Agency for Healthcare Research

and Quality and was subsequently acquired by the Emergency

Nurses Association in 2019. Primarily used by triage ED nurses, the

ESI is a triage score that ranges from 1 (most urgent) to 5 (least ur-

gent) on the basis of patient acuity and resource needs.18 Data in-

cluded age, sex, race, language spoken, medical insurance provider

(public or private), height, and weight. Vital signs included tempera-

ture, pulse, systolic and diastolic blood pressure, respiratory rate,

and oxygen saturation. Clinical lab results included glucose, sodium,

potassium, magnesium, albumin, creatinine, blood urea nitrogen,

CO2, anion gap, aspartate aminotransferase, alanine transaminase,

total bilirubin, platelet count, hemoglobin, white blood cell count,

and absolute neutrophil count. Tables 1 and 2 include a summary

of selected features. Other features are provided in Supplemental

Table S1.

Statistical methods
We split data by time to account for feature drift,41 resulting in the

training dataset including all patient admissions from 2015 to 2017,

whereas the validation dataset included all 2018 admissions, and the

test dataset included all 2019 admissions. While prior research has

opted to include only the first admission per patient to preserve

model generalizability,30,42 we relaxed this constraint by assuming

that, during deployment, our model would likely encounter patients

whose prior admissions were used for model training. However, to

estimate generalizability to new patients, we also evaluated model

performance on patients not seen during training. Models were

trained under 2 regimes corresponding to different feature sets. In

Regime I, we constructed a model that used relevant structured fea-

tures available in EHR data. This served as an upper bound on

model performance, assuming that most structured data can be eas-

ily queried to feed the model pipeline when deployed. In practice,

the amount of data that could be pulled to conduct real time analysis

often is limited. Therefore, in Regime II, we trained a simpler model

that used only patient demographics and vital signs from the current

admission. All features were recorded prior to admission order time.

Feature representation in regime I

We used the following feature types: (1) demographics and ESI; (2)

lab results from the current ED visit; (3) vital signs from the current

ED visit; (4) counts of historical diagnosis codes from prior admis-

sions; (5) counts of imaging, procedure, medication, lab, and micro-

biology orders within the prior year. To accommodate sparsity and

the wide intra- and inter-feature variances, continuous features (lab

results and vital signs) were also turned into counts. This was done

Figure 1. Schematic of patient flow through the ED and our predictive model pipeline. Created with BioRender.com.

Table 1. Summary of selected categorical variables

Variables Count Proportion

Gender

Female 19 961 47.9%

Male 21 693 52.1%

Race

Asian 6284 15.1%

Black 2933 7.0%

Native American 182 0.4%

Pacific Islander 861 2.1%

White 21 402 51.4%

Other 9627 23.1%

Unknown 365 0.9%

Insurance

Public* 21 263 51.0%

Private 20 391 49.0%

Language

English 35 045 84.1%

Non-English 6609 15.9%

Note: * includes publicly insured and uninsured patients.
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by quantizing feature distributions into decile bins, then assigning

values to bins, and finally counting the frequencies of bin member-

ship. This method naturally handles missingness by yielding count

vectors of zeros over all bins if a particular numerical feature is not

available.43 The full-feature set included all 99 667 features.

Feature representation in regime II

The following features were used: (1) demographics and ESI; (2) first

and last available measurements of vital signs from the current ED

visit; (3) summary statistics (count, min, max, mean, median, stan-

dard deviation, median absolute deviation, interquartile range, dif-

ference between first and last values) of all available vital signs.

Supplemental Figure S1 shows our data processing pipeline for

both feature regimes.

There were only small percentages of missing values for ESI

(4.0%), height (3.9%), and weight (0.85%). We applied the method

of multivariate imputation by chained equations (MICE) to impute

these missing data. This method is flexible and often used to account

for the uncertainty in the imputations by imputing the missing val-

ues many times with predicted values to create different “complete”

datasets.44 Indicators for missingness were also added as features.

We applied 4 machine learning algorithms to predict ICU care

needs: (1) elastic net regularized logistic regression, (2) random for-

ests, (3) gradient-boosted trees, and (4) 4-layer perceptron feed-

forward neural networks. These most used algorithms have been

shown to perform well on large EHR data and are well under-

stood.45 For each algorithm type, a grid search was used during

model training to tune algorithm-specific hyperparameters (Supple-

mental Table S2). The best tuned hyperparameters for each algo-

rithm were selected using prediction results from the validation data

set. The 4 final models were then evaluated and compared on the

holdout test set to select the single best-performing model.

