
sensors

Article

Methods for Lowering the Power Consumption of OS-Based
Adaptive Deep Brain Stimulation Controllers

Roberto Rodriguez-Zurrunero 1,* , Alvaro Araujo 1 and Madeleine M. Lowery 2

����������
�������

Citation: Rodriguez-Zurrunero, R.;

Araujo, A.; Lowery, M.M. Methods

for Lowering the Power

Consumption of OS-Based Adaptive

Deep Brain Stimulation Controllers.

Sensors 2021, 21, 2349. https://

doi.org/10.3390/s21072349

Academic Editor: Carlos Gómez

Received: 8 February 2021

Accepted: 24 March 2021

Published: 28 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 B105 Electronic Systems Lab. ETSI Telecomunicación, Universidad Politécnica de Madrid,
28040 Madrid, Spain; araujo@b105.upm.es

2 School of Electrical, Electronical and Communications Engineering, University College Dublin, Belfield,
Dublin 4, Ireland; madeleine.lowery@ucd.ie

* Correspondence: r.rodriguezz@b105.upm.es

Abstract: The identification of a new generation of adaptive strategies for deep brain stimulation
(DBS) will require the development of mixed hardware–software systems for testing and implement-
ing such controllers clinically. Towards this aim, introducing an operating system (OS) that provides
high-level features (multitasking, hardware abstraction, and dynamic operation) as the core element
of adaptive deep brain stimulation (aDBS) controllers could expand the capabilities and development
speed of new control strategies. However, such software frameworks also introduce substantial
power consumption overhead that could render this solution unfeasible for implantable devices.
To address this, in this work four techniques to reduce this overhead are proposed and evaluated:
a tick-less idle operation mode, reduced and dynamic sampling, buffered read mode, and duty
cycling. A dual threshold adaptive deep brain stimulation algorithm for suppressing pathological
oscillatory neural activity was implemented along with the proposed energy saving techniques on an
energy-efficient OS, YetiOS, running on a STM32L476RE microcontroller. The system was then tested
using an emulation environment coupled to a mean field model of the parkinsonian basal ganglia
to simulate local field potential (LFPs) which acted as a biomarker for the controller. The OS-based
controller alone introduced a power consumption overhead of 10.03 mW for a sampling rate of
1 kHz. This was reduced to 12 µW by applying the proposed tick-less idle mode, dynamic sampling,
buffered read and duty cycling techniques. The OS-based controller using the proposed methods
can facilitate rapid and flexible testing and implementation of new control methods. Furthermore,
the approach has the potential to become a central element in future implantable devices to enable
energy-efficient implementation of a wide range of control algorithms across different neurological
conditions and hardware platforms.

Keywords: DBS; adaptive DBS; operating system; embedded system; microcontroller; Parkinson
dDisease; neuromodulation; electrical stimulation

1. Introduction

Over the past two decades, Deep Brain Stimulation (DBS) has become established
as an effective surgical therapy to reduce the symptoms of several neurological condi-
tions including Parkinson’s Disease (PD), essential tremor, dystonia, epilepsy, and severe
obsessive-compulsive disorder [1–3]. More recently, a gradual increase in understanding
of the mechanisms by which DBS exerts its therapeutic effects has led to the emergence
of closed-loop neuromodulation or adaptive DBS (aDBS) techniques [4–7]. Using this
approach, instead of delivering a constant stimulation signal, the stimulation parameters
are adjusted in response to biomarkers indicative of patient symptoms [8–11]. These new
techniques present potential benefits both in the effectiveness of the therapies, by delivering
the stimulation required to control symptoms while minimizing stimulation-induced side
effects, and in reducing power consumption of the stimulation devices [5,12,13]. There is
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thus currently considerable interest among clinicians, scientists, and device manufactur-
ers in developing new aDBS algorithms and devices to fully exploit the benefits of this
approach [14–16].

The electronic devices required to deliver aDBS will be more complex than traditional
stimulation devices since they will require specialized hardware and software to detect,
record and analyze the biomarker data [17,18], in addition to a controller module capable of
changing the stimulation parameters in response to the detected biomarker [19]. A typical
such device will comprise acquisition, stimulation, controller, wireless communications,
and power management modules. As energy efficiency is one of the most critical constraints
of these types of implantable devices, research in this field has focused on designing
custom-developed hardware devices to achieve the best performance with the lowest
power consumption possible [20–22]. Rechargeable systems have also been developed to
address this important constraint as in the Activa RC device from Medtronic [23]

New device designs usually include a processor unit as the core element of the
controller module enabling firmware upgrades and enhancing the flexibility to implement
new adaptive algorithms. A prototype of an aDBS device using a custom Cortex-M3
processor to provide some programming flexibility was presented by Cong et al. [24]. This
prototype design was the basis for the most recent commercial device available, the Summit
RC+S from Medtronic [19], which includes a 68HC11 processor unit providing firmware
update with reported power consumption as low as 2.5 mW. Other processor-based devices
have also been developed providing improved programming flexibility depending on
the technology they are using, e.g., an open-source Arduino platform [25], a MSP430
low-power microcontroller [26], a SmartFusion 2 SoC [27] or a low power Flash-FPGA [28].

