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Abstract

Background: Improving yield prediction and selection efficiency is critical for tree breeding. This is vital for
macadamia trees with the time from crossing to production of new cultivars being almost a quarter of a century.
Genomic selection (GS) is a useful tool in plant breeding, particularly with perennial trees, contributing to an
increased rate of genetic gain and reducing the length of the breeding cycle. We investigated the potential of
using GS methods to increase genetic gain and accelerate selection efficiency in the Australian macadamia
breeding program with comparison to traditional breeding methods. This study evaluated the prediction accuracy
of GS in a macadamia breeding population of 295 full-sib progeny from 32 families (29 parents, reciprocals
combined), along with a subset of parents. Historical yield data for tree ages 5 to 8 years were used in the study,
along with a set of 4113 SNP markers. The traits of focus were average nut yield from tree ages 5 to 8 years and
yield stability, measured as the standard deviation of yield over these 4 years. GBLUP GS models were used to
obtain genomic estimated breeding values for each genotype, with a five-fold cross-validation method and two
techniques: prediction across related populations and prediction across unrelated populations.

Results: Narrow-sense heritability of yield and yield stability was low (h2 = 0.30 and 0.04, respectively). Prediction
accuracy for yield was 0.57 for predictions across related populations and 0.14 when predicted across unrelated
populations. Accuracy of prediction of yield stability was high (r = 0.79) for predictions across related populations.
Predicted genetic gain of yield using GS in related populations was 474 g/year, more than double that of traditional
breeding methods (226 g/year), due to the halving of generation length from 8 to 4 years.

Conclusions: The results of this study indicate that the incorporation of GS for yield into the Australian macadamia
breeding program may accelerate genetic gain due to reduction in generation length, though the cost of
genotyping appears to be a constraint at present.

Keywords: Horticulture, Plant breeding, Genome-based prediction, Phenotype, Fruit tree

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: katie.oconnor@daf.qld.gov.au
1Queensland Department of Agriculture and Fisheries, Maroochy Research
Facility, 47 Mayers Road, Nambour, QLD 4560, Australia
2Queensland Alliance for Agriculture and Food Innovation, University of
Queensland, Maroochy Research Facility, 47 Mayers Road, Nambour, QLD
4560, Australia
Full list of author information is available at the end of the article

O’Connor et al. BMC Genomics          (2021) 22:370 
https://doi.org/10.1186/s12864-021-07694-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-021-07694-z&domain=pdf
http://orcid.org/0000-0003-3052-8300
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:katie.oconnor@daf.qld.gov.au


Background
Nut yield is the most economically important selection
trait of macadamia [1]. In 2017, the Australian industry–
the world’s largest–produced a crop of 46,000 t of nut-
in-shell [2]. Although nut yield is the main trait of focus
when selecting new macadamia varieties, it is expensive
and difficult to assess in breeding. Nuts are comprised of
an outer pericarp green husk, a hard shell testa, and an
internal edible kernel. The husk either abscises from the
tree along with the nut-in-shell (NIS), or dehisces (splits
along a single suture) and the NIS falls to the ground
[1]. After harvest, nuts are dehusked mechanically. Yield
measurements are usually expressed as NIS or kernel
yield per tree [1]. Yield is a complex trait affected by
many processes and environmental influences, and is
likely controlled by many genes [3, 4]. Previous estimates
of yield heritability in macadamia are low (< 0.20) [5], in-
dicating that yield is highly likely to be controlled by
many loci of small effect. As such, selection for high
yield is often made difficult by environmental and geno-
type x environment interaction (G x E) effects [6]. G x E
has been previously documented in macadamia yield [5,
7], though this appeared to be due to a particular char-
acteristic at a particular location, and no work has yet
been conducted to understand the repeatable factors
behind G x E for yield.
In addition to increased yield, precocious cultivars–

those that produce nuts at an early age–may be com-
mercially attractive due to cash flow at an early age.
However, it is not yet known how precocity might affect
the rate at which yield begins to plateau in macadamia
varieties. In coffee and apple, early-yielding varieties are
desirable, particularly those with stable yields over time
[8, 9]. For perennial horticulture crops like macadamia,
yield stability may be defined as the consistency of yield
of individual trees across consecutive years [10]. Unstable
yields, due to alternate bearing, is common in some peren-
nial fruit crops and is undesirable as regular income is
vital for growers [9, 10]. Research regarding genetic archi-
tecture surrounding consistency of yield over years has
been limited outside of biennial bearing in apple (e.g. 11,
12). Yield stability is considered an important trait in
macadamia by industry [1]. Some macadamia growers
report biennial bearing in certain cultivars, such as ‘H2’
and ‘344’, which can be problematic.
Selection of new macadamia varieties involves two

stages: thousands of seedlings are produced by cross-
pollination to create diversity and are assessed in an
unreplicated seedling progeny trial (SPT) (sometimes
across multiple sites due to space restrictions), then the
best performing trees are clonally propagated and evalu-
ated in replicated trials across multiple environments in
a candidate cultivar regional variety trial (RVT) [11].
Trees begin to flower and bear fruit around 4 to 5 years

