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Abstract: Cognitive workload, being a quantitative measure of mental effort, draws significant
interest of researchers, as it allows to monitor the state of mental fatigue. Estimation of cognitive
workload becomes especially important for job positions requiring outstanding engagement and
responsibility, e.g., air-traffic dispatchers, pilots, car or train drivers. Cognitive workload estimation
finds its applications also in the field of education material preparation. It allows to monitor the
difficulty degree for specific tasks enabling to adjust the level of education materials to typical abilities
of students. In this study, we present the results of research conducted with the goal of examining
the influence of various fuzzy or non-fuzzy aggregation functions upon the quality of cognitive
workload estimation. Various classic machine learning models were successfully applied to the
problem. The results of extensive in-depth experiments with over 2000 aggregation operators shows
the applicability of the approach based on the aggregation functions. Moreover, the approach based
on aggregation process allows for further improvement of classification results. A wide range of
aggregation functions is considered and the results suggest that the combination of classical machine
learning models and aggregation methods allows to achieve high quality of cognitive workload level
recognition preserving low computational cost.

Keywords: aggregation; generalized Choquet integral; fuzzy measure; classical machine learning;
cognitive workload

1. Introduction

Cognitive workload is understood as a mental effort necessary to perform a task [1]. It
is a non-trivial process useful in explaining mental fatigue and its influence on the brain’s
cognitive system performance. Automatic categorizing and classification of cognitive work-
load levels is a subject of numerous research studies published recently. The classification of
cognitive workload can be conducted in two ways: subject-dependent approach [2–4] and
subject-independent approach [5,6]. Subject-independent approach, being more general,
attracts greater attention of the researchers nowadays [7]. The literature review [8] also
shows the examples of combined subject-dependent and subject-independent approaches.
The most frequent case that can be found in the literature is binary classification problem:
distinguishing between low and high levels of cognitive workload [9,10]. Besides the binary
approach, papers dealing with three-way classification can be found. In that case, low,
medium, and high levels of cognitive workload are considered [6,7,11]. Experiments in-
volving multiclass classification are less common in the cognitive workload research [12,13].
The literature shows the reports of the results obtained with various classifiers, but the most
popular among them are Support Vector Machine (SVM) [6,14,15], Linear Discriminant
Analysis (LDA) [16], k-Nearest Neighbors (kNN) [11], and Random Forest [6]. In addition
to classical recognition models, deep neural network-based approaches such as convolu-
tional deep neural networks [9,17,18] are applied in the cognitive classification process. The
reported results of accuracy are in the range of 50–80%. Classification of cognitive workload
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can be conducted on the basis of electroencephalographic (EEG) data [11], galvanic skin
response (GSR) [19], or eye-tracking [20]. In [21,22], the authors use the fuzzy methods to
effectively monitor the state of cognitive workload of an Unmanned Aerial Vehicle (UAV)
operator. In [23], the authors successfully apply fuzzy cognitive mapping to analyze the
pilots’ decision during the flight.

