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Background and Objective: Non-small cell lung cancer (NSCLC) accounts for
80–85% of all patients with lung cancer and 5-year relative overall survival (OS) rate is
less than 20%, so that identifying novel diagnostic and prognostic biomarkers is urgently
demanded. The present study attempted to identify potential key genes associated with
the pathogenesis and prognosis of NSCLC.

Methods: Four GEO datasets (GSE18842, GSE19804, GSE43458, and GSE62113)
were obtained from the Gene Expression Omnibus (GEO) database. The differentially
expressed genes (DEGs) between NSCLC samples and normal ones were analyzed
using limma package, and RobustRankAggreg (RRA) package was used to conduct
gene integration. Moreover, Search Tool for the Retrieval of Interacting Genes database
(STRING), Cytoscape, and Molecular Complex Detection (MCODE) were utilized
to establish protein–protein interaction (PPI) network of these DEGs. Furthermore,
functional enrichment and pathway enrichment analyses for DEGs were performed by
Funrich and OmicShare. While the expressions and prognostic values of top genes were
carried out through Gene Expression Profiling Interactive Analysis (GEPIA) and Kaplan
Meier-plotter (KM) online dataset.

Results: A total of 249 DEGs (113 upregulated and 136 downregulated) were identified
after gene integration. Moreover, the PPI network was established with 166 nodes and
1784 protein pairs. Topoisomerase II alpha (TOP2A), a top gene and hub node with
higher node degrees in module 1, was significantly enriched in mitotic cell cycle pathway.
In addition, Interleukin-6 (IL-6) was enriched in amb2 integrin signaling pathway. The
mitotic cell cycle was the most significant pathway in module 1 with the highest P-value.
Besides, five hub genes with high degree of connectivity were selected, including
TOP2A, CCNB1, CCNA2, UBE2C, and KIF20A, and they were all correlated with worse
OS in NSCLC.
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Conclusion: The results showed that TOP2A, CCNB1, CCNA2, UBE2C, KIF20A, and
IL-6 may be potential key genes, while the mitotic cell cycle pathway may be a potential
pathway contribute to progression in NSCLC. Further, it could be used as a new
biomarker for diagnosis and to direct the synthesis medicine of NSCLC.

Keywords: non-small cell lung cancer, bioinformatics, differentially expressed genes, survival, biomarker, GEO

INTRODUCTION

Lung cancer is the crucial cause of cancer-related mortality in
China and worldwide. In 2016, the number of patients newly
diagnosed with lung cancer will be 224 000, and over 158 000
will die from it in the United States alone (Torre et al., 2016;
Sperduto et al., 2017). Non-small cell lung cancer (NSCLC)
accounts for 80–85% of all patients with lung cancer, which is
also the most malignant carcinoma among men and women,
with an incidence higher than the combined incidence of breast,
cervical, and colorectal cancers (Spiro and Porter, 2002; Maher
et al., 2012). Although prominent progress in early diagnosis and
treatment methods, 5-year relative overall survival (OS) rate is
less than 20% (Boolell et al., 2015; Lin et al., 2018). For inoperable
cancer patients and surgical patients chemotherapy remains
the most important complementary treatment, and platinum is
mild in the treatment of advanced NSCLC (Song et al., 2014).
However, the adverse drug reactions are getting worse and drug
resistance has also been emerging. Therefore, the novel strategies
are urgently needed to supplement traditional chemotherapy
(Lu et al., 2018). Over the past decades, our understanding of
the molecular characterization of cancer has increased though
genomic medicine. The treatment strategy for advanced NSCLC
has changed from the traditional chemotherapy based on
histopathology to individualized precision treatment based on
carcinogenic factors (Jin et al., 2018). Zhu et al indicated that
MTA1 might be a momentous biomarker in the diagnosis of
NSCLC. (Zhu et al., 2017) Some studies revealed that high
expression of IGF-1R and loss of PTEN were associated with poor
prognosis in NSCLC. (Zhao J. et al., 2017; Zhao Y. et al., 2017)
Although biomarkers and therapeutic targets found in NSCLC
have made a great contribution to improving the diagnosis and
treatment of NSCLC, due to the biological complexity and poor
prognosis of NSCLC, more genetic information remains urgently
needed to provide reference for precision medical treatment
(Riess et al., 2018; Xu et al., 2018).