after planting, and yield is evaluated for at least another
4 years [5]. Due to the crop’s long juvenile stage and the
need to assess yield over several years to increase the ac-
curacy of predicting performance, traditional breeding
has a selection cycle of almost a quarter of a century (22
years) [1, 12, 13]. Candidates are then selected for com-
mercial release using a selection index including traits
such as yield, kernel recovery (the ratio of kernel to NIS
weight; KR), precocity and tree size [12]. Alternative se-
lection strategies are sought to shorten the selection
cycle and increase genetic gain.
Genomic selection is a form of marker-assisted selec-

tion (MAS) that utilises genome-wide markers to predict
genomic estimated breeding values (GEBVs) of individ-
uals, after which the best performers are selected, pos-
sibly without phenotyping candidates [14, 15]. As
GEBVs can be predicted for individuals at the seedling
stage, early selection for elite individuals is possible, thus
greatly reducing the selection cycle [15, 16]. GS uses a
training or reference population of individuals with
known genotypes and phenotypes to construct a model
of each marker’s effect on the trait. To estimate accuracy
of prediction, the model is then applied to predict the
GEBV of individuals in a validation population, for
which measured phenotypes are available. The accuracy
of prediction is determined by the correlation between
GEBVs and phenotypic observations as a proxy for the
unknown true genetic values. MAS can also be con-
ducted using genetic markers of large effect detected
through genome-wide association studies (GWAS).
GWAS has been conducted in macadamia for nut and
kernel traits, but not for yield [17, 18].
Genomic selection was first used in dairy cattle and is

being increasingly used to improve genetic gain in both
animal and plant breeding programs. With the potential
to shorten breeding cycles, long-lived species with slow
maturation times may have the most to gain from MAS
and GS [19, 20]. Grattapaglia [21] and Lin, Hayes [22]
have extensive reviews on the use of GS in forestry and
annual species, respectively. The main attraction of GS
for perennial crops may be that it can accelerate breed-
ing cycles, thereby increasing the gain per unit time and
reducing field trial costs [3, 23, 24]. Sweet cherry [25],
peach [26], oil palm [27–29], citrus [30], apple [31, 32],
and pear [33, 34] researchers have evaluated the use of
GS to increase genetic gain in their breeding programs.
A recent study in Japanese chestnut [35] achieved high
prediction accuracies for harvest date (r = 0.84) and in-
sect infestation (0.60), though yield was not studied.
High prediction accuracy of GS models will improve

confidence in selecting elite candidates. Prediction ac-
curacy depends on many factors, including the model,
crop, size of the reference population, extent of linkage
disequilibrium (LD), marker set, and heritability of the
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trait of interest [36]. Genetic markers should be in high
LD with the genes controlling the trait, in order to cap-
ture the genetic variance [14, 37, 38]. In a simulation
using animal data, Calus et al. [39] suggested that
models using marker densities of LD r2 = 0.2 (average
distance of 0.128 cM between markers) were superior to
those at lower densities. Accurate phenotyping of a large
training population, preferably over multiple environ-
ments and years (allowing for the study of multiple sea-
sons and tree ages), is required for perennial crops to
derive accurate predictions due to the interactions be-
tween these factors [23, 40–42].
Recently, an updated version of the M. integrifolia gen-

ome (v2) was published with 4098 scaffolds anchored to
14 pseudo-chromosomes (745Mb, N50 413 kb) [43]. In
a study using 4113 SNP markers, of which 90% mapped
to v2 genome scaffolds, O’Connor, Kilian [44] found that
LD decayed rapidly over short distances of the genome.
Here, using these same 4113 SNP markers, we explore
the potential of GS in macadamia breeding, examining
the contribution to genetic gains relative to phenotypic-
and pedigree-based selection due to a substantial reduc-
tion in generation length. This study aimed to: (i) deter-
mine the prediction accuracy of GBLUP (genomic best
linear unbiased prediction) methods in predicting
GEBVs for nut yield and yield stability across years; (ii)
estimate genetic gain using GS strategies compared with
traditional breeding methods; and (iii) discuss potential
strategies in which GS can be employed to increase gen-
etic gain in macadamia breeding programs. This re-
search is the first study to utilise molecular marker
technology for GS in macadamia and, to our knowledge,
the first to use GS to predict yield stability over consecu-
tive years for a fruit or nut tree crop.

Results
Heritability and accuracy of prediction models
Narrow-sense heritability for yield in the study popula-
tion was 0.30 ± 0.08. For yield stability across 4 years,
heritability was close to zero (Table 1). Variance compo-
nents, from which estimates of heritability were based,
are included in the Supplementary Materials (Supple-
mentary Tables 1 and 2).
Moderate prediction accuracy was achieved for yield

from cross-validation (CV) using randomly masked indi-
viduals (prediction across related populations; 0.57 ±
0.11). In comparison, yield prediction accuracy was not

significantly different from zero for prediction across un-
related populations where families were grouped (0.14 ±
0.14; Table 2). Boxplots showing the observed relation-
ship distributions from the GRM used in predictions are
included in the Supplementary Materials (Supplemen-
tary Figs. 1 and 2).
For yield stability, high prediction accuracy was

achieved for randomly-grouped individuals (0.79 ± 0.23,
p < 0.01). However, when families were grouped, predic-
tion accuracy was not significantly different from zero
(0.28 ± 0.18; Table 3).