While firmware development is gaining importance, a common flexible framework
could be very useful in speeding up the development time of new adaptive DBS techniques,
reducing the time to deployment of new enhanced techniques in devices in PD patients
to improve quality of life. However, as far as we know, the inclusion of more complex
programming architectures in these devices has not yet been analyzed in depth. Specifically,
none of these devices has implemented an embedded OS [29] as the core element of the
controller module. An embedded OS has the potential to greatly expand the capability
of closed-loop neuromodulation devices by providing a firmware architecture that can
enhance software development speed by providing high-level features and services to
the developers [30]. It provides a hardware abstraction layer, multitasking management,
and dynamic resource management, so advanced applications can be easily developed by
developers that are not hardware experts (reducing the required hardware background of
algorithms researchers). In addition, an OS provides a scalable and upgradeable common
framework to develop applications for different hardware platforms and for different
application fields, i.e., for the treatment of different neurological conditions. These ad-
vanced features imply an extra complexity in the low-level firmware which results in an
overhead in terms of memory usage, processing time, and power consumption [31–33],
which may not be affordable in implantable devices. Thus, it is crucial to implement power
management techniques in these OSs to achieve sufficient energy efficiency to make them
feasible for neuromodulation systems such as aDBS.

To address this need, in this work we present four different techniques to reduce the
power consumption in a device running an aDBS algorithm on top of an OS. In the OS
kernel, automatic “tick-less” operation is implemented (main internal clocks shutdown) to
reduce power consumption [34]. To further reduce power consumption overhead from a
driver level perspective, a buffered read mode is introduced in combination with reduced
and dynamic sampling. On top of the OS, a duty cycling mechanism is also proposed,
which saves energy by periodically disabling the running aDBS algorithm.

In order to evaluate the proposed techniques, an aDBS algorithm for Parkinson’s
disease that modulates stimulation amplitude based on beta band (15–30 Hz) neural
activity—shown to be correlated with symptoms of Parkinson’s disease—was implemented
on YetiOS [35]. A real-time emulation environment for PC based on a mathematical model
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of the parkinsonian basal ganglia was developed to evaluate the proposed solution. The
experimental evaluation for different operation modes and sample rates, demonstrates the
feasibility of an OS-based aDBS device in terms of performance and power consumption (as
low as 12 µW) while taking advantage of the high-level features provided by the OS. This
work represents a first step towards introducing more advanced software architectures to
improve the capabilities and flexibility of neuromodulation devices. Although the OS-based
approach is initially focused on reducing the development time of new aDBS techniques in
research environments, sharing a common software framework with implanted devices
could greatly reduce the time from when an algorithm passes clinical trials until it can be
used in PD patients.

2. Materials and Methods

To experimentally evaluate the proposed techniques, a dual threshold aDBS algorithm
was implemented in a general-purpose STM32L476RE microcontroller—ARM Cortex-M4
core—running the YetiOS operating system. YetiOS is an open-sourced energy efficient
OS designed for resource-constrained devices which provides an adaptive engine to easily
implement adaptive algorithms. A real-time emulation environment has been used for
the acquisition and stimulation modules. This enables the overhead in terms of power
consumption introduced by the proposed OS-based controller module to be measured
directly. The power consumption of the other modules (acquisition, stimulation, and power
management) is not considered here.

2.1. OS for sDBS with Tick-Less Mode and Buffered Sampling

YetiOS, based on the well-known operating system FreeRTOS [36], was implemented
in the STM32L476RE microcontroller. A low power manager has been implemented in
YetiOS which automatically sets the microcontroller in tick-less mode when no tasks need to
be executed. Unlike other tick-less implementations, such as that used in FreeRTOS, where
the main system timer needs to be always active (preventing the microcontroller entering
the lowest power consumption modes), the tick-less mode implemented shutdowns the
main system clocks, as well as most peripherals, keeping only a low frequency low power
timer running in order to reach the lowest power consumption possible. Multitasking
capabilities of YetiOS enables implementation of the aDBS algorithm using two concurrent
tasks, which allows isolation of the sampling and processing programming. In this way, it
is possible to implement different sampling techniques, such as single sample read and
buffered read modes, while keeping the same processing algorithm. When using the single
sample read mode, Figure 1, the sampling task (green) reads a single sample from the serial
peripheral interface (SPI) each time a sample is available in the analog to digital converter
(ADC) and stores it in local memory. When enough samples are stored, the processing
task (blue) is launched to perform the operations determined by the aDBS algorithm to
set the stimulation amplitude. Since both tasks run concurrently and the sampling task
must not be delayed, it has higher priority than the processing task. If new samples are
available in the ADC, the sampling task thus reads them, interrupting the processing task
if it is running as shown in the grey regions in Figure 1. In addition, this figure shows in
red regions where the tick-less mode is entered when no tasks are executed. Finally, it is
important to note that entering and exiting a task in the OS always requires instructions to
be executed, implying an execution overhead, shown in brown, which translates to power
consumption overhead. The higher the sample rate or the number of context changes, the
greater the overhead introduced by the operating system. It is important to highlight that
the overhead introduced by non-ideal switching results in a maximum sample frequency
in which using tick-less mode saves energy. For example, if the switching overhead time
(brown) for each sample is 50 µs, we would have a maximum sample frequency of 20 KHz.
However, this maximum frequency is even lower due to the processing time required by
the sampling and processing tasks.
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to change the stimulation amplitude. If there are no tasks running, the processor enters tick-less 
mode (red). There are always some overhead when switching between tasks and when going to 
and from tick-less mode (brown). 