In order to explore common biomarkers associated with
cancer and direct drugs for cancer treatment, diagnosis and
prognosis, more and more microarray and high throughput
sequencing technologies on cancer have been released in recent
years (Kulasingam and Diamandis, 2008; Matamala et al.,
2015; Lusito et al., 2018; Zhang et al., 2018). Meanwhile,
in order to overcome the limited or inconsistent results
caused by the application of different technological platforms
or a small sample size, integrated bioinformatics methods
have been applied in cancer research and a vast range of
valuable biological information has been uncovered (Chang
et al., 2015; Lee et al., 2015; Sun M. et al., 2017; Li et al.,
2018).

The microarray data of GSE18842 (Sanchez-Palencia et al.,
2011), GSE19804 (Lu et al., 2010), GSE43458 (Kabbout et al.,
2013), and GSE62113 (Li et al., 2014) were applied to identify
the differentially expressed genes (DEGs) between NSCLC tissues
and normal ones utilizing a bioinformatics approach. In addition,
a protein–protein interaction (PPI) network of 166 hub genes
and two modules was established. Meanwhile, five significant
genes were found to be associated with OS in NSCLC via Kaplan
Meier-plotter online database. Besides, enrichment analyses were
performed for DEGs. The present study aimed to identify key
genes associated with the pathogenesis and prognosis of NSCLC
from new insights. The workflow of this study was shown in
Figure 1.

MATERIALS AND METHODS

Gene Expression Profile Data
The gene expression profile data (GSE18842, GSE19804,
GSE43458, and GSE62113) were obtained from Gene Expression
Omnibus (GEO1) (Schminke et al., 2015). All included datasets
met the following criteria: (1) they employed tissue samples
gathered from human NSCLC and corresponding adjacent or
normal tissues. (2) they included at least 10 samples. (3)
all the studies on these datasets were published in English
language.

Integrated Analysis of Microarray
Datasets
Limma package (Ritchie et al., 2015) in R/Bioconductor
software was applied to perform the normalization and
log2 conversion for the matrix data of each GEO dataset,
and the DEGs in every microarray were also screened
by the limma package. Gene integration for the DEGs
identified from the four datasets was conducted employing
RobustRankAggreg (Kolde et al., 2012). | log2FC| ≥ 1 and adjust
P-value < 0.05 were considered statistically significant for the
DEGs.

Functional Enrichment Analysis
FunRich is a stand-alone software tool used mainly for functional
enrichment and interaction network analysis of genes and
proteins (Pathan et al., 2017). The functional enrichment
analysis for the upregulated and downregulated DEGs, which
included molecular function (MF), biological process (BP),
cellular component (CC), and biological pathway (BPA), was
performed via FunRich in the present study. The results of the

1http://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1 | Workflow for identification of core genes and pathways for non-small cell lung cancer.

functional enrichment analysis were visualized via OmicShare
platform2 (OmicShare, 2018).

PPI Network and Module Analysis
The Search Tool for the Retrieval of Interacting Genes database
(STRING)3 provides information regarding the predicted and
experimental interactions of proteins (Szklarczyk et al., 2015).

2http://www.omicshare.com/ (accessed July 19, 2018)
3https://string-db.org/

In the present study, the DEGs were mapped into PPIs and a
combined score of ≥0.4 was used as the cut-off value. Moreover,
the use of Cytoscape software (version 3.6.0) was to construct
PPI networks (Shannon et al., 2003). The network module
was one of the characteristics of the protein network and may
contain specific biological significance. The Cytoscape plug-in
Molecular Complex Detection (MCODE) was applied to detect
notable modules in this PPI network (Bader and Hogue, 2003).
Degree cutoff = 2, Node Score Cutoff = 0.2, and K-Core = 2 were
set as the advanced options. Next, the enrichment analysis of the
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TABLE 1 | The gene expression profile data characteristics.