Comparison of breeding strategies and genetic gain
Two breeding strategies were compared to demonstrate
how implementing GS could decrease the breeding cycle
and subsequently increase genetic gain (Table 4). The
number of trees involved in each stage and specific costs
are excluded (given uncertainties of, and constantly
evolving, genotyping costs).

1. Traditional breeding: Progeny are evaluated in a
SPT for at least 8 years to select individuals with
elite clonal values for yield and other economically
important traits (such as KR, precocity, and tree
size) using a selection index. SPT is then followed
by a RVT for at least 8 years, where selected elites
are clonally propagated and evaluated for more
economically important traits across multiple
environments.

2. Genomic selection: After germination, the first
leaves of each progeny seedling are genotyped for a

Table 1 Narrow-sense heritability (h2) and standard errors (SE)
for yield and yield stability

Trait h2 SE

Yield 0.30 0.08

Yield stability 0.04 0.04

Table 2 Predictive ability and prediction accuracy for yield for
each of the five cross-validation (CV) sets for random and family
groupings of individuals, and mean and standard error (SE) for
each grouping

Grouping CV set Predictive Ability Prediction Accuracy (r)

Random 1 0.36 0.66

2 0.43 0.79

3 0.30 0.56

4 0.08 0.16

5 0.39 0.71

Mean 0.57**

SE 0.11

Family 1 −0.16 −0.29

2 0.15 0.28

3 −0.03 −0.05

4 0.28 0.51

5 0.15 0.27

Mean 0.14NS

SE 0.14

Results of t-test: ** p < 0.01, NS indicates not significantly different from zero
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large number of markers. Genomic prediction is
then used to predict GEBVs for yield (and other
traits, not shown here). Elite candidates are
selected, using a weighted selection index for
multiple traits, for establishment and evaluation in
the RVT.

Here, we consider the generation length (years; L) as
the time taken to select individuals to use as parents to
produce the next generation of seedlings. Generation
length for traditional breeding was 8 (Table 4), as elite
individuals are identified after evaluations from age 5 to
8 and are then used as parents for the next generation
[1]. By comparison, for strategies employing GS, L was
4. This difference from 8 to 4 years is because elite indi-
viduals may be identified from genetic markers at a very
early age, but cannot be used as parents until reproduct-
ive maturity around the age of 4 [1, 45]. The strategy
using GS has a much shorter selection cycle (14 years)
than traditional breeding (21 years; Table 1), because it
negates the SPT altogether. Both strategies employ
RVTs, as it is vital to test the performance of candidate
cultivars across multiple environments before commer-
cial release.
For traditional breeding methods, r was calculated as

the square-root of yield heritability (√0.30 = 0.55;
Table 5). The genetic standard deviation of PBLUPs
(phenotypic best linear unbiased prediction; using
unstandardised yield data) was 1237 g. Genetic gain
using traditional breeding methods was estimated as 226
g/year for 1% selection intensity. At 2.5% selection

intensity, genetic gain was reduced to 197 g/year. The
shorter generation cycle of GS strategies compared with
traditional breeding influenced estimates of genetic gain.
Genetic gain for GS in related families (randomly-grouped
individuals) was more than double that of traditional
breeding, at 474 g/year for s% = 1 and 416 g/year for s% =
2.5. However, for unrelated population predictions (indi-
viduals grouped by family), traditional breeding achieved
higher genetic gain than GS, which was estimated to be
119 g/year for s% = 1 and 105 g/year for s% = 2.5.

Discussion
Comparison of prediction models and cross-validation
methods
This study is the first to investigate the use of genomic
prediction to improve genetic gain for yield and yield
stability in macadamia breeding. Our results suggest that
yield-based traits are complex and highly polygenic, as

Table 4 Activities involved in a traditional breeding strategy
compared with a simple example of how genomic selection
(GS) could be employed in a breeding program. The number of
years involved in each activity for the two strategies is shown.
Information for traditional breeding is adapted from Topp,
Hardner [13]. RVT, regional variety trial; SPT, seedling progeny
trial

Year Traditional breeding Genomic selection

1 Cross parents, grow
seedlings

Cross parents, grow seedlings

2 Age 1: Plant SPT Genotype, select seedlings
using GS

3 Age 2: Trial maintenance Propagate RVT

4 Age 3: Trial maintenance Age 1: Plant RVT

5 Age 4: Field evaluations Age 2: Trial maintenance

6 Age 5: Field evaluations Age 3: Trial maintenance

7 Age 6: Field evaluations Age 4: Field evaluations

8 Age 7: Field evaluations Age 5: Field evaluations

9 Age 8: Field evaluations,
select seedlings

Age 6: Field evaluations

10 Propagate RVT Age 7: Field evaluations

11 Age 1: Plant RVT Age 8: Field evaluations

12 Age 2: Trial maintenance Age 9: Field evaluations

13 Age 3: Trial maintenance Age 10: Field evaluations

14 Age 4: Field evaluations Release

15 Age 5: Field evaluations

16 Age 6: Field evaluations

17 Age 7: Field evaluations

18 Age 8: Field evaluations

19 Age 9: Field evaluations

20 Age 10: Field evaluations

21 Release

Table 3 Predictive ability and prediction accuracy for yield
stability for each of the five cross-validation (CV) sets for random
and family groupings of individuals, and mean and standard
error (SE) for each grouping