It is worth recalling a few recent results. Fatimah and colleagues [24] published an
article on the automatic detection of mental difficulty in arithmetic tasks on the basis of
an EEG signal. The authors used a publicly available dataset from MIT PhysioNet, which
contains recordings from 36 people. The arithmetic tasks performed by the respondents
consisted of subtracting numbers. Based on the number of correct calculations per minute,
the performed tasks were divided into two groups: easy and difficult. If the number of
incorrect answers was not more than 20%, the tasks were considered easy, otherwise they
were considered difficult. For 12 people, the tasks turned out to be easy, and for 24, the tasks
were difficult. A two-class classification independent of the examined person was carried
out: the main goal was to distinguish between low and high levels of cognitive load. The
following classifiers were used: SVM, Decision Tree, and Quadratic Discriminant. Accuracy
of the classification was calculated for each electrode separately and for each electrode
divided into bands. The best results were achieved for the Quadratic Discriminant classifier,
both with and without division into bands for a given electrode [24]. The best accuracy
achieved with selected electrode and specific frequency band was as high as 97.2%. In [25],
the authors conducted research aimed at detecting various mental states of the pilot such as
distraction, workload, fatigue, and normal state. Various biosignals were used in the study:
EEG, EKG, EDA, and EEA. Based on the signals collected from eight pilots, a four-class
classification was carried out relating to distraction, workload, fatigue, and normal state.
The authors presented the results of classification independent of the tested person for
various classifiers, among others, for KNN, SVM, sLDA, LSTM, and their own proposed
network for the EEG data separately, for the rest of the signals and for the combination of
the EEG with the rest of the signals. The best results for the majority of classifiers were
obtained for the data considering all signals. For the method proposed by the authors,
based on the LSTM, the mean classification score was 85.2% (accuracy). In [26], the authors
presented a model based on GALoRIS, thanks to which it is possible to identify high and
low cognitive loads. The algorithm selects the features that correspond to low and high
loads. The model was tested by the authors on the basis of the cognitive load data associated
with driving. EEG data for the experiment were collected while driving the vehicle in
the simulator. In addition, the authors used the NASA scale TLX and Instantaneous
Self-Assessment (ISA), which enabled the subjective assessment of the individual and
the vehicle performance measures (error level). The authors conducted a classification
independent of the examined person and tested several classifiers in their research, the best
result was achieved for the SVM classifier and was over 96%. Agnola and colleagues [27]
dealt with a very interesting topic—the cognitive load in the context of using drones in
search-and-rescue (SAR) missions. The authors used a simulator with which three levels
of SAR-related cognitive bias were evoked. They used biological signals such as: ECG,
skin temperature, respiration. The authors proposed a method of eliminating the extracted
features using the following algorithms: eXtreme Gradient Boosting (XGBoost) and Shapley
Additive exPlanations (SHAP). Experiment was carried out on 24 people who were asked
to perform four activities: baseline, mapping activity, flying activity, flying and mapping
activity simultaneously. As in the case of article [26], the authors used the NASA-TLX scale.
The article presents the results of classification independent of the tested person, both
two-class and three-class using such classifiers as kNN, Logistic regression, LDA, XGBoost,
Random Forest. Two-class classification was used for distinguishing between low and
high cognitive load. The authors obtained 80.2% accuracy for the two-class classification
and 62.9% for the three-class classification using the XGBoost classifier with 24 features.
In the paper [28], the authors presented a model that classifies the cognitive load based
on the Long Short-Term Memory (LSTM) network and the Filter Bank Common Spatial
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Pattern (FBCSP) based on EEG data. The authors conducted the two-class classification:
arithmetical tasks and rest state; they achieved an accuracy of 87% with this model. In their
research, the authors used a publicly available dataset, which contains data from 30 people
performing arithmetic tasks.

The poor or unsatisfactory quality of some classifiers in various fields of application
can be compensated by the use of appropriate operators aggregating the classification
results returned by these classifiers separately or on the basis of an information fusion at the
stage of the data preprocessing. The former way of finding the final ranking of classification
results is intuitively appealing and typical for many fields of application such as sport
competitions, risk analysis, decision-making, etc. These aggregation functions or operators
are described in detail in many monographs [29–34] and papers [35–37]. In particular,
typical classes of aggregation operators are means, triangular norms [38,39], ordinary
weighted averaging operators [35,40], Choquet integral, and its generalizations [41–47]
called pre-aggregation functions, etc. Comprehensive experimental studies, in particular,
on an applications of aggregation operators and generalizations of Choquet integral to the
face recognition problems were presented in [44,46,48], respectively.

The main goal of this study is to improve the results of eye activity and user performance-
based cognitive workload level classification with the use of aggregation methods. For
this purpose, we test and compare over 1000 classic aggregation operators and over 1000
pre-aggregation operators (so called generalized Choquet integrals) to determine the best
one. The set of aggregation operators utilized in a series of thorough numerical experiments
is built on the basis of above-mentioned monographs [29–34] and selected papers. We list
the best aggregation functions and discuss the accuracies obtained for the typical classifiers
such as Decision Tree, k-Nearest Neighbors, etc. The dataset used in the classification study
contains eye-tracking and user performance data taken from 29 participants in the study of
solving the computerized version of Digit Symbol Substitution Test (DSST).