Reference PMID Record Tissue Platform Normal Tumor

Lu et al., 2010 20802022 GSE19804 NSCLC GPL570- [HG-U133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array

60 60

Sanchez-Palencia et al., 2011 20878980 GSE18842 NSCLC GPL570-[HG-U133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array

45 46

Kabbout et al., 2013 23659968 GSE43458 NSCLC GPL6244- [HuGene-1_0-st] Affymetrix Human
Gene 1.0 ST Array [transcript (gene) version]

30 80

Li et al., 2014 25429762 GSE62113 NSCLC GPL14951- Illumina HumanHT-12 WG-DASL V4.0
R2 expression beadchip

19 11

FIGURE 2 | Volcano plot of gene expression profile data in NSCLC samples and normal ones and heat map of differentially expressed gene (DEGs). (A) Volcano plot
of GSE19804, (B) volcano plot of GSE18842, (C) volcano plot of GSE43458, (D) volcano plot of GSE62113, and (E) heat map of differentially expressed genes.
Green represents a lower expression level, red represents higher expression levels and white represents that there is no different expression amongst the genes.
Each column represents one dataset and each row represents one gene. The number in each rectangle represents the normalized gene expression level. The
gradual color ranged from green to red represents the changing process from down-regulation to up-regulation.

DEGs in different modules was also conducted by the Funrich
software.

Survival Analysis of Hub Genes
Kaplan Meier-plotter (KM plotter4) could assess the effect of
54675 genes on survival using 10,461 cancer samples (Lánczky
et al., 2016; Szász et al., 2016). The aim is to estimate the time of
death, an event that will eventually occur in each person, which
may have important effects when using these estimates to inform
clinical decisions, health care policies and resource allocation

4http://kmplot.com/analysis/

(Lacny et al., 2018). The relapse free and OS information were
based on GEO (Affymetrix microarrays only), EGA and TCGA
database. The hazard ratio (HR) with 95% confidence intervals
and log rank P-value were calculated and showed on the plot
(Sun C. et al., 2017).

Expression Level Analysis and
Correlation Analysis of the Hub Genes
The Gene Expression Profiling Interactive Analysis (GEPIA)5 is
a newly web-based tool for gene expression analysis between

5http://gepia.cancer-pku.cn/index.html
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FIGURE 3 | (A) Molecular function for upregulated genes, (B) biological process for upregulated genes. X axis represents molecular functions or biological
processes; Y axis represents percentage of genes or –log10(P-value).

the tumor and normal data from the Cancer Genome Atlas
(TCGA) and the Genotype-Tissue Expression (GTEx), applying
a standard processing pipeline (Tang et al., 2017). It provides
customizable functions such as tumor and normal differential
expression analysis, and we could demonstrate the expression of
hub genes in NSCLC tissues and normal ones. Then the boxplot
was performed to visualize the relationship (Sun C. et al., 2017).
Correlation analysis performs pairwise gene correlation analysis
for any given sets of TCGA and/or GTEx expression data and
check the relative ratios between two genes (Tang et al., 2017).

RESULTS

Gene Expression Profile Data
There were 197 NSCLC samples and 154 normal samples in
this study (Table 1 and Supplementary Table S1). In all, 249

genes (113 upregulated and 136 downregulated genes) were
identified as DEGs in the NSCLC samples compared with the
normal ones (Figures 2A–D and Supplementary Table S2).
According to the cut-off criteria, we screened the top 20
differentially expressed upregulated and downregulated genes
(Figure 2E).

Enrichment Analyses
Enrichment analyses for the upregulated and downregulated
DEGs after gene integration were performed via Funrich. The
functional enrichment terms of upregulated DEGs were mainly
associated with the metallopeptidase activity, cell communication
and cell growth and/or maintenance (Figures 3A,B and
Supplementary Table S3). The downregulated DEGs were
mainly enriched in the cell adhesion molecule activity, receptor
activity and transport (Figures 4A,B and Supplementary
Table S3).
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FIGURE 4 | (A) Molecular function for downregulated genes, (B) biological process for downregulated genes. X axis represents molecular functions or biological
processes; Y axis represents percentage of genes or –log10(P-value).

Three pathways that were particularly enriched by upregulated
DEGs were mitotic cell cycle, DNA replication and mitotic
M-M/G1 phases. Furthermore, a critical gene TOP2A was
significantly enriched in mitotic cell cycle pathway, validated
transcriptional targets of deltaNp63 isoforms pathway, p63
transcription factor network pathway, mitotic G1-G1/S phases
pathway and G0 and early G1 pathway in biological pathway
(BPA) enrichment analysis for upregulated genes. (Figure 5A and
Supplementary Table S3).