To reduce this execution overhead, a buffered read operation mode was imple-
mented. An example of the buffered read mode is presented in Figure 2, in which samples 
are read in blocks of 3 samples by the sampling task. The execution overhead can be thus 
reduced, so the microcontroller remains in low power tick-less mode for a longer time 
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for each sample rate a maximum buffer size that does not introduce any extra latency is 
defined. 

2.2. Sample Rate Management and Duty Cycling Mode 

Sample rate (sr) has an important impact on power consumption due to the execution 
overhead introduced by entering and exiting the sampling task. The sample rate should 
be as low as possible to reduce power consumption, however reducing the sample rate 
could have a negative impact in the performance of the control algorithm. A lower sam-
ple rate usually implies higher aliasing noise due to the non-ideal nature of the analog 
filters, hence the signal to noise ratio benefits of oversampling may not be exploited. It is 
well established that sampling with a rate N times higher than the Nyquist rate results in 
a signal to noise ratio (SNR) improvement of √ܰ. Thus, reducing the sampling rate 

Figure 1. Tasks executed in the operating system (OS) to implement the adaptive deep brain
stimulation (aDBS) algorithm reading from the analog to digital converter (ADC) each sample one by
one. On the bottom, the original local field potential (LFP) signal captured by the ADC is represented.
At each sample time, the sampling task reads a sample (green) and stores it for later processing.
Once enough samples N-k needed for the dual threshold algorithm are ready, the processing task
runs the aDBS algorithm (blue). When the processing is complete, a decision is made to change the
stimulation amplitude. If there are no tasks running, the processor enters tick-less mode (red). There
are always some overhead when switching between tasks and when going to and from tick-less
mode (brown).

To reduce this execution overhead, a buffered read operation mode was implemented.
An example of the buffered read mode is presented in Figure 2, in which samples are read
in blocks of 3 samples by the sampling task. The execution overhead can be thus reduced,
so the microcontroller remains in low power tick-less mode for a longer time than when
reading each sample individually. Power consumption was measured when using buffer
sizes of 8, 16, and 32 samples.
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the associated power consumption, a dynamic sample rate algorithm was implemented 
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threshold value. In this way, intermediate power consumptions values between different 
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Figure 2. Tasks executed in the operating system (OS) to implement the adaptive deep brain
stimulation (aDBS) algorithm using the buffered read mode. In this example, the samples are read
in blocks of 3 from the analog to digital converter (ADC). On the bottom, the original local field
potential (LFP) signal captured by the ADC is represented. When the read buffer is full (3 samples in
this case), the sampling task reads a group of samples (green) and stores them for later processing.
Once enough samples N-k needed for the dual threshold algorithm are ready, the processing task runs
the aDBS algorithm (blue). When the processing is done, a decision is made to change the stimulation
amplitude. If there are no tasks running, the processor enters tick-less mode (red). There are always
some overhead when switching between tasks and when going to and from tick-less mode (brown).
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The buffered read mode may introduce a latency if the time required to acquire all
the samples of the buffer is larger than the period in which they are processed. Therefore,
for each sample rate a maximum buffer size that does not introduce any extra latency
is defined.

2.2. Sample Rate Management and Duty Cycling Mode

Sample rate (sr) has an important impact on power consumption due to the execution
overhead introduced by entering and exiting the sampling task. The sample rate should be
as low as possible to reduce power consumption, however reducing the sample rate could
have a negative impact in the performance of the control algorithm. A lower sample rate
usually implies higher aliasing noise due to the non-ideal nature of the analog filters, hence
the signal to noise ratio benefits of oversampling may not be exploited. It is well established
that sampling with a rate N times higher than the Nyquist rate results in a signal to noise
ratio (SNR) improvement of

√
N. Thus, reducing the sampling rate could impact on the

decisions made by the adaptive algorithm. The OS controller enables the sample rate to be
configured and changed dynamically without modifying the aDBS algorithm.