We used 2 primary metrics for model performance evaluation:

Area Under the Receiver Operating Characteristic (AUROC) curve

and Area Under the Precision-Recall Curve (AUPRC). The ROC

curve summarizes the trade-off between true positive rate (sensitiv-

ity) and true negative rate (specificity) for a predictive model using

different discrimination thresholds. However, AUROC can be mis-

leading, especially with highly imbalanced data where the positive

class is rare.46 Hence, AUPRC can aid in interpreting model perfor-

mance characteristics, as it is less sensitive to the true negative rate.

The precision-recall curve distinguishes the trade-off between the

true positive rate (recall or sensitivity) and the positive predictive

value (precision). We calculated 95% confidence intervals (CIs) for

the AUROC and AUPRC estimates based on 2000 bootstrap repli-

cates.

Because we split the data based on time, the same patients could

appear multiple times in the data if they had multiple admissions.

We evaluated the model performance on all patient admissions and

also on patients present only in the test set. Finally, given the large

number of detailed features, we performed ablation studies to assess

the relative feature importance by removing 1 feature type from the

feature set at a time. Under Regime I, the following feature types

were removed 1 at a time: (1) demographics, including height,

weight, and ESI; (2) vital signs; (3) medications; (4) imaging; (5) di-

agnosis; (6) procedure; (7) lab orders; and (8) lab results. Under Re-

gime II, we only removed the summary statistics of all vital signs for

the ablation study.

Finally, because ESI is the triage score assigned when a patient is

first assessed in the ED by triage nurses, we hypothesized that it can

be informative in predicting the outcomes. ESI scores are used to

guide treatment priority in the ED,47 not for inpatient admissions.

We carried out a univariate logistic regression with ESI as the sole

predictor as a benchmark method and ultimately included it in the

main model as well.

The study was conducted and is reported in accordance with the

TRIPOD statement.39 Our study was approved by the institutional

review board of the Stanford University School of Medicine.

RESULTS

Our cohort consisted of 41 654 distinct patient admissions, of which

70% were from unique patients. In the holdout test set of 10 096

admissions, 75% of patients were not in the training and validation

sets. On average, it took 4.9 hours (standard deviation of 6.6 hours)

from the time patients were assigned to the ED service until they

were admitted as inpatients to the hospital. We identified 5568 pa-

tient admissions, representing 13.4% of the cohort, who were ad-

mitted to the ICUs at some point within 24 hours following

inpatient admissions. Twenty-three non-ICU patients died and 845

initially admitted to non-ICUs were subsequently transferred to

ICUs within 24 hours. When we considered both directions of pa-

tient transfer in and out of the ICUs, there were 3892 patient visits,

about 9.3% of the cohort, in the ICUs at the 24th hour after admis-

sion. Supplemental Figures S2 and S3 show the care level trajectories

and cumulative number of ICU transfers over time.

Model performance
The AUROC and AUPRC from the 4 competing algorithm types, us-

ing both the full-feature (Regime I) and simple-feature (Regime II)

on the test set, are displayed in Tables 3 and 4 for comparison. All

algorithm types appeared to perform comparably well. Gradient-

boosted trees consistently performed better or just as well as other

algorithm types. Hence, the following reported results are from the

best gradient-boosted tree model using different feature sets and

with 2 different outcome labels.

Table 5 summarizes the results on the holdout test set for all pa-

tient visits in 2019, including ablation studies using the best tuned

gradient-boosted tree models under both feature regimes and for

both outcomes. For the primary outcome, the full-feature model

achieved an AUROC of 0.88 (95% CI: 0.87–0.89) and an AUPRC

Table 2. Summary of selected numerical variables

Variables Mean Standard Deviation

Age 58.2 18.5

Weight (kg) 77.2 23.1

Height (cm) 168.2 11.1

ESI 2.66 0.51

Medication counta 127.3 245.9

Imaging counta 23.8 32.6

Diagnosis countb 74.1 79.1

Procedure counta 5.7 10.9

Lab order counta 168.1 315.4

Microbiology order counta 7.4 2.9

Notes: aorders within 1 year prior to admission time, including both cur-

rent and past visits.
bhistorical diagnosis from all prior visits, excluding current visits.