Grouping CV set Predictive Ability Prediction Accuracy (r)

Random 1 0.17 0.86

2 0.08 0.38

3 0.29 1.46

4 0.03 0.15

5 0.22 1.11

Mean 0.79*

SE 0.23

Family 1 0.09 0.43

2 0.12 0.60

3 0.06 0.30

4 −0.09 −0.43

5 0.10 0.50

Mean 0.28 NS

SE 0.18

Results of t-test: * p < 0.05, NS indicates not significantly different from zero
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indicated by low heritability, and that GS offers a suit-
able method to select genotypes to improve yield. Pre-
diction accuracy is strongly influenced by the relatedness
between training and validation populations [15], and
unrelated population predictions are expected to per-
form poorly compared to related family prediction [47].
This pattern was observed across the models in the
current study; model prediction accuracy for randomly-
grouped individuals was higher than family-grouped in-
dividuals (predictions in unrelated populations). This is
because with random groupings for CV, the training set
includes full-sibs from the validation set (e.g. progeny
from the same cross will be split across the training and
validation sets), and so large blocks of chromosomes will
be shared between the training and validation sets. The
low to moderate prediction accuracies observed by Mur-
anty, Troggio [31] in apple were attributed to predic-
tions across unrelated populations. By comparison,
Kumar, Chagne [32] achieved high prediction accuracies
(0.70 to 0.90) for apple fruit quality traits, with individ-
uals randomly allocated to CV groups.
The CV method of family-grouped prediction repre-

sents an extreme version of the potential real-world ap-
plication of GS in macadamia where predictions are
performed across unrelated populations. It is likely that
the training and target populations will actually be more
closely related as there is often an overlap of cultivars
used as parents between breeding populations, and elite
individuals from one population are commonly used as
parental germplasm in subsequent generations [13]. It is
expected that prediction of GEBVs in a breeding pro-
gram will, therefore, have accuracies closer to that of the
randomly-grouped predictions compared with unrelated
population predictions presented in this study. Employ-
ing GS in a population closely related to that on which
the model is based would provide more accurate predic-
tions of yield. However, more research is needed using
large training population sizes with validation sets of
whole family groups to improve prediction accuracy be-
fore GS can be applied in macadamia breeding.

The implementation of GS in macadamia may include
prediction and deployment across environments. The
current study population had limited replication of ge-
notypes across environments and did not include G x E
interactions in prediction models as preliminary results
found no evidence of G x E in this experimental material
[48]. Previous studies have found some evidence that G
x E may affect macadamia yield [5, 12]. However, re-
search has not yet identified any repeatable factors than
can be used for targeted deployment.

Factors affecting accuracy of genomic prediction
The prediction accuracy for yield in the current study
was moderate for randomly-grouped individuals (r =
0.57), and comparable to the prediction accuracy of yield
as measured by phenotypes (h2 = 0.30, h = r = 0.55).
These similar values for r demonstrate that the genomic
prediction accuracy estimated in the current study will
provide similar gain as phenotypic analysis, regardless of
the time advantage in GS strategies. The prediction ac-
curacy achieved in GS in this study was not as high as
reported in some other horticulture crops, which may be
attributed to several factors. Estimates of macadamia
yield in the current and previous studies [5] involve a
large non-genetic component, as indicated by the low
heritability and/or high non-additive genetic variation
for this trait, and suggest a quantitative nature of inherit-
ance. Yield measurement inaccuracies can occur when
overlapping canopies result in a mixture of dropped nuts
from neighbouring trees. Additionally, the method used
to obtain DNIS (dry nut-in-shell) weight per harvest as-
sumes that the moisture content of the 1 kg sample is
consistent through the entire harvest. For these reasons,
measuring macadamia yield is very different to measur-
ing yield in other fruit crops, which may inhibit accurate
yield prediction.
This study is, to our knowledge, the first to estimate

heritability of stability of yield over consecutive years for
a nut tree, and use genomic prediction to predict genetic
values of yield stability. Biennial bearing in apple has

Table 5 Genetic gain of yield (ΔG, in g/year) for traditional breeding and genomic selection methods as outlined in Table 4. Genetic
gain was calculated using Eq. 6, where i was a function of the percentage of the population selected (s%) as given by Falconer and
Mackay [46], r is the square-root of yield heritability for traditional breeding or the prediction accuracy of genomic selection model,
σ is the standard deviation of PBLUPs (in g), and L is the generation length (in years)

Method s% i r σ (g) L (years) ΔG (g/year)