Sample LFP data recorded from a patient with PD at a range of DBS amplitudes was
examined for different sampling rates, patient 1 in the work of Davidson et al. [37]. The
data were recorded at the Department of Clinical Neurology, University of Oxford, using a
single channel with a pass band of 4–40 Hz and an original sample rate of 2.2 kHz. The
recorded signal was decimated to 1 kHz and 100 Hz and the aDBS algorithm was executed
to examine how sampling rate can affect the output decision of the control algorithm using
physiological LFP signals. The stimulation product (SP) is introduced to quantify the
performance of the aDBS algorithm for different sample rates. This parameter represents
the product of the root mean square (RMS) value of the beta band signal (βRMS) and the
RMS value of the stimulation amplitude (ARMS), Equation (1). The lower the SP, the better
the aDBS performance is deemed to be, since the target is to reduce beta band amplitude
while minimizing stimulation amplitude.

SP = βRMS·ARMS (1)

The SP was used to evaluate the performance when running the real-time emulator to
generate different stimulation signals which causes variable beta band signal readings.

To overcome degradation in performance at lower sampling rates, while minimizing
the associated power consumption, a dynamic sample rate algorithm was implemented
using the dynamic capabilities enabled by the OS-based controller. With dynamic sampling,
the decisions made using different sample rates are periodically evaluated to raise or reduce
the sampling rate when the number of mismatches in those decisions reach a threshold
value. In this way, intermediate power consumptions values between different sampling
rates are achieved while maintaining the controller performance.

Finally, a duty cycling mechanism was implemented on top of the OS to further reduce
the power consumption. This simple technique is implemented on a periodic independent
task that enables the sampling and processing tasks for a short time ton during a large
period Ts, and disables them the rest of the time. Therefore, the aDBS algorithm runs only
when these tasks are active, with stimulation amplitude remaining constant the rest of
the time. A fixed ton of 5 s is used, while the period Ts is varied to evaluate the power
consumption for different duty cycle (DC) values.

2.3. Dual Threshold Adaptive Deep Brain Stimulation (aDBS) Algorithm

To demonstrate and evaluate the proposed system, an adaptive DBS algorithm based
on the recent work of Velisar et al. [16] was implemented in the processing task. The
algorithm adapts the stimulation amplitude based on the subthalamic nucleus (STN)
LFP beta band activity recorded at non-stimulating contacts on the DBS electrode. A dual
threshold policy is used whereby beta power is maintained between two defined thresholds
by increasing or decreasing the stimulation amplitude when the beta power lies or above
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or below the upper and lower thresholds, respectively. An increase in both efficacy and
efficiency was demonstrated in PD patients using this approach [16].

The complete adaptive stimulation algorithm implemented here is presented in
Figure 3. The controller continuously acquires the simulated 16-bit sampled LFP data
and stores them in local memory to fill a moving window of size N. Each window over-
laps k samples with the previous one, so the adaptive algorithm is executed each time
N-k samples are obtained. The implementation of the adaptive algorithm is described
as follows:
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Figure 3. Dual threshold aDBS algorithm processing blocks implemented in the OS and moving
overlapping window used. The algorithm is processed each N-k non-overlapping samples are
obtained. Then, these samples are converted to floating point, filtered and the mean value is
subtracted. The energy value of the full window (N samples) is obtained and evaluated against the
dual threshold values to make a decision and change the stimulation amplitude.

1. First, each one of the last N-k samples is converted to a voltage value (range 0–1.2 V)
represented by a single precision 32-bit floating point number.

2. A bandpass finite impulse response (FIR) filter is applied for these N-k samples. The
FIR filter has M number of coefficients. This filter was designed to isolate the beta
band oscillations, with pass band from 10 Hz to 30 Hz, and stop frequencies at 5 Hz
and 35 Hz. The coefficients of the filter for each sample rate were obtained using
Matlab filter design tools and setting a −3 dB gain in the limits of the pass band
(10–30 Hz), and at least −10 dB gain beyond the cut-off frequencies (below 5 Hz and
above 35 Hz). The functions provided by the ARM CMSIS DSP library [38] were used
to implement the FIR filter in the STM32L476RE microcontroller.

3. The arithmetic mean of the filtered N-k samples is then calculated and subtracted
from each sample to remove any residual DC component within the signal.

4. The LFP signal energy E from the last N samples is calculated as in Equation (2),
where s[n] represents the filtered signal samples. This signal energy was chosen as
the feature used to perform the dual threshold algorithm, since it requires only one
multiplication operation and one sum operation for each sample in the window.

E =
N−1

∑
n=0
|s[n]|2 (2)

5. Finally, the obtained LFP signal energy is evaluated to set the stimulation amplitude,
as in Equation (3). If the energy is larger than the higher threshold, TH1, the stim-
ulation amplitude A is increased one amplitude step ASTEP, while it is decreased
one amplitude step if the energy is below the lower threshold, TH2. The stimulation
amplitude remains constant if the energy remains between the two threshold values.
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The stimulation amplitude step ASTEP is set to 0.1 a.u. providing high granularity,
similar to the approach used by Velisar et al. [16] where a 0.1 V step size was used.