Downregulated DEGs were notably enriched in two pathways,
including Hemostasis, cell surface interactions at the vascular
wall and amb2 integrin signaling. However, a vital gene
Interleukin-6 (IL-6) was significantly enriched in amb2 integrin
signaling pathway, integrin family cell surface interactions
pathway, glypican pathway and glucocorticoid receptor
regulatory network pathway in BPA enrichment analysis
for downregulated genes (Figure 5B and Supplementary
Table S3).
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FIGURE 5 | (A) Biological pathway for upregulated genes, (B) biological pathway for downregulated genes.

PPI Network Analysis and Module
Analysis
Based on the SRTING database, we made the PPI network
of a total of 166 nodes and 1784 protein pairs were obtained
with a combined score >0.4. As shown in Figure 6A and
Supplementary Table S4, the majority of the nodes in the
network were upregulated DEGs in NSCLC samples. In total,
two modules (modules 1 and 2) with score >5 were detected
by MCODE. As shown in Figures 6B,C, TOP2A, CCNB1,
CCNA2, UBE2C, and KIF20A were hub nodes with higher node
degrees in module 1, and IL-6, MMP1, SPP1, FOS, PLAU, EDN1,
MMP13, and SFTPD were hub nodes in module 2. Besides, 5 hub

genes with high degree of connectivity were selected (Table 2).
Furthermore, module 1 and module 2 enrichment pathways were
shown in Figure 7 and Supplementary Table S5, the mitotic cell
cycle pathway was identified as the most significant pathway in
module 1.

The Kaplan Meier-Plotter and Expression
Level of Hub Genes Correlation and
Correlated Analysis
The prognostic information of the 5 hub genes was freely
available in Kaplan Meier-plotter. It was found that high
expression of TOP2A [HR 1.65 (1.45–1.87), P = 1.3e–14], CCNB1
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FIGURE 6 | PPI network of differentially expressed genes in NSCLC samples compared with the control ones and two significant modules identified from the PPI
network using the molecular complex detection method with a score of >5.0. Red nodes, upregulated genes; Yellow nodes, downregulated genes; (A) PPI network
of differentially expressed genes in NSCLC samples compared with the control ones; (B) Module 1, MCODE score = 52.34; (C) Module 2, MCODE score = 5.63.
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TABLE 2 | Hub genes with high degree of connectivity.

Gene Degree type MCODE Cluster

TOP2A 69 up Cluster 1

CCNB1 60 up Cluster 1

CCNA2 59 up Cluster 1

UBE2C 59 up Cluster 1

KIF20A 58 up Cluster 1

[HR 1.63 (1.38–1.92), P = 7.3e–09], CCNA2 [HR 1.57 (1.39–1.79),
P = 2.2e–12)], UBE2C [HR 1.77 (1.55–2.01), P < 1e–16], and
KIF20A [HR 1.66 (1.46–1.89), P = 5.1e–15] was associated with
worse OS for NSCLC patients. (Figure 8) Then, we applied
GEPIA to catch the hub genes expression level between NSCLC
tissues and normal ones, and Figure 9 reflected that compared
with the normal ones, the 5 genes significantly increased
expression levels in NSCLC tissues. The increase of 5 hub
genes was interacted strongly with the decrease of IL-6 which
was observed in the LUAD (Figures 10A,C,E,G,I) and LUSD
(Figures 10B,D,F,H,J).

DISCUSSION

In the present study, the gene expression patterns obtained from
the GEO database revealed a total of 249 genes, including 113
upregulated and 136 downregulated genes, which were differently
expressed in NSCLC samples compared with controls. The
upregulated genes with TOP2A as a hub gene were significantly

enriched in the mitotic cell cycle pathway. The downregulated
genes with IL-6 as a hub gene were significant enriched in
the amb2 integrin signaling pathway. Five hub genes (TOP2,
CCNB1, CCNA2, UBE2C, and KIF20A) which were up-regulated
in NSCLC tissues in comparison to normal tissues. Meanwhile,
increased of five hub genes was associated with worse OS and
decrease of IL-6.