The rest of the paper is structured as follows. Section 2 presents the description of
the experiment procedure with detailed explanation of eyetracking-related aspects and
data processing methods applied. Section 3 presents the utilized aggregation functions.
Section 4 contains the presentation of the results obtained with individual classifiers as well
as the recognition rates achieved with application of the presented aggregation functions.
Section 5 concludes the paper and presents the future work directions.

2. Eyetracking
2.1. Research Procedure

The dataset containing eye activity and user performance data was gathered using
the computerized version of the DSST test [49] developed for the purpose of this study.
The idea of DSST test is to match displayed symbols to particular digits according to
a key presented continuously on the screen (Figure 1). In the study, participants were
asked to assign subsequent symbols to digits within the specified time. Symbols were
generated randomly and with repetition. Participants were instructed to perform as many
correct matches as possible within defined time. The time of single trial and the number of
different symbols to be displayed were defined in the application settings. For the purpose
of the study, three DSST parts were prepared; each of them corresponded to one cognitive
workload level in the further analysis. Part 1 corresponding to the low level of cognitive
workload, contained four different symbols, and the time was set to 90 s. Part 2 related
to the medium level of cognitive workload, covered nine different symbols, and the time
was also set to 90 s. Part 3 defined for the hard level of cognitive workload, covered nine
different symbols, and the time was extended to 180 s. In all parts, participants were asked
to perform as many matchings of subsequent symbols to digits as possible (in defined
time). They were also instructed to perform matches as fast as possible. The settings were
defined empirically based on the preliminary pilotage study. Each participant of the case
study was asked to perform all three DSST parts. The experiment was preceded by short
trial to familiarize participants with the application.
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The experiment was performed in a laboratory room illuminated with standard
fluorescent light. The eye activity data were gathered using Tobii Pro TX300 screen-based
eye tracker (Tobii AB, Stockholm, Sweden), which was built into a monitor (23′ ′ TFT
monitor, 60 Hz) connected to the computer. Data were registered with the frequency of
300 Hz. Tobii Studio 3.2 software was used to design the experiment and export data. Each
session was preceded by the 9-point calibration procedure.

Eye activities gathered in the experiment were related to such measures as fixations,
saccades, blinks, and pupil size. Fixations are understood as the period of uptaking visual
information, during which a participant holds eyes stable in a particular position. Saccades
are understood as the rapid eye movement occurring between fixations. The dataset cov-
ered 20 selected features related to fixations (total number of fixations, mean duration of
fixation, standard deviation of fixation duration, maximum fixation duration, minimum
fixation duration), saccades (total number of saccades, mean duration of saccades, mean
amplitude of saccades, standard deviation of saccade amplitude, maximum saccade ampli-
tude, minimum saccade amplitude), blinks (total number of blinks, mean of blink duration),
and pupillary response (mean of left pupil diameter, mean of right pupil diameter, standard
deviation of left pupil diameter, standard deviation of right pupil diameter). Moreover,
data related to DSST test results, i.e., number of errors, mean response time, and response
number, were also included.

The experiment was conducted on a homogeneous group of 30 participants: 24 males,
six females aged 20 to 24 (mean = 20.61 years, std. dev. = 1.54) recruited among healthy
students of the BSc degree in computer science. The participants reported to have nor-
mal/corrected to normal vision and they were not under strong medicines. As the ac-
ceptable level of registered data activity was set to 90%, data from one participant were
discarded from the further analysis due to their poor quality.

2.2. Data Processing

The data processing procedure was composed of six steps: data acquisition, data
synchronization, feature extraction, feature normalization, feature selection, training, and
testing classification models. The raw data were generated in the form of six files per single
participant (two files (eyetracking data and DSST results) for each of three DSST parts).
Owing to that fact, a synchronization procedure was needed. Finally, 87 observations were
included in the output dataset (three observations representing three cognitive workload
levels per single participant). In the feature extraction procedure, twenty independent
features were obtained. Feature normalization was also performed to guarantee a uniform
feature scale.