A(E)i+1 =


Ai + ASTEP i f E > TH1
Ai − ASTEP i f E < TH2
Ai i f E ∈ [ TH1, TH2]

(3)

The configured thresholds were set and calibrated after performing empirical tests
in the emulation environment to obtain an appropriate adaptive stimulation behaviour
similar to that reported clinically [16]. The parameters for the adaptive algorithm are
summarized in the Table 1. The decision time is 256 ms for all the sample rates except
for 100 Hz rate in which it is 320 ms, since it depends on the non-overlapping samples
number N-k. These decision times led to the maximum buffer size of 32 samples when
using the buffered read mode to avoid introducing additional latency when sampling at
100 Hz. This maximum buffer size increases to 64, 128, and 256 samples for sample rates of
250 Hz, 500 Hz and 1000 Hz, respectively. Finally, it is important to mention that the aDBS
algorithm works in the same way for the different sample rates and read modes used in
the experiments.

Table 1. Adaptive DBS algorithm parameters in the experiments performed.

Sample Rate
(Hz)

Window Size
Samples N

Non Overlap
Samples N-k

FIR Filter Taps
M

Decision Time
(ms)

100 128 32 12 320
250 256 64 18 256
500 512 128 28 256

1000 1024 256 64 256

2.4. Real Time Emulation Environment for Adaptive DBS

A real time emulation environment for PC, Figure 4, was developed to evaluate
the OS-based controller solution. The core of the real time emulator, Figure 5, is based
on a mean-field model of the basal ganglia GPe-STN network. Mean-field models [39],
such as that used here, provide a low-dimensional representation of the dynamics of
large populations of synchronous neurons to reduce the complexity of the system under
investigation while retaining key behaviors of the networks involved.

This model simulates the generation of pathological beta-band neural oscillations
in Parkinson disease and their response to STN stimulation [40]. It has previously been
shown that the suppression of pathological beta band activity in the local field potential
(LFP) during DBS in Parkinsonian patients with implanted DBS is well-described by the
model [37], Equations (4) and (5). The model was designed using Mathworks Simulink
software, and then exported to C++ code, Figure 5, where:

G(s) =
k

(s + b)2 (4)

NL, h : y1 =
2
π

arctan
x1

h
; NL, g : y2 =

2
π

arctan
x2

g
(5)



Sensors 2021, 21, 2349 8 of 17
Sensors 2021, 21, x FOR PEER REVIEW 8 of 17 
 

 

 
Figure 4. Emulation environment used in the experiments performed. On the bottom, the aDBS 
controller is the device under test whose power consumption is measured that runs the algorithm 
to dynamically change the stimulation amplitude. Its main hardware element is a STM32L476 mi-
crocontroller which runs YetiOS. The controller is coupled to a real-time emulator that provides 
the emulated subthalamic nucleus (STN) local field potential (LFP) samples through an USB to 
serial peripheral interface (SPI) bridge, which also allows the controller changing the stimulation 
amplitude of the emulator when the decision is made. 

 
Figure 5. Schematic diagram of fourth order model of the GPe-STN loop including the pulse stim-
ulator in the STN, a noise source and a simulated low pass filter (LPF) to simulate the physiologi-
cal system and acquisition hardware. The stimulation is introduced in the GPe-STN loop [40] us-
ing a pulse generator with fixed 60 μs pulse width and 140 Hz frequency. The amplitude can be 
tuned by the aDBS algorithm which is in charge to process the emulated LFP output to make a 
decision. 

This model simulates the generation of pathological beta-band neural oscillations in 
Parkinson disease and their response to STN stimulation [40]. It has previously been 
shown that the suppression of pathological beta band activity in the local field potential 
(LFP) during DBS in Parkinsonian patients with implanted DBS is well-described by the 
model [37], Equations (4) and (5). The model was designed using Mathworks Simulink 
software, and then exported to C++ code, Figure 5, where: ࡳሺ࢙ሻ =  ݇ሺݏ + ܾሻଶ (4)
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Figure 4. Emulation environment used in the experiments performed. On the bottom, the aDBS
controller is the device under test whose power consumption is measured that runs the algorithm
to dynamically change the stimulation amplitude. Its main hardware element is a STM32L476
microcontroller which runs YetiOS. The controller is coupled to a real-time emulator that provides
the emulated subthalamic nucleus (STN) local field potential (LFP) samples through an USB to serial
peripheral interface (SPI) bridge, which also allows the controller changing the stimulation amplitude
of the emulator when the decision is made.
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Figure 5. Schematic diagram of fourth order model of the GPe-STN loop including the pulse stimu-
lator in the STN, a noise source and a simulated low pass filter (LPF) to simulate the physiological
system and acquisition hardware. The stimulation is introduced in the GPe-STN loop [40] using a
pulse generator with fixed 60 µs pulse width and 140 Hz frequency. The amplitude can be tuned by
the aDBS algorithm which is in charge to process the emulated LFP output to make a decision.