Type II topoisomerases contain two types of isozymes: TOP2A
and topoisomerase II beta (TOP2B) (Li and Liu, 2001; Chen et al.,
2012). High expression of TOP2A is detected in several types of
cancer, and more importantly TOP2A has been acknowledged
as a cancer target in clinical application (Wesierska-Gadek
and Skladanowski, 2012; Lan et al., 2014; Li et al., 2015). In
many tumors, such as breast cancer, head, and neck squamous
cell carcinoma and NSCLC, TOP2A expression is significantly
higher in middle and low differentiated tumors than in high
differentiated ones (Nakopoulou et al., 2000; Stathopoulos et al.,
2000; Sun and Wu, 2004). Highly increased expression level of
TOP2A in NSCLC tissues is closely related to the malignant
biological behaviors of this cancer such as proliferation and
invasion, and interference with TOP2A expression inhibits the
proliferation and invasion of NSCLC cells (Han et al., 2016).
Higher TOP2A expression in NSCLC predicts more malignant
biological behavior of the tumor, and more importantly TOP2A
has been widely used as an independent prognostic factor in
NSCLC and high expression of TOP2A is associated with worse
prognoses of NSCLC patients (Villman et al., 2002). In the present
study, TOP2A, a hub node with higher node degree in module
PPI network, was enriched in mitotic cell cycle pathway and
validated transcriptional targets of deltaNp63 isoforms pathway.

FIGURE 7 | (A) Pathway analysis of Module 1; (B) Pathway analysis of Module 2. The y-axis shows significantly enriched pathways of Module 1 and Module 2, and
the x-axis shows the Rich factor, P < 0.01, FDR < 0.01. Rich factor stands for the ratio of the number of target genes belonging to a pathway to the number of all
the annotated genes located in the pathway. The higher Rich factor represents the higher level of enrichment. The size of the dot indicates the number of target
genes in the pathway, and the color of the dot reflects the different P-value range.
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FIGURE 8 | Prognostic roles of five hub genes in the NSCLC patients. Survival curves are plotted for NSCLC cancer patients. (A) TOP2A; (B) CCNB1; (C) CCNA2;
(D) UBE2C; and (E) KIF20A.

Therefore, the results are in line with these previous studies,
which indicated that TOP2A may be directly or indirectly
important in NSCLC development and worse OS.

Interleukin-6 is a key cytokine, which involves in various
pathological and physiological processes of inflammatory
reaction and proliferation and differentiation of various
malignant tumor cells (Kishimoto, 2005; Hong et al., 2007;
Ando et al., 2014). IL-6 has been reported to be critical in the
tumorigenesis and tumor metastasis of epithelial cancer (Shintani
et al., 2016). The unbalanced of IL-6 and its receptors will affect
the stability of the internal environment of the body, which will
also lead to immune dysfunction and induce the occurrence
and development of tumors (Xu et al., 2002). Previous studies
have shown that IL-6 is a potential target for the treatment of
patients with advanced NSCLC. Moreover, higher levels of IL-6
exists in NSCLC patients and shows an upward trend and IL-6 is
associated with the pathogenesis and progression of lung cancer
(Strassmann et al., 1992; Xu et al., 2002; Chang et al., 2013).
However, some evidence showed that IL-6 is down-regulated in
NSCLC (Fang et al., 2017). The inconsistent results of the present
studies in turn show that IL-6 may be play an important role
in NSCLC development. The fact validates our results, which
identified IL-6 as a hub gene.

In addition to the two aforementioned genes, NDC80, CCNA2,
CDC6, CCNB1, TPX2, AURKA, MAD2L1, and BUB1B are

enriched in mitotic cell cycle pathway, which is the most
highly enriched pathway of module 1 with the most significant
P-value. For cancer screening and prognosis, analysis of the DNA
replication initiation machinery and mitotic engine proteins
in human tissues is now conducive to the identification of
novel biomarkers and is suppling target validation for cell
cycle-directed therapies (Williams and Stoeber, 2011). Therefore,
the mitotic cell cycle pathway and its mentioned genes may be
vital in NSLCL progression.