Traditional breeding 1 2.665 0.55 1237 8 226

2.5 2.338 0.55 1237 8 197

Genomic selection

Randomly-grouped (related population) 1 2.665 0.57 1237 4 474

2.5 2.338 0.57 1237 4 416

Family-grouped (unrelated population) 1 2.665 0.14 1237 4 119

2.5 2.338 0.14 1237 4 105
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been researched by multiple authors. Guitton, Kelner
[49] found three QTLs associated with biennial bearing
that explain 50% of phenotypic variability. Additionally,
Durand, Guitton [50] suggested that irregular bearing in
apple may be more influenced by factors affecting floral
induction rather than those affecting fruit set or drop.
Predictions using randomly-grouped individuals were
moderately high for yield stability, though this may be
due to the low heritability of the trait inflating prediction
accuracy. The low heritability of yield stability indicates
that yield fluctuations between years is very weakly
controlled by genetics, and may be more influenced by
non-genetic factors. Thus, it would be up to breeders to
determine the value of including yield stability in a selec-
tion index when identifying elite candidates for further
testing.
The population size of this study was limited com-

pared to other studies in fruit crops, though it did con-
sist of a large number of full-sib families. In the first
study of GS in cross-pollinated fruit crop species,
Kumar, Chagne [32] obtained high model accuracy for
fruit quality traits in apple. They used a much larger
population (1120 seedlings) than the current study, al-
beit from a smaller parent population (seven full-sib
families from four female and two male parents), and
prediction accuracy ranged from r = 0.70 to 0.90 using
RR-BLUP and Bayesian LASSO methods. GS in citrus
achieved high (r > 0.7) prediction accuracy for some fruit
quality traits using around 800 individuals, with the
GBLUP model consistently out-performing other models
[30]. Similarly, using a Japanese pear population of 86
parents and 765 progeny, prediction accuracy varied be-
tween models and CV methods, and was commonly
greater than 0.5 [33]. However, the correlations found
for citrus and Japanese pear may be inflated, since nega-
tive correlation coefficients were set to zero when calcu-
lating prediction accuracy for these studies. Increasing
the size of a phenotyped and genotyped training popula-
tion would increase the accuracy of yield prediction in
macadamia.
LD between markers and genes controlling target

traits is essential for GS [15]. Previous studies have sug-
gested increasing the number of markers used in GS
may not necessarily achieve better accuracies. Studies in-
vestigating the prediction accuracy of GS in citrus, Japa-
nese pear and apple all used fewer SNP markers than
the current study (1841, 1502 and 2500, respectively)
[30, 32, 33]. Using the same 4113 SNP markers used in
the current study, O’Connor, Kilian [44] found that
SNPs within 1 kb distance of each other on a scaffold
(M. integrifolia v2 genome assembly, 4098 scaffolds) had
an average LD of r2 = 0.124, with LD decaying rapidly
over short distances and more moderately over long dis-
tances [44]. These results are important for the current

study to determine that genetic markers capture genetic
variance of the target trait [15, 38]. Increasing the dens-
ity of markers across the genome could lead to increased
prediction accuracies, as suggested by Calus, Meuwissen
[39], where models with r2 = 0.2 between markers were
more accurate than models with fewer markers and
lower densities. Future analysis of LD in macadamia
could employ the use of an updated macadamia refer-
ence genome (45) to determine the distribution of
markers across chromosomes, and include corrections
for population structure and cryptic relatedness.
Genetic recombination occurs with successive genera-

tions of breeding, which may affect the linkage between
markers and genes controlling target traits [51]. Further-
more, selection for improved individuals will also alter
the frequency of alleles in the population [52]. These
changes over generations will have consequences for
genomic prediction accuracy. Meuwissen, Hayes [15] es-
timated that the prediction accuracy of GS models will
decrease at around 5% per generation, due to recombin-
ation. Thus, it is necessary to recalibrate the model after
every few generations as genetic variance explained by
the markers will change, along with the allelic frequen-
cies in the population [40, 53]. To aid in model recali-
bration, Grattapaglia [21] suggested that selection
candidates should remain in the field and be grown for 5
to 6 years to provide phenotypes for updating the model.
This strategy could be employed in macadamia to ensure
accuracy of predictions through subsequent generations
of GS.

Genetic gain from genomic selection
The results of this study indicated that genetic gain in
macadamia breeding was particularly influenced by the
length of the breeding cycle. Genotyping seedlings at a
very early age, for example using their first leaf after ger-
mination, to identify high-yielding individuals through
GS could halve the length of the SPT. Subsequently, elite
trees could be cross-pollinated to produce the next gen-
eration as soon as they begin to flower, which is usually
around the age of four. From there, clonally replicated
trees could be phenotyped for other economically im-
portant traits, and candidate cultivars identified using a
selection index. Similarly in apples, Muranty, Troggio
[31] suggested that GS could increase genetic gain per
year compared with conventional breeding, by shorten-
ing the breeding cycle from 7 to 4 years. In contrast,
prediction accuracy was not sufficient for all target traits
in oil palm to reduce the generation interval, meaning
that breeding would still require the testing of progeny
[54]. The authors suggested that if given the resources
to increase the size of the training set, and a greater abil-
ity to model G x E interactions, GS could be a valid op-
tion to increase genetic gain in oil palm.
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In their review of GS in apple by Kumar et al. [32, 55],
van Nocker and Gardiner [56] proposed using MAS and
GS to identify elite apple accessions and then, to de-
crease time to reproductive maturity, to implement a re-
gime to promote early flowering. Fruit would be
phenotyped over two early seasons, and then BVs com-
pared with the predicted GEBVs to analyse genetic gain.
Using these methods, candidate cultivars could be clon-
ally propagated 7 years earlier than traditional breeding.
However, the predicted beneficial outcomes of using GS
in apple may not be as achievable if predictions were to
occur across families rather than in randomly-grouped
individuals, as has been shown here in macadamia.