Actual values of lab results and vital signs: values for the current visits prior

to admission time.
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of 0.65 (95% CI: 0.63–0.68). The full-feature model outperformed

the simple-feature model, which achieved an AUROC of 0.82 (95%

CI: 0.80–0.83) and an AUPRC of 0.52 (95% CI: 0.50–0.56). Using

a threshold such as 0.6, our best model had an 85% positive predic-

tive value (precision), 89% negative predictive value, 30% true posi-

tive rate (recall or sensitivity), and 99% specificity (true negative

rate). For the secondary outcome, the full-feature model achieved an

AUROC of 0.86 (95% CI: 0.85–0.87) and an AUPRC of 0.50 (95%

CI: 0.47–0.54). It outperformed the simple-feature model, which

achieved an AUROC of 0.81 (95% CI: 0.79–0.82) and an AUPRC

of 0.41 (95% CI: 0.39–0.45).

Additionally, when using only new patients on the test set that

were not seen during model building, both models achieved almost

identical AUROC and AUPRC values regardless of the outcomes or

feature sets used (Supplemental Table S3). Under Regime II, using

patient summary data on vital signs improved model performance

significantly compared to using only the first and last available vital

sign measurements. Similarly, under Regime I, vital signs were the

Table 3. Area under the receiving characteristic curve (AUROC) with 95% confidence intervals, to compare and select the best model

Models Primary outcome (highest care level within 24 hours) Secondary outcome (care level at the 24th hour)

Full feature Simple feature Full feature Simple feature

Gradient Boosting* 0.88 (0.87–0.89) 0.82 (0.80–0.83) 0.86 (0.85–0.87) 0.81 (0.79–0.82)

Random Forest 0.86 (0.85–0.87) 0.78 (0.77–0.80) 0.84 (0.82–0.85) 0.78 (0.76–0.79)

Logistic Regression (elastic net) 0.84 (0.82–0.85) 0.79 (0.77–0. 80) 0.82 (0.80–0.83) 0.78 (0.77–0.80)

Feed-Forward Neural Networks 0.85 (0.83–0.86) 0.77 (0.76–0.79) 0.82 (0.81–0.84) 0.78 (0.76–0.79)

Notes: The baseline of AUROC is fixed at 0.5, which is equal to random guessing.

*Best models with highest AUROC .

Table 4. Area under the precision-recall curve (AUPRC) with 95% confidence intervals, to compare and select the best model

Models Primary outcome Secondary outcome

(highest care level within 24 hours) (care level at the 24th hour)

Baseline AUPRC ¼ 0.13 Baseline AUPRC ¼ 0.09

Full feature Simple feature Full feature Simple feature

Gradient Boosting* 0.65 (0.63–0.68) 0.52 (0.50–0.56) 0.50 (0.47–0.54) 0.41 (0.39–0.45)

Random Forest 0.59 (0.57–0.62) 0.49 (0.47–0.52) 0.46 (0.42–0.49) 0.39 (0.36–0.42)

Logistic Regression (elastic net) 0.52 (0.49–0.55) 0.46 (0.44–0.49) 0.39 (0.37–0.43) 0.36 (0.34–0.40)

Feed-Forward Neural Networks 0.56 (0.53–0.59) 0.45 (0.43–0.49) 0.42 (0.39–0.45) 0.38 (0.36–0.42)

Notes: The baseline of AUPRC is equal to the fractions of positive cases for each outcome.

*Best models with highest AUPRC.

Table 5. Evaluation results from the best model with ablation studies for both outcomes

GBM models Primary outcome Secondary outcome

(highest care level within 24 hours) (care level at the 24th hour)

AUROC (95% CI) AUPRC (95% CI) AUROC (95% CI) AUPRC (95% CI)

Regime I Full-featurea 0.88 (0.87–0.89) 0.65 (0.63–0.68) 0.86 (0.85–0.87) 0.50 (0.47–0.53)

(-) Demographics & ESI 0.88 (0.87–0.89) 0.64 (0.62–0.67) 0.86 (0.84–0.87) 0.49 (0.47–0.53)

(-) Vital signsb 0.85 (0.84–0.86) 0.60 (0.58–0.63) 0.83 (0.82–0.84) 0.45 (0.43–0.49)