The GPe and STN are modelled as nonlinear sigmoidal algebraic elements NL, where
h and g define the steepness of the characteristic, followed by linear blocks defined by
their transfer functions in the Laplace domain G(s), where k and b are constants. x1 and x2
represent the mean field deviation from zero of the LFP of the population of synchronous
neurons in the GPe and STN, respectively. y1 and y2 are the outputs of the sigmoidal arctan
function, following the approach of classic mean field models, to represent the relationship
between the average membrane depolarization and the average firing rate of the neural
population. Oscillations representing beta band activity of the parkinsonian local field
potential emerge within the network as the strength of coupling between the STN and GPe
increases, h or g decrease. The parameters were set to simulate oscillatory activity in the
GPe-STN loop in the beta band, specifically, at 22.5 Hz. Following the approach presented



Sensors 2021, 21, 2349 9 of 17

by de Paor et al. [40], oscillatory activity within the network at 22.5 Hz was obtained by
setting k = b2 = 19985, g = 1, and h = rand[0.100, 0.101]. The h parameter simulates
the increase in strength of synaptic coupling within the network in response to dopamine
depletion in Parkinson’s disease and was assigned a bounded uniform random value
that changed every 5 s to simulate the amplitude variations in the oscillatory activity. An
additive noise source (normal distribution random generator, µ = 0, σ2 = 0.001 arbitrary
units (a.u.)), was included to simulate the input noise at the electrodes, while a 250 Hz low
pass filter represented the acquisition filters present in the device.

The emulator runs on a Windows PC and provides a graphical interface to configure
the model parameters, display and record the LFP and stimulation signals and manage
the aDBS controller. The emulator uses a USB interface for streaming the simulated LFP
data and configuring the stimulator and is connected to an USB to SPI bridge device that
emulates a 16-bit ADC and a configurable stimulator, Figure 4. This bridge device transmits
the simulated raw LFP data using a SPI interface with a configurable sample rate of up
to 1000 Hz to the controller device which is an STM32L476RE microcontroller running
the aDBS algorithm in YetiOS. The full-duplex SPI interface also allows the controller to
configure the stimulation parameters in the emulator. Specifically, the stimulation pulses
amplitude A a.u. is configured by the aDBS algorithm, while the pulses frequency and
width are set to 140 Hz and 60 µs, respectively. The real time emulator is available at [41].

2.5. Experimental Conditions

Each test was performed within the emulation environment for 250 s to measure the
power consumption of the test device executing the dual threshold aDBS algorithm in
YetiOS. The power consumption was measured using a Keysight B2901A precision source
measurement unit supplying the device at 3.3 V and with 2.5 ms acquisition time, so
100,000 power consumption samples are acquired for each test (250 s). Power consumption
data as well as beta band and stimulation amplitude data of the tests performed are
accessible on a public dataset [42].

The code was compiled using GCC with level 3 optimization (O3). It required 58 Kb
of FLASH non-volatile memory and 25 Kb of RAM memory which is much lower than
the totally available in the STM32L476RE microcontroller: 512 Kb of Flash and 128 Kb of
RAM. The processing time required for the aDBS algorithm to execute was different for
each evaluated sample rate-since the window samples to be processed and the FIR filter
taps number are different-being 2103 µs for 1000 Hz, 636 µs for 500 Hz, 267 µs for Hz, and
124 µs for 100 Hz.

3. Results

In order to set the threshold values TH1 and TH2 of the dual threshold aDBS algorithm
the SP has been measured, Figure 6. From the experiments performed we obtained the
lowest SP values (best performance) for TH1 = 0.008 a.u. and TH2 = 0.0004 a.u. These
values are used as the default configuration of the dual threshold algorithm in all the
tests performed.
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Figure 6. Performance in terms of stimulation product (SP) of the aDBS dual threshold algorithm for different energy thresh-
old values. Performance is considered to be better for lower SP values. In this case, the threshold values TH1 = 0.008 a.u.
and TH2 = 0.0004 a.u. provides the lowest SP (red point).

An example of raw LFP data for a PD patient [37] for different stimulation amplitudes
is presented in Figure 7a, along with the calculated signal energy Figure 7b, for the maxi-
mum and the minimum allowed sample rates. The red line represents the amplitude of
the stimulation signal applied in the clinical experiment, while the green lines represent
arbitrary threshold values that may be used by a dual threshold algorithm to make the
stimulation decisions. Although the overall signal energy appears similar for both sample
rates, as shown in Figure 7c, at certain points, a different decision could be made when
evaluating the signal energy with the different sample rates due to degradation of the
SNR for reduced sample rates. It is not yet clear whether such differences or resulting
delays in the decisions made for different sample rates correspond to a degradation in
clinical performance. This is likely to be algorithm dependent, though it is feasible that
resulting delays of up to 1 s in making the correct decision may have an adverse effect on
algorithm performance.