Logistics of using genomic selection to increase genetic
gain
The opportunity to employ GS in a wider range of crops
is increasing with declining genotyping costs and ad-
vancements in technology [20, 51, 57]. Implementing
genomics-assisted breeding may be expensive due to the
cost of genotyping large numbers of candidates at each
cycle. However, the cost of genotyping will be a trade-off
with a decrease in the costs needed for phenotyping [58]
due to the elimination of costs involved in measuring
yield during the SPT. An evaluation of costs involved in
MAS versus GS has been made for maize and wheat,
and GS outperformed MAS even when prediction accur-
acies were low [58]. Breeders should compare selection
strategies to determine which combination of genotyping
and phenotyping is most suitable for their crop and pro-
gram to maximise accuracy of trait prediction in fruit
crops [31].
Currently, costs involved in genotyping may restrict

the implementation of GS in the Australian macadamia
breeding program. To reduce genotyping costs, delaying
GS to deploy on a smaller population size may be a vi-
able option, similar to a strategy proposed by Gardiner,
Volz [59]; to reduce the size of the seedling population
to be genotyped, pre-screen the population for essential
traits first. Seedlings could be grown out as per a trad-
itional SPT, but only evaluated to age four, and preco-
cious (early bearing) trees evaluated for KR (high KR
attracts a higher commission per kilogram than low KR
[60]). Breeders could pre-select precocious seedlings
with high KR, genotype this reduced number of poten-
tially elite individuals, and then the highest-yielding trees
could be selected through GS for evaluation in RVTs.
Longer generation intervals, due to phenotyping for pre-
cocity and KR for several years initially, would lead to a
lower genetic gain using this strategy than GS of more
seedlings at an earlier stage; however, it may be a more
cost-effective option. Additionally, whilst implementing
GS in macadamia may not decrease the time from seed
to reproductive maturity, selecting for precocious

individuals may aid in producing more individuals with
a shortened juvenile stage. Reaching reproductive matur-
ity at an earlier stage will further increase genetic gain
by reducing the generation length of 4 years in the GS
strategy. Extending quantitative modelling of different
options for using GS in a breeding program may help to
compare possible approaches and identify optimum
strategies. Comparing costs of traditional breeding ver-
sus strategies using GS is not the focus of this study,
though this should be evaluated to determine the pro-
spect of implementing GS in the Australian macadamia
breeding program.

Future research using GS in macadamia
Future work employing GS to increase genetic gain in
macadamia could investigate other economically import-
ant traits, such as tree size. In the same population as
the current study, O'Connor et al. [18] found 16 QTLs
linked with trunk circumference. The large number of
markers associated with this trait, compared with other
traits in the study, means that GS may be more appro-
priate than GWAS and MAS to increase genetic gain,
given the seemingly quantitative nature of trunk circum-
ference. GS may also be a good candidate for other
traits, such as resistance to diseases and pathogens, in-
cluding husk spot and phytophthora [61]. Furthermore,
the significant associations identified between traits and
markers could be incorporated into GS models. Gen-
omic prediction methods including BayesR and BayesB
allow the effect of some markers, such as those of sig-
nificant effect, to be larger than others [15, 62]. Different
model types could therefore be tested in the future to
determine which are the most accurate in predictions.
Further work could also include multi-trait models to

investigate whether the inclusion of additional traits,
such as trunk circumference and nut weight, increases
the accuracy of yield prediction. Jia and Jannink [63]
found that prediction accuracy was increased for a trait
with low heritability by including information for a cor-
related trait with high heritability. Estimates of heritabil-
ity and genetic correlations between yield and various
component traits have been made [48] and, thus, this in-
formation could be used to inform multi-trait GS. Dis-
tinctions can also be made between linked QTLs
(linkage between multiple QTLs affecting different traits)
and pleiotropic QTL (one gene affecting multiple traits),
using multi-trait methods, like those employed by Bolor-
maa, Pryce [64].
Finally, future GS analyses could involve more genetic

markers and/or more evenly-distributed markers across
the genome. This approach may ensure that small-effect
loci are captured, since LD in macadamia decays rapidly
over short distances [44]. With the aid of the recently
published macadamia reference genome (45), future
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sequencing of individuals for GS analysis and the calling
of SNPs may be more accurate and avoid potential issues
associated with allelic dropouts [44].

Conclusions
We found that genomic prediction accuracy of nut yield
in macadamia in randomly-grouped individuals was
moderate, at r = 0.57, and similar to the accuracy of trad-
itional breeding. Prediction accuracy across unrelated
populations (r = 0.14) was lower than for prediction
across randomly-grouped individuals. However, due to
the relatedness in parental germplasm between subse-
quent breeding generations, a realistic prediction accur-
acy would likely be similar to that of randomly-grouped
rather than family-grouped individuals. Additionally, we
believe that this study is the first to estimate heritability
of yield stability across years for a nut tree, as well as
genomic prediction for this trait. Genetic gain for yield
using GS (474 g/year) was more than double that of
traditional breeding methods (226 g/year), largely due to
the generation length being halved in GS. Our results in-
dicate that GS is a viable option to increase genetic gain
of yield in macadamia, though validation in a separate
population is required. Further research and validation
into the use of marker-assisted selection for other key
traits in the seedling stage, including kernel recovery
and tree size, are needed. Additionally, increasing the
number and spread of markers across the genome may
capture more causal polymorphisms through LD and
lead to higher prediction accuracy.