The ANOVA analysis was performed for 17 features. The K-S test and Levene test
were previously performed to check assumptions of normality of distribution and equality
of variance. In this process, three of 20 features (mean duration of saccades, minimum
saccade amplitude, and mean of blink duration) were discarded from further analysis.
The ANOVA analysis revealed 10 significant features (p-value 0.05), which were applied
in classification process. The Tukey’s HSD post-hoc test was applied in order to identify
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the pairs of DSST parts which differed significantly. Table 1 presents significant results
(p-value < 0.05) of the ANOVA analysis.

Table 1. The results of one-way ANOVA analysis.

ANOVA Post-Hoc Test

Features p-Value p-Value
Class 1–Class 2

p-Value
Class 1–Class 3

p-Value
Class 2–Class 3

response number <0.001 <0.001 <0.001 <0.001
mean response time <0.001 <0.001 <0.001 0.69

total number
of fixations <0.001 0.36 <0.001 <0.001

standard deviation of
fixation duration 0.002 0.003 0.008 0.95

maximum fixation
duration 0.009 0.011 0.04 0.87

total number
of saccades <0.001 0.56 <0.001 <0.001

maximum saccade
amplitude 0.002 0.41 0.001 0.046

mean saccade
amplitude <0.001 <0.001 0.09 <0.001

total number of blinks 0.015 0.99 0.003 0.003
standard deviation of
pupil diameter (left) 0.005 0.016 0.012 0.99

The classification procedure was focused on assigning observations into one of the
three classes: low, medium, and high level of cognitive workload. Various classification
methods such as SVM, kNN, Decision Tree, Random Forest, Multilayer Perceptron (MLP),
and Logistic Regression were applied. As the classification was performed using a subject-
independent approach, the division into train and test datasets was done in such a way
that a single participant could be used only in one dataset. The test dataset covered data
from six participants, which corresponded to approximately 20% of the input dataset.

In order to investigate the influence of particular features of classification process,
feature importance ranking was generated. Table 2 presents the features ranked with
respect to their importance for classifying procedure. The results were obtained based on
Logistic Regression model.

Table 2. Separate class feature rankings together with weights obtained by interpreting the weights of the Logistic
Regression model.

No. Low Medium High

1 mean saccade amplitude (1.0) mean response time (1.0) response number (1.0)
2 mean response time (0.95) response number (0.65) total number of fixations (0.95)

3 standard deviation of fixation
duration (0.6) mean saccade amplitude (0.63) total number of saccades (0.95)

4 total number of fixations (0.53) standard deviation of fixation
duration (0.62) mean saccade amplitude (0.22)

5 total number of saccades (0.52) total number of fixations (0.6) maximum saccade amplitude (0.19)
6 response number (0.27) total number of saccades (0.55) mean response time (0.18)

7 standard deviation of pupil diameter
(left) (0.17) maximum fixation duration (0.28) maximum fixation duration (0.15)

8 maximum fixation duration (0.16) maximum saccade amplitude (0.15) total number of blinks (0.1)

9 maximum saccade amplitude (0.5) total number of blinks (0.09) standard deviation of pupil diameter
(left) (0.09)

10 total number of blinks (0.1) standard deviation of pupil diameter
(left) (0.05)

standard deviation of fixation
duration (0.08)
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3. Aggregation of Classifiers

Let us recall the most important properties of aggregation operators. Aggregation
function p: [0, 1]n → [0, 1] is, in general, defined as an operator fulfilling the following
conditions:

p(0, 0, . . . , 0) = 0, p(1, 1, . . . , 1) = 1 (1)

and
∀x, y ∈ [0, 1]nx ≤ y⇒ P(x) ≤ p(y) (2)