Similar to Figure 7, Figure 8 represents the raw LFP data as well as the signal energy
in an experiment using the emulation environment with the stimulation amplitude pro-
gressively increased. The oscillatory activity is reduced when applying high stimulation
amplitude, similar to that observed in the experimental LFP data. The behavior of the
dual threshold aDBS algorithm for the different sample rates, and with the duty cycling
mode are presented in Figure 9. Differences between the applied stimulation signals are
observed when acquiring with 1000 Hz and at lower sample rates. In the duty cycling
mode, the aDBS algorithm is dormant most of the time, so the changes in the stimulation
signal happens less frequently. As it can be observed, there are differences in both the
stimulation signal and the LFP readings when changing the sample rate, which would
translate in different algorithm performances in each case.
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Figure 7. Local field potential (LFP) data recorded from a PD patient for increasing DBS amplitude
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(b) indicating some points in which the dual threshold decision made is different for 1000 Hz and
100 Hz.
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Figure 8. Raw LFP data (blue top), calculated signal energy (blue bottom) and stimulation signal (red)
using the emulation environment for 1000 Hz and 100 Hz. Fixed increasing stimulation amplitude
(without aDBS). When the stimulation amplitude increases, the LFP signal energy drops. A similar
behaviour can be overserved compared to the data from a PD patient (Figure 7).



Sensors 2021, 21, 2349 12 of 17

Sensors 2021, 21, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 8. Raw LFP data (blue top), calculated signal energy (blue bottom) and stimulation signal 
(red) using the emulation environment for 1000 Hz and 100 Hz. Fixed increasing stimulation am-
plitude (without aDBS). When the stimulation amplitude increases, the LFP signal energy drops. 
A similar behaviour can be overserved compared to the data from a PD patient (Figure 7). 

 

 

Figure 9. LFP signal amplitude (blue) and stimulation signal amplitude (red) generated by the 
aDBS algorithm for all the sample rates evaluated and the duty-cycling mode. Tunning the sample 
rate and the duty cycle leads to different decisions done by the aDBS algorithm to change the stim-
ulation amplitude and to different LFP signals. Both have an influence in the performance in terms 
of SP. 

The measured power consumption of the controller for different sample rates is pre-
sented in Figure 10. The power consumption is compared for the single and buffered sam-
ple read modes. Introducing the buffered read mode (32 samples buffer size) enables the 

Figure 9. LFP signal amplitude (blue) and stimulation signal amplitude (red) generated by the aDBS
algorithm for all the sample rates evaluated and the duty-cycling mode. Tunning the sample rate
and the duty cycle leads to different decisions done by the aDBS algorithm to change the stimulation
amplitude and to different LFP signals. Both have an influence in the performance in terms of SP.

The measured power consumption of the controller for different sample rates is
presented in Figure 10. The power consumption is compared for the single and buffered
sample read modes. Introducing the buffered read mode (32 samples buffer size) enables
the power consumption to be greatly reduced, reaching as low as 50 µW for 100 Hz, as
compared with 400 µW for the single sample read mode. Using 8 and 16 samples in the
read buffer provides intermediate power consumption values. Sample rate also had a
large impact on the power consumption of the controller as predicted, but resulted in a
performance degradation in terms of SP. In the duty cycling mode, the power consumption
was lowest, but the performance, in terms of SP, was also the lowest (highest SP) since the
acquisition was disabled most of the time.
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Figure 10. Power consumption and SP of the OS-based controller running the dual threshold aDBS algorithm for different
sample rates and number of buffered read samples. The performance in terms of SP degrades for lower sample rates and
when introducing duty cycling, while, in these cases, the power consumption is greatly reduced. Increasing the number of
buffered samples improves the power consumption, while having no effect in the performance.
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The power consumption for different duty cycling configurations is presented in
Figure 11, reaching as low as 12 µW for the lowest sample rate (100 Hz) and duty cycle
evaluated (5%). The power consumption of the dynamic sampling rate example applica-
tion was also evaluated reaching 763 µW for single sample read mode and 102 µW for
32 samples buffered read mode. Thus, by using this simple dynamic application, the power
consumption measured is a midpoint value between the one obtained for the lowest sample
rate and higher sample rates.
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Figure 11. Power consumption of the OS-based controller running the dual threshold aDBS algorithm for different sample
rates and duty cycle configurations. Lowering the sample rate, the duty cycle and using 32 samples buffered read results in
introducing as low as 12 µW while providing full OS support running a dual threshold aDBS algorithm.