(-) Meds 0.88 (0.87–0.89) 0.63 (0.61–0.66) 0.85 (0.84–0.86) 0.48 (0.45–0.52)

(-) Imaging 0.88 (0.87–0.89) 0.64 (0.62–0.67) 0.85 (0.84–0.86) 0.49 (0.46–0.53)

(-) Diagnosis Codes 0.88 (0.87–0.89) 0.65 (0.63–0.67) 0.86 (0.85–0.87) 0.49 (0.47–0.53)

(-) Procedures 0.88 (0.87–0.89) 0.65 (0.63–0.68) 0.86 (0.84–0.87) 0.50 (0.47–0.54)

(-) Lab orders 0.87 (0.86–0.88) 0.63 (0.61–0.66) 0.87 (0.86–0.88) 0.48 (0.46–0.52)

(-) Lab results 0.88 (0.87–0.89) 0.64 (0.63–0.67) 0.88 (0.87–0.89) 0.48 (0.46–0.52)

Regime II Simple-featurea 0.82 (0.80–0.83) 0.52 (0.50–0.56) 0.81 (0.79–0.82) 0.41 (0.38–0.45)

(-) Vitals summaryb 0.75 (0.73–0.76) 0.41 (0.39–0.44) 0.74 (0.73–0.76) 0.32 (0.29–0.35)

ESI-only logistic regression 0.67 (0.65 - 0.70) 0.37 (0.35–0.40) 0.67 (0.65–0.70) 0.28 (0.26–0.31)

(intercept: 1.022; coefficient: �1.143) (intercept: 0.774; coefficient: �1.209)

Notes: aindicates models without removing any feature types.
bModels with vital signs as the feature type removed had the most reduction in AUROC and AUPRC. Vital signs are the most important predictors.
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only stand-alone feature type that significantly impacted the model

predictive performance. Although the predictive power of medica-

tions, imaging orders, and labs individually is insignificant, together

they appeared to noticeably improve model performance compared

to other feature types.

Figure 2 shows the ROC and PR curves from evaluation results on

the test set, using the best tuned gradient-boosted tree in both feature

regimes and for both outcomes. Figure 3 shows the calibration plots on

test data, showing how consistent the predicted probabilities are with ob-

served ICU admission percentage. Finally, our data also showed that ICU

vs non-ICU admissions followed similar distributions of ESI. The logistic

regression model with ESI as the only predictor suggested a negative asso-

ciation between the ESI and the predicted probability of ICU admission

(Figure 4). With AUROC of 0.67 (95% CI: 0.65–0.70) for both out-

comes and AUPRC of 0.37 (95% CI: 0.35–0.40) and 0.28 (95% CI:

0.26–0.31) for the primary and secondary outcomes, respectively, ESI is

far less predictive of ICU triage than any of our data-driven models.

Analysis of prediction errors:
We inspected the most erroneous predicted values (less than 0.2)

from the best models under both Regimes I and II for patients in the

test set, using the primary outcome. Among patients whose first in-

Figure 2. Evaluation results from the best model and ablation studies.
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patient admitting physicians were not critical care services, the most

erroneous predicted values were for patients from neurosurgery, pul-

monary hypertension, and trauma services. Patients from these serv-

ices accounted for 10% to 18% of the errors, compared to the next

most erroneous service, general surgery, of 5%. Furthermore, we

reviewed patients’ level of care trajectories within the first 24 hours

following inpatient admission. Among patients with positive labels,

those whose levels of care were escalated, instead of downgraded,

were 1.5 times more likely to be incorrectly predicted. These trajec-

tories include: acute to critical, acute to intermediate to critical, and

intermediate to critical. Among the negative labels, 36% of the erro-

neous predictions were from patients who were admitted to interme-

diate ICUs.

DISCUSSION

Appropriate designation of level of care from the ED is of critical im-

portance. Our model appeared to accurately discriminate patients re-

quiring ICU care from those who did not, which could help identify

higher risk patients and improve decision-making. The gradient-

Figure 3. Calibration plots for class probabilities predicted by the best models for both outcomes.