It means that it preserves bounds and monotonicity [31]. Examples are various means
or Ordinary Weighted Averaging (OWA) operators [40]. One of the most important and
intensively developed aggregation operators is the Choquet integral. To define this integral,
we have to recall the properties of fuzzy measure. If X is a set then Q(X) = 2X is its subsets
family. Then a function g fulfilling the conditions

g(∅) = 0 (3)

g(X) = 1 (4)

g(A) ≤ g(β), A ⊂ B, A, B ∈ Q(X) (5)

lim
n→∞

g(An) = g
(

lim
n→∞

An

)
(6)

where {An}; n = 1, 2, . . . , denotes an increasing sequence is called fuzzy measure. Note
that the Sugeno λ-fuzzy measure is a typical example of fuzzy measure class of functions.
Recall that it satisfies

g(A ∪ B) = g(A) + g(B) + λg(A)g(B) (7)

for λ > −1. Here, A and B are not overlapped. Moreover,

g(Ai+1) = g(Ai) + gi+1 + λg(Ai) (8)

where Ai = {x1, . . . , xn}, Ai+1 = {x1, . . . , xn+1}. To simplify one writes

gi = g({xi}) i = 1, · · · , n (9)

Let h(x) be a function and let h(xi), i = 1, . . . , n; be ordered in a non-increasing manner.
Moreover, let h(xn+1) = 0. Then the Choquet integral is

CH =
n

∑
i=1

(h(xi)− h(xi+1)g(Ai)) (10)

An interesting generalization for this function is [46,48]

CMMin(x) =
n

∑
i=1

M(min(h(xi), g(Ai))−min(h(xi+1), g(Ai))) (11)

or

CMinM(x) =
n

∑
i=1

(min(M(h(xi), g(Ai)), g(Ai))−min(M(h(xi+1), g(Ai)), g(Ai))) (12)

Here, M can be any t-norm, see [43,44].
A general model of aggregation processing is presented in Figure 2. The data are

classified separately by various classifiers. Next, on a basis of weights, which can be
obtained from experts or on a basis of accuracy of individual classifiers, the results are
aggregated using a proper aggregation operator.
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4. Experimental Results
4.1. Individual Clssifiers

Several classic machine learning models were tested in the first stage of numerical
experiments. The following classifiers were applied: SVMs with various kernels, namely
linear, quadratic, and cubic one, Logistic Regression, k-Nearest Neighbors, Decision Tree,
Random Forest, Multilayer Perceptron (MLP). Due to the fact that the test sample was
balanced, accuracy can be an appropriate classification quality metric. Table 3 shows the
mean values of accuracy obtained for various classifiers achieved for both datasets: the
dataset containing all 20 features and the dataset containing 10 selected features. It can
be noticed from the results, the best classification model allowed to achieve the accuracy
reaching the level of 96%. The results show that the classifier accuracy for dataset with
selected features are slightly better than the results obtained for all features.

Table 3. Accuracies obtained with separate classifiers.

Model Accuracy (%) for 10 Selected Features Accuracy (%) for All Features

SVM(Linear) 94.75 93.11
SVM(Quadratic) 84.47 78.28

SVM(Cubic) 92.36 89.47
Logistic Regression 96.22 94.67

kNN 93.78 89.61
Decision Tree 90.39 90.11

Random Forest 96.22 94.89
MLP 93.53 89.56

Another important aspect worth noting here is the procedure of fuzzy measure density
values generation. Several methods of fuzzy measure generation can be used: expert
assumption, optimization, and, finally the heuristic one. In our research, we use the
heuristic based on cross validation. In order to produce a density measure for a classifier,
we run n-fold cross validation on the training set. As the result we obtain n values of
accuracy. The mean of cross validation accuracy is considered as the fuzzy measure gi of
the i-th classifier. The fuzzy measures can be interpreted as the degree of trust (or simply
weights or level of importance) to a separate classifier’s predictions. Figure 3 illustrates
the approach.
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4.2. Aggregation of Classifiers