Cyclin B1 (CCNB1) is a regulatory protein, which plays a
crucial role in mitosis. Overexpressed CCNB1 was detected in
NSCLC and related to the clinic stages of NSCLC, and could
be used as a marker for NSCLC in indicating the abilities of
division, proliferation and apoptosis inhibition of NSCLC (Li
et al., 2011). Cyclin A2 (CCNA2) is one of the mammalian
A-type cyclin family in humans (Ko et al., 2013). Several
research teams have reported the prognostic significance of
CCNA2 in lung cancer but the results are controversial. Some
suggested that the expression CCNA2 is negatively correlated
with prognosis (Volm et al., 1997; Dobashi et al., 2003). However,
others reported CCNA2 could not serve as a prognostic factor
(Müllertidow et al., 2001; Cooper et al., 2010). Ubiquitin-
conjugating enzyme E2C (UBE2C), which encodes a member of
the E2 ubiquitin-conjugating enzyme family, had been reported
to serve momentous roles in various malignancies, including
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FIGURE 9 | Analysis of five hub genes expression level in human NSCLC. The red and gray boxes represent cancer and normal tissues, respectively. (A) TOP2A;
(B) CCNB1; (C) CCNA2; (D) UBE2C; and (E) KIF20A; LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell carcinomas.

FIGURE 10 | Correlation analysis of 5 hub genes and IL-6 in NSLCL. (A,C,E,G,I) lung adenocarcinoma; (B,D,F,H,J) lung squamous cell carcinomas.

breast cancer, colorectal cancer, and hepatocellular carcinoma
(Ieta et al., 2007; Loussouarn et al., 2009; Chen et al., 2010; Bavi
et al., 2011). For lung cancer, a study showed that progression-free
survival and poorer OS of NSCLC patients was associated with
UBE2C overexpression (Kadara et al., 2009; Zhang et al., 2015).

Kinesin family member 20A (KIF20A) belongs to the kinesin
superfamily-6, a microtubule-correlated motor protein, is
required for cell cycle mitosis (Yan et al., 2012; Zhang et al., 2014).
Based on previous studies, KIF20A has been overexpressed in
lung and breast cancer, otherwise low levels are inspected in the
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placenta and heart (Lai et al., 2000; Kikuchi et al., 2003; Stangel
et al., 2015). Concerning malignant cellular functions, KIF20A
has been revealed to be involved in proliferation, migration,
invasiveness, and angiogenesis (Taniuchi et al., 2014).

At present, some relevant studies were published that
concerned about core genes in NSCLC in the database. Huang
et al identified five genes from two GEO datasets by developing
an integrated method including the raw data analysis by GEO2R,
functional and pathway enrichment analysis, PPI network and
module analysis, cell culture, reverse transcription-quantitative
polymerase chain reaction, ROC analysis, survival analysis of
hub genes, and statistical analysis (Huang and Gao, 2018).
Piao et al identified 16 hub genes, the expression of 14 of
which were associated with prognosis of NSCLC patients by a
bioinformatics approach incorporating functional and pathway
enrichment analysis, PPI network and OS analysis based on
gene and miRNA expression profiles from the GEO database
(Piao et al., 2018). Chen et al identified 8 disease genes
from one GEO database by using Naïve Bayesian Classifier
based on the Maximum Relevance Minimum Redundancy
feature selection method following preprocessing, shortest path
analysis and function and pathway enrichment analysis (Chen
et al., 2018). Tian et al identified 7 important genes from
one GEO database by using data preprocessing and screening
of DEGs, functional enrichment analysis and construction of
transcriptional regulatory network (Tian et al., 2016). Compared
to previous works, the advantages of the current study were
mainly reflected in the following points: First, this study
integrated microarray data with relative large sample size
from multiple GEO datasets. Secondly, functional enrichment
analysis was further carried out to analyze the main biological
functions modulated by the DEGs. Finally, this study built
gene networks and identified potential diagnostic and prognostic
biomarkers in NSCLC and the correlations between hub
genes.

The limitations of our study were as follows: First, our results
cannot be validated due to the absence of experiment. Second, the
data used in our study were accessed from a public database while
the quality of the data cannot be appraised. Third, the sample size
of involved data was relatively small, and the study failed to cover

different races and regions, which can affect the gene expression
in NSCLC. Finally, as a result of our study only focused on the
genes that are usually identified as significant changes in multiple
data sets, there is no consideration of such characteristics as
sex, age, tumor classification, and staging in detail. Thus, some
biological information may be overlooked in our study.

CONCLUSION

Our bioinformatics analysis identified TOP2A, CCNB1, CCNA2,
UBE2C, KIF20A, and IL-6 and the mitotic cell cycle pathway may
be critical in the development and prognosis of NSCLC. However,
further experiments confirming the results of this prediction in
NSLCL are required because our study was performed based on
data analysis. We hope this study may provide some evidence for
the future genomic individualized treatment of NSCLC from new
insights.
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