Methods
Plant material and phenotyping
This study involves a subset of individuals from a pro-
geny population in the Australian industry macadamia
breeding program, from which seedlings were produced,
established and assessed in field trials by Horticulture
Australia Limited, CSIRO and the Queensland Govern-
ment. The entire progeny population consisted of ap-
proximately 2000 seedlings across 141 full-sib families
from crosses between 47 publicly available parents, with
1–36 progeny per family (mean 14) [7, 11]. Trees were
planted across nine sites in south-eastern Queensland
and north-eastern New South Wales, Australia, between
2001 and 2003 in single tree plots in incomplete block
design with replication of families [11]. Trees were
planted at 4 m distances within rows, and 8m between
rows.
As described by O’Connor, Kilian [44], 295 unrepli-

cated macadamia seedlings from 32 full-sib families (re-
ciprocals combined) from crosses between 29 parents
(7–11 progeny per family) across four sites were chosen.
All families had at least one parent in common with an-
other family. Progeny within families were selected to

achieve an approximately equal number of low- and
high-yielding individuals per family, based on breeding
values for cumulative nut-in-shell yield to age 8 years
after planting (data not shown), to increase power. Trial
sites were within the commercial production zone for
macadamia and included Hinkler Park (HP) and Alloway
(AL) near Bundaberg, Queensland, and East Gympie
(EG) and Amamoor (AM) near Gympie, Queensland.
Clones of five parental genotypes were planted at each
of the four sites, with a further 13 parental clones
planted at AL. Eleven of the 29 parents were not in-
cluded in the study as they were not present at the study
sites. Sites were planted in 2001 (EG, HP), 2002 (AL,
part of AM), and 2003 (part of AM).
Historical data were used in this study. Yield was eval-

uated on an individual tree basis from ages 5 to 8 after
planting. Each year, nuts-in-husk were manually har-
vested from the ground in multiple harvests from Febru-
ary to August. A final strip harvest was undertaken at
the end of the season, in which the nuts remaining in
the tree were removed with poles and hooks. Nuts were
dehusked mechanically and weighed to obtain a wet
nut-in-shell weight. For each tree, a 1 kg sample was
taken (where available) and dried to approximately 1.5%
moisture content at 35 °C for 48 h, 45 °C for 48 h, and
55 °C for 48 h, based on protocol by Prichavudhi and
Yamamoto [65]. Samples were then weighed to obtain a
dry nut-in-shell (DNIS) weight, with the moisture con-
tent used to calculate a total DNIS weight per harvest.
DNIS weights were summed across harvests to obtain
the total NIS yield per tree each year. For some subse-
quent analyses, individual tree yield data for each age
(age 5 to 8) were standardised by dividing the observa-
tion by the standard deviation of each site and age to re-
duce the bias in genetic values due to heterogeneity of
variance among trial sites (following Hardner [7]).

Phenotypic data analysis
An individual-tree linear mixed model was used to pre-
dict individual tree effects (phenotypic BLUPs; PBLUPs)
using yield data across the four years (ages 5 to 8):

Yield ¼ Siteþ Block þ Type
þ Number Neighboursþ Ageþ Year
þ Treeþ error ð1Þ

where Yield was the standardised yield of an individual
tree in 1 year; Site was the fixed effect of the location of
the tree (AM, AL, EG and HP in Queensland); Block
was the fixed effect of planting block within a Site; Type
was the fixed effect of method used to propagate the tree
(seedling progeny or clonally propagated parent); Num-
ber Neighbours was the fixed effect of the number of
trees on either side of that tree within the planting row,
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to allow for influence on phenotype of gaps created by
the death of neighbouring trees; Age was the fixed effect
of age after planting of the tree; Year was the fixed effect
of calendar year that yield was harvested (as trees were
planted in different years across the sites); Tree was the
random effect of individual tree (with no replication of
genotypes) within Site, without any pedigree or genetic
relationship information, and error was a vector of ran-
dom deviations e ~ N (0, σ2

e ) where σ2
e is the error vari-

ance. As multiple years of yield data were used in the
model, a single prediction of mean yield across years for
each tree was predicted. PBLUPs were also obtained for
trees in each of the four ages (ages 5 to 8) as per Eq. 1,
without the effects of Age and Year. Yield stability of
each tree was quantified as the standard deviation (SD)
of the four annual PBLUPs predicted from the above
model.

SNP genotyping and imputation
This study used genetic markers obtained as described
by O’Connor, Kilian [44] and briefly outlined here. DNA
was extracted from leaves of 295 seedlings and their par-
ents, and sequenced by Diversity Arrays Technology
(DArT) Pty Ltd. DArT performed digestion/ligation re-
actions using a combination of PstI and HhaI restriction
enzymes and barcoded adaptors. After PCR, samples
were pooled, applied to c-Bot (Illumina) bridge PCR,
and then sequenced using Illumina Hiseq2500 for 77 cy-
cles. Sequences were processed using proprietary DArT
pipelines, with SNP markers detected based on parsing
sequence clusters. Missing calls were imputed using the
probabilistic principal components analysis (PPCA)
method [66] with 97.2% accuracy, which was determined
by excluding an additional 10% of missing values and
calculating the correlation between the imputed calls
and the original dataset. Quality control was performed
using pre-imputation parameters, including 50% original
call rate, 2.5% minor allele frequency, and a test of Men-
delian inconsistencies (parent-offspring trio opposing
homozygotes) determined using 16 (50%) of the families.
This quality control resulted in 4113 SNPs for genomic
analysis.