Here, we present the best functions serving as aggregation operators for the classifiers
listed in the previous subsection, i.e., Cubic SVM, Decision Tree, k-Nearest Neighbor,
Linear SVM, Logistic Regression, Multilayer Perceptron, Quadratic SVM, and Random
Forest. In the cases where it is needed to feed the aggregation algorithm with weights,
they were found on a basis of specific classifiers’ accuracy by performing cross validation
on training data. For instance, to determine fuzzy measure densities gi, see Equation (9).
The values being the inputs to the aggregation functions are the probabilities of belonging
to the three considered classes. Depending on the number of arguments of the specific
aggregation function, these values are either provided to a single function or transitive.
The latter case is considered when the function has only two arguments. In the validation
stage, we considered 200 repetitions, each including tests on 18 validation observations
for which we have obtained the probabilities of belonging to the three classes. Let us
now discuss the best aggregation operators from over 2000 aggregation operators and
so-called pre-aggregation functions (generalized Choquet integrals), see papers [43,45]. The
source of the functions were various examples or our own modifications of the functions
comprehensively described in [29,31,34,38,50,51] and other books and papers. In the rest of
the section, we present the results obtained with particular aggregation operators: both for
complete feature set and for selected 10 features. The results are provided in the following
format: “selected features result” (“complete feature set result”). The summary of the
results is presented on Figure 4.
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The best result was obtained with a so-called generalized form of Choquet integral [34],
i.e.,

L(x, y) =
{

ax + (1−Q)y f or x ≥ y
(1− b)x + by otherwise

(13)

where x ≥ 0, y ≥ 0, a, b ε [0, 1]. It gave the accuracy 96.44% (96.11%) for various parameters
of a and b, for instance a = 0.01, b = 0.99. Other selected values of these parameters resulted
in correct recognition rates on a slightly lower level. Here, it is worth stressing that the name
of the function (12) can be misleading since it is not typical Choquet integral discussed in
the previous section, see Equation (10).

The next function producing satisfying results 95.86% (95.3%) is a so-called weighted
aggregation function of the form [34]

A(x1, . . . , xn) =
∏n

i=1(1 + wixi)−∏n
i=1(1− wixi)

∏n
i=1(1 + wixi) + ∏n

i=1(1− wixi)
(14)

where the values of wi’s are the individual classifiers’ accuracies.
The next function, which produces highly satisfying results, is Stolarsky mean [34], [52]

Ms(x, y) =


(

xr−yr

r(x−y)

) 1
r−1 i f x 6= y

x i f x = y
(15)

where r 6= 0. In this case, the resulting recognition rate is 95.66% (95.94%). For r = 2. The
next interesting function is an associative function proposed in [29], namely

C(x, y) =
1
2

W(x, y) + M(x, y) (16)

where
W(x, y) = max(x + y− 1, 0)

and
M(x, y) =

x + y
2

with 95.66% (95.86%) accuracy. A so-called SP-based bivariate symmetric sum [31]

f (x, y) =
x + y− xy

1 + x + y− 2xy
(17)

produced the recognition rate of the level of 95.58% (95.72%). The function of the form

f (x, y) = 2log (1+x) log (1+y)/(log 2)2
(18)

gave 95.55% (95.5%) recognition rate. The accuracy 95.44% (95.5%) was obtained with an
application of a function of the form

f (x, y) =
x + y

2
(19)

but if x ∈ [0.5, 0.7) the value of x is substituted by 0.5. The same is done with y ∈ [0.5, 0.7).
Good results are also obtained with a so-called 1-Lipschitzian aggregation function (Bertino
copula) [34] (p. 271)

f (x, y) =

{
(Min(x, y))2, if x ≤ y

(Max(x, y))2 − |x− y|, otherwise
(20)
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returns 95.25% (95.15%) accuracy. Finally, Sugeno integral [34,50] and max-based bivariate
symmetric sum [31], i.e.,

f (x, y) =
max(x, y)
1 + |x− y| (21)

yielded 95.22% (95.44%) recognition rate.
Very good results can also be obtained with the generalization of the Choquet integral

of the form (11) and (12). The function M standing under the integral sign was

M(x, y) =
(

ln
(

ex−α
+ ln

(
ey−α − e

)))− 1
α (22)

for α > 0. Its value α = 3.3 gave the maximal recognition rate at the level of 95.81%
(95.44%).

Here, it is worth stressing that also the results at satisfying level were obtained using
various fuzzy integrals, most of the pre-aggregation functions or generalized aggregation
functions discussed in [38], median or weighted median, scoring or weighted scoring,
quadratic mean, and a few versions of ordinary weighted averaging functions (OWA).
Interestingly, aggregation operators can improve recognition rate in more noticeable way
for the data without extended feature selection.