Figure 4. ESI level by highest level of care within 24 hours since admission and the average predicted probabilities for each ESI level.
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boosted tree model, using the full-feature set, performed best out of all

algorithm-feature pairs. When comparing the 2 outcomes, prediction

results were better for the primary outcome than the secondary out-

come (AUROC of 0.86 vs 0.81 and AUPRC of 0.65 vs 0.52). Compar-

ing results between Regime I vs Regime II, as well as within the

ablation studies, vital signs were the most important predictors overall.

Analysis of cases of prediction error indicated greater uncer-

tainty amongst patients initially admitted to certain specialty serv-

ices. Some specialty services have admission protocols which

supersede clinical decision-making based on specific disease severity

measures, which may have affected this result. For example, patients

with otherwise stable gastrointestinal bleeding may be admitted to

the ICU within 24 hours from admission mostly to perform endos-

copy. Notably, although a lower ESI was associated with worse out-

comes, its ability to predict the assigned level of care was much

more limited, highlighting the need for a separate clinical index or

decision support tool to aid physicians in triaging inpatient admis-

sions after initial assessment, evaluation, and stabilization.

To implement our predictive models, a potential approach

would be to categorize the predicted probabilities into 3 zones as

proposed by O’Brien: “red,” “yellow,” and “green.”48 This ap-

proach corresponds to 2 probability thresholds: setting 1 at 0.6

achieves 85% precision overall. Patients with values above this

threshold are considered to be in the “red” zone and have the high-

est risk of ICU admission. In addition, setting a threshold at 0.2

would yield a sensitivity of 75% and a precision of 47%. Patients

with predicted scores between 0.2 to 0.6 could be considered in the

“yellow” zone, capturing potential ICU admissions that may require

further evaluation. The “green” zone consists of patients with pre-

dicted probabilities under 0.2, representing those who are most

likely safe to be admitted to the general wards. These thresholds can

be customized along the precision-recall curve with respect to a set-

ting’s risk tolerance and resource constraints. Such a multitiered

alert system can support admitting physician decision processes,

while reducing alarm fatigue. Since vital signs were the most signifi-

cant contributor, the simple-feature model can potentially be ex-

tended to inform providers about patient acuity throughout the

hospital course. However, as with many similar scoring tools, such a

system could inadvertently lead to anchoring bias or increased test-

ing or spending on care to attempt to address high-risk patients.

Care must be given to make sure that the tool is used appropriately.

A key limitation to the generalizability of this study is due to

changes in standards of care and guidelines for admission. Protocols

and thresholds for level of care assignments vary depending on hos-

pital capacity, unit level nursing structure, patient acuity, and case

mix. For example, patients requiring ICU care at higher-level hospi-

tals might be more ill than those at smaller, lower-level hospitals.

Larger hospitals also have more mid-level and specialized units

where guidelines and admission criteria could exhibit more variation

in these settings. Additionally, our cohort demographics, such as

race, might not be representative of the general population. For opti-

mal performance, models should be retrained for different popula-

tions to reflect potentially different distributions and optimized

hyperparameters that may not translate readily across sites and

time. Determining the appropriate thresholds for a multitiered alert

system requires assessment of the complete risk distribution since in-

dividual patient risks are relative to their specific patient population.

Our results illustrate the potential of this process, while our open-

source code base allows for the reproduction and tailoring of models

to specific applied areas.

Finally, another limitation lies in the observational nature of

our study. The EHR data used involves practical data issues includ-

ing missingness, entry errors, and inconsistent coding practices.

In addition, due to the deidentified nature of the data, we could

not access information regarding instantaneous ICU bed availability

to better characterize the undertriaging problem. Bed availability,

considered a resource constraint, can be informative in this analysis,

as ED patients may be undertriaged as a matter of necessity if ICU

beds are not available. Future studies incorporating bed availability

could be fruitful, as it is a strong instrumental variable that can

be used to estimate the causal effect of an ICU admission for ED

patients.

CONCLUSION

Improper triaging is influenced by many factors, such as time- and

information-limited ED environment, heterogeneous decision-

making among physicians, and a lack of quantitative clinical

decision-support tools. Ultimately, these triage decisions for inpa-

tient admissions influence patient outcomes and the dynamics of

hospital resources. Our proposed prediction models demonstrated

good discrimination for ICU vs non-ICU level of care within 24

hours and at the 24th hour after initial admission and substantially

better than the ESI system. Outputs of such models could be used as

priority scores to aid triage decision-making and improving the effi-

ciency and quality of emergency hospital care.
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