Genomic BLUP models
An additive genomic relationship matrix (GRM) was
constructed among all individuals using the 4113 SNPs,
as per VanRaden [67] and detailed in O’Connor, Kilian
[44]. GBLUP models were used to estimate GEBVs for
each tree using ASReml-R [68]. Preliminary analyses in-
dicated no significant difference in prediction accuracy
between additive genomic effects and sites [48], and thus
G x E was not included in analyses.

Yield ¼ Siteþ Block þ Type
þ Number Neighboursþ Ageþ Year
þ Accessionþ SiteTreeþ error ð2Þ

where Accession is the tree effect modelled as the additive
genetic effect of the individual, assumed random ~ N (0,G
σ2
g ), where G is the GRM, modelled from SNP effects

(where 0, 1, and 2 represents the dosage of the reference
allele), and σ2

g is the additive genetic variance captured by

the SNP markers; and SiteTree is the permanent environ-
ment random effect of each tree within site across years,
uncorrelated among trees, assumed random ~ N (0, σ2

pe )

where σ2
pe is the variance attributed to a permanent envir-

onment effect. As multiple years of yield data were used in
the model, a single prediction for each accession for mean
yield GEBV across years was obtained.
To determine the accuracy of genomic prediction for

yield stability over multiple years, GEBVs were obtained
using the following model:

Yield SD ¼ meanþ Accessionþ error ð3Þ
where Yield SD is the standard deviation of PBLUPs for
ages 5 to 8 across all sites.
An estimate of genomic narrow-sense genomic herit-

ability (h2) of average yield was made based on the vari-
ance components of Eq. 2 (Supplementary Table 2)
using the pin function in R [69]:

h2 ¼ σ2g

σ2
g þ σ2

pe þ σ2e
�

4

ð4Þ

where σ2g is the additive genetic variance, σ2pe is the vari-
ance attributed to a permanent environment effect, and σ2e
is the residual variance (divided by 4 for the 4 years of
data). For yield stability, an estimate of h2 was calculated
as σ2g / (σ

2
g þ σ2e ) from variance components of Eq. 3.

Model validation
The prediction accuracies of the GEBVs from the
models above were determined using five-fold cross-
validation (CV). In turn, 20% of phenotypes were
masked (set to missing) in a validation set, and data for
the remaining 80% of individuals were used as a training
set to train the model and predict the masked values.
This process was repeated five times until all subsets
were used in the validation set, with each individual used
only once in the validation set.
Individuals were assigned to one of five groups for the

five-fold CV using two grouping techniques for predic-
tions: random and related family groups. For the random
CV, individuals were selected for the training and valid-
ation group at random (“randomly-grouped”). Here, full-
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sibs were randomly allocated across the training and valid-
ation groups, and so predictions were performed on indi-
viduals that were related to the training population. For the
second method, individuals were grouped by family and re-
lated families (those with common parents) and grafted
parents (“family-grouped”), to give approximately equal-
sized groups. Thus, entire full-sib families were either in
the reference set or in the validation set, and predictions
were performed on families unrelated to the training popu-
lation (“unrelated population”). This second method repre-
sents a more extreme version of the application of GS,
where the two populations are not closely related.
Prediction accuracy (r) for each of the five CVs was

calculated as:

r ¼ corr GEBVs;PBLUPsð Þ
√h2

ð5Þ

where the PBLUPs were estimated from Eq. 1, and herit-
ability (h2) was estimated from Eq. 4. The correlation be-
tween GEBVs and PBLUPs is predictive ability. Mean
prediction accuracies and standard errors were calcu-
lated across the five CVs, and t-tests were performed to
determine if prediction accuracies were significantly dif-
ferent from zero.

Comparison of breeding strategies and genetic gain
A simple comparison of breeding strategies was made to
demonstrate how GS could be effectively incorporated
into the macadamia breeding program to reduce selec-
tion time and increase genetic gain. Genetic gain (ΔG,
grams/year) was calculated for yield for traditional
breeding and GS methods using the following equation
derived from Falconer [52]:

ΔG ¼ i� r � σ
L

ð6Þ

where i is selection intensity as a function of the proportion
of the population selected, r is square-root of yield heritabil-
ity for traditional breeding or the prediction accuracy of the
GS model, and L is generation length in years. Here, σ is
the genetic standard deviation, which was calculated as the
standard deviation of PBLUPs from Eq. 1, but using unstan-
dardised yield data to give a value in grams. In traditional
breeding, approximately 2000 seedlings are evaluated and
1% (20/2000) of the SPT population are further tested in an
RVT [11]. Here, the selected percentage of the population
(%s) has been increased from 1 to 2.5% in an attempt to re-
duce the probability of not selecting truly elite germplasm
under GS. As such, in this equation, i = 2.665 and 2.338, for
1 and 2.5% selected, respectively, as taken from Falconer
and Mackay [46]. We assume that genetic gain for RVT se-
lection is the same across selection strategies, and so gen-
etic gain is only calculated here for the SPT.
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