Figure 4 presents the ranking of the best operators among the tested aggregation
functions. The results show that their application affects the quality of classification in
a favorable way. The best result, achieved with a generalized form of Choquet integral
function, is more than 1.2 percentage point higher for complete feature set and 0.2 percent-
age point higher for selected features compared to the best individual classifier (Logistic
Regression and Random Forest).

5. Discussion

The aim of the study was to improve the result of multiple cognitive workload level
classification based on eye activity and user performance. The original classification proce-
dure covering three class classification using classical methods such as SVM, kNN, Decision
Tree, Random Forest, MLP, and Logistic Regression was the input to the aggregation func-
tions. In the study, many aggregation and pre-aggregation operators published in the core
literature monographs were compared in order to find the best model suitable for classifica-
tion of cognitive workload level. The results show that using various classification models
in combination with an aggregation function allows further improvement of recognition
rate by applying the knowledge cumulated in the parameters of the trained models.

The original dataset covering eye-tracking and user performance data was gathered in
a study of three parts of the computerized version of DSST test (Digit Symbol Substitution
Test). Classification was performed with the interpretable machine learning model in
order to regard the most valuable features. Eye-tracking features, in general, have been
already proved to be useful in cognitive workload analysis also due to the fact that it is
a non-invasive sourced, natural type of response obtained without additional activity or
training. What is more, the classification was performed as subject-independent in order to
distinguish classes regardless of such conditions as the age of an examined person, his/her
habits, or testing period. The best original classification results achieved 96%. It is worth
noting that the tests were performed on a homogeneous group of healthy people with
similar age and educational level.

The study presented in the paper proved that applying aggregation methods enables
to increase the classification result by more than 1 percentage point. Detailed results show
that there were several aggregation functions that enabled achieving the highest results
(presented in the paper are the top ten functions as Equations (13)–(22)).

Classification results, both individual and with aggregation, prove that the time and
difficulty level of performed tasks have a systematic influence on user performance, pupil-
lary and eye movements. The results show that there is a relation between the participants’
engagement combined with cognitive state and eye activity. The most important features
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in the study are these related to the user performance and the intensity of eye move-
ment. It indicates that fixation and saccade-related features (mean saccade amplitude,
standard deviation of fixation duration, total number of fixations and saccades) as well
as response-related features (mean response time, response number) reflect the degree of
attention during the tasks performance. However, further results are needed to investigate
additional factors such as types of tasks, participant profiles or their initial mental state.
What is more, it is worth to consider the mental abilities of each single participant. Such
information might help to adjust the cognitive workload to a particular participant. This
might be measured with dedicated models or surveys (e.g., NASA-TLX scale, the Rasch
and strain–stress model), although such tools are based on subjective assessment.

A broad set of pre-aggregation and aggregation operators was analyzed in the study
in order to find the ones that fit the best to the analyzed problem. The detailed results show
that the classification accuracy was improved.

In the case study, two approaches were applied. The first one was based on classifica-
tion considering original 20 features whereas the second one covered 10 features chosen in
statistical analysis. The individual classification results for both approaches differ slightly,
although the results for smaller number of features occurred to be better. Results for both
approaches were further processed in order to apply pre-aggregation and aggregation
operators. The best results for both approaches were achieved for the generalized Cho-
quet integral. This operator enabled to improve the classification results by as much as
1.2 percentage point for all features-based approach compared to the best classification
model. The same operator proved to be efficient also in case of a smaller feature number
approach, although the improvement was not as high. It was Random Forest that occurred
to be the best among the classical classifiers for both approaches. Additionally, Logistic
Regression gave similar results for the second approach. These results confirm usefulness
of the generalized Choquet integral found in research over classification performance. The
results prove that the application of pre-aggregation and aggregation operators is useful
especially in case of applying the basic feature selection. Aggregation functions might give
better improvement in case of weaker initial individual classification results.

Future work is planned to include the experiments on a broader dataset, collected from
a higher number of participants. The authors also consider analysis of a higher number of
cognitive workload levels. As further development of the topic, it is planned to include
self-report tools of detecting mental illness such as depression or anxiety symptoms in our
future work.
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