4. Discussion

Using an OS, the programming of aDBS algorithms can be organized in different
concurrent tasks, and algorithms can be programmed without expert knowledge of the
hardware components. In addition, dynamic switching between stimulation control algo-
rithms, for example, to target different disease symptoms or depending on the patient’s
activity, is easily implemented. The OS provides upgradeable capabilities, so alternative
adaptive stimulation techniques can be implemented and upgraded without changing
hardware. Conversely, as the OS isolates the algorithms implementation from the hard-
ware components, the code developed on an OS for a specific algorithm would be the
same if a different HW device is used. The dynamic capabilities of the OS-based solution
allow techniques to optimize aDBS performance to be implemented, trading-off between
stimulation performance and power consumption, as with the proposed example of the
dynamic sample rate mode. Finally, the OS provides a framework to develop algorithms to
detect patient state based on different biomarkers, e.g., EEG, EMG, and accelerometry, to
automatically switch to duty cycling or alternative modes. A specific control algorithm
(dual threshold) was implemented as an example of a recently proposed approach that
has demonstrated to be clinically effective [16]. However, other aDBS algorithms can be
similarly implemented using the OS-based controller.

The main drawback of the proposed system is the overhead in terms of power con-
sumption introduced by the OS-based controller to the complete aDBS device. The mea-
sured power consumption of the OS-based controller reached up to 10.027 mW for the
maximum evaluated sample rate, without implementing any technique to reduce power
consumption. Using the automatic tick-idle operation with all the main clocks shutdown,
the power consumption was considerably reduced to 3.904 mW. Further reductions in
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power consumption are possible by lowering the sample rate or using a buffered ADC.
However, it is important to note that lowering the sample rate could produce a perfor-
mance degradation (reduced SNR and increased SP), Figure 10, and the buffered read mode
requires the ADCs implemented in aDBS devices to provide local sample buffers. The
duty cycling mode proposed here also allows to large reductions in power consumption, at
the expense of some performance degradation. A power consumption as low as 50 µW is
achieved at 100 Hz using the 32 samples buffered read mode and can be further reduced
to 12 µW with 5% duty cycle. These power consumption values would be affordable
even with commercial implantable devices such as the Medtronic Summit RC+S [19]. The
reported power consumption of the Summit RC+S device is 2.5 mW, so the additional
power consumption introduced by the OS-based controller would be almost negligible
in this case. For other research devices such as the high-end WAND [27], the impact is
even lower since it consumes up to 172 mW. As that device includes an ARM Cortex-M3
processor unit similar to that used here, OS support to the device can be provided with
limited development effort. Furthermore, rechargeable batteries used in many new DBS
devices, reduce power consumption constraints, rendering the overhead introduced by the
OS acceptable.

To test the performance effects of lowering the sample rate and using the duty cycling
mode we have defined the parameter SP. However, further studies with clinically acquired
data should be done in order to verify the actual clinical performance and to calibrate
the different threshold values. Although a performance degradation in terms of SP is
observed when reducing the sample rate and duty cycle, it is possible that this does not
translate to a reduction in clinical performance in terms of control of patient symptoms
and that acquisition with lower sample rates is sufficient. Further experimental and clinical
investigations are required to address these types of questions and establish the sensitivity
of specific aDBS algorithms and implementation details in patients. These types of studies
are facilitated by the fast-development features provided by the OS. Finally, in addition to
implementation constraints addressed by the introduction of the OS-based controller, the
introduction of any new control system is governed by regulatory and safety issues. Prior
to implementation in patients, these must be addressed, and appropriate risk mitigation
strategies implemented considering technical standards for medical device hardware and
software (e.g., IEC 60601- 1–10, and IEC 62304, ISO 14971). This can be achieved through the
application of appropriate design frameworks such as that proposed by Gunduz et al. [43].
Finally, it is important to note that the techniques proposed in this paper could also be
used in other clinical devices to implement an OS-based controller. For example, a similar
approach may be used in other next generation intracorporeal implants [44] and also other
closed loop neuromodulation devices such as those for epilepsy symptoms treatment or
vagal nerve stimulation.

5. Conclusions

An OS-based controller provides a wide range of programming flexibility for the
development of aDBS and neuromodulation techniques that could enable advances in this
field to be rapidly implemented. In this work, potential overhead in terms of additional
power consumption introduced by the OS is mitigated through the implementation of
an automatic tick-less idle mode, reduced sample rate, buffered read mode and duty
cycling mode. A dynamic sample rate is presented to demonstrate the dynamic capabilities
provided by the OS. The additional power consumption introduced by the OS applying
the proposed techniques is thereby reduced to negligible levels (down to 12 µW) when
compared with power consumption of currently available devices. The proposed OS
approach has the potential to expand aDBS capability and development speed with an
affordable cost in terms of power consumption. Although developed as a prototype for
research purposes, it has the potential to become a key element in future commercial devices.
However, as a higher abstraction level is provided by the OS, new design issues, such as
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security, software risk management, and real-time and wireless protocols programming,
are introduced and will need to be addressed.
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