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ABSTRACT

Highly accurate knockdown functional analyses
based on RNA interference (RNAi) require the
possible most complete hydrolysis of the targeted
mRNA while avoiding the degradation of untarge-
ted genes (off-target effects). This in turn requires
significant improvements to target selection for
two reasons. First, the average silencing activity
of randomly selected siRNAs is as low as 62%.
Second, applying more than five different siRNAs
may lead to saturation of the RNA-induced silencing
complex (RISC) and to the degradation of untar-
geted genes. Therefore, selecting a small number
of highly active siRNAs is critical for maximizing
knockdown and minimizing off-target effects. To
satisfy these needs, a publicly available and trans-
parent machine learning tool is presented that ranks
all possible siRNAs for each targeted gene. Support
vector machines (SVMs) with polynomial kernels
and constrained optimization models select and
utilize the most predictive effective combinations
from 572 sequence, thermodynamic, accessibility and
self-hairpin features over 2200 published siRNAs.
This tool reaches an accuracy of 92.3% in cross-
validation experiments. We fully present the under-
lying biophysical signature that involves free
energy, accessibility and dinucleotide characteris-
tics. We show that while complete silencing is
possible at certain structured target sites, accessi-
bility information improves the prediction of the
90% active siRNA target sites. Fast siRNA activity
predictions can be performed on our web server
at http://optirna.unl.edu/.

INTRODUCTION

It is a major challenge to select those target sites where a
gene can be silenced most completely. Posttranscriptional

regulation can silence tens of thousands of genes to different
degrees (1). This indicates that whereas a wide spectrum of
target sites responds to RNA interference, the knockdown
remains incomplete for most of the sites. Opposing this
diversity criterion, active siRNAs have to conform to require-
ments specific for the RNA-induced silencing complex
(RISC) complex (2). As indicated by the 62% average activ-
ity of randomly selected siRNAs (3), these criteria are poorly
satisfied by the majority of target sites. This paradox has
inspired a number of researchers to capture these criteria
in heuristic rules, statistical formulations or machine learning
algorithms. Tuschl and his coworkers’ rules (2,4) (http://
www.rockefeller.edu/labheads/tuschl/sirna.html) specify a
pattern of UU(N19)AA, limit the G + C content to a range
of 30–70%, and suggest avoiding four or more consecutive
A’s or U’s that act as terminator signals in vectors that
utilize RNA polymerase III. Ui-Tei et al. (5) expressed
preference for siRNAs with A/U at the 50 end, G/C at the
30 terminus at least 5 A/U nucleotides in the 50 third of the
antisense strand, and the absence of any G/C runs of 9 or
more nucleotides. Amarzguioui and Prydz (6) propose an
A/U differential between the 50 and 30 trinucleotides, C/G
at position 1, A at 6 and A/U at 19, while associating the
motifs U1 and G19 with lack of functionality. Translating
these sequence patterns to changes in Gibbs free energy
(DG) shows that most sequence rules correlate highly with
thermodynamic profiles (7). In contrast to the wider accep-
tance of the above rules, the effects of secondary structures
at the target site remain debated (2). While certain structures
like stable hairpins have been shown to decrease or abolish
silencing efficiency (8–10), many other structures do not
seem to attenuate RNAi.

Machine learning methods select the best targets more
accurately than the heuristic rules. Key to this success is
rigorous optimization over high numbers of features. Support
vector machines (SVMs) (11) perform accurate binary classi-
fications (BCs) between low- and high-activity molecules
and regression analyses (12) and helped to formulate the
Stockholm rules (12). Long and degenerate sequence patterns
are revealed by the GPboost genetic algorithm (13). Among
the artificial neural networks, BIOPREDsi (1) was trained
on the largest number of siRNAs, but the method was limited
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to undisclosed sequence features. Shabalina et al. (14) neural
network model generated position-dependent consensus pat-
terns from a smaller number of molecules by using both
sequence and thermodynamic features. Unfortunately, these
patterns remain to be disclosed.

Here we present a practical, freely accessible and transpar-
ent tool for the identification of target sites with over 90%
knockdown activity. Our work is based on two postulates.
First, we expected that optimal selection from a significantly
more comprehensive set of initial features may lead to the
discovery of a complex and probabilistic signature. In turn,
the signature(s) may lead to more sensitive and selective
predictions. That Holen (15) needed to apply as many as 73
positional mononucleotide occurrence rules in order to
achieve reliable predictions is evidence to support this postu-
late. We have compiled the possible most comprehensive set
of 572 sequence, thermodynamic and accessibility features
as further direct evidence. Global and positional mono- and
dinucleotide frequencies, the number of longer runs of each
nucleotide, C or G, or A or U were computed. Global and
positional values of DG and change in enthalpy (DH) and
entropy (DS) as well as the DH/DS ratio were calculated. Mul-
tiple predictors of the target site accessibility were computed
(see Table 1; Supplementary Table S1 and Materials and
Methods). Each of these individual features were correlated
to the activities of the 2252 siRNAs in the Novartis dataset
(1) (see Materials and Methods). No Pearson correlation coef-
ficient exceeded r ¼ 0.38 and only 15 features have r > 0.2
or r < �0.2 (Table 2). Several of these latter features repre-
sent the same phenomenon. For example, the decreased
stability at the 50 terminus of the antisense strand is repre-
sented in free energy, enthalpy, mono- or dinucleotide fea-
tures, such as selection against extreme negative free

energy, and GG, CC, GC and CG dinucleotides. The inferior
performance of individual features is an even more serious
issue. This performance is measured by the large overlaps
in feature distributions between >90% and <80% active siR-
NAs (Figure 1). Because previous machine learning methods
(1,13,14,16) used considerably less representative sets of
features, significant improvements can be expected from
their 86% prediction accuracy. This level is not satisfactory;
even when applying multiple siRNA species, the risk of
incomplete silencing remains substantial. However, to train
a new method using 572 features over only 2252 siRNAs
in the Novartis dataset would have led to overtraining;
i.e. inferior performance on independent test sets. To avoid
that, we applied constrained optimization models and
SVMs for the optimal selection of a considerably smaller
subset of features with the highest combined predictive
value. We accomplished this objective by iteratively solving
the models below with a stepwise elimination of the fea-
ture(s) using different methods. The comparability of diverse
features was ensured by standardization to zero mean and
unit SD.

Table 1. Overview of the 572 sequence, thermodynamic and accessibility

features of the siRNAs

Both global and positional features:
� DG, DH and DS during the transition from double-stranded to

single-stranded state of the RNA (18);
� The ratio DH/DS as above;
� Average probabilities of target site positions to form secondary structures

(mono-, di- and tetranucleotides);
� G + C content.

Global features covering the complete antisense strand:
� DG during complex formation between the siRNA and the target

mRNA;
� Relative frequencies of mono- or dinucleotides;
� Relative frequencies of homotri- and tetranucleotides;
� Maximal length of the G/C runs;
� Minimal free energy of the secondary structures at the mRNA target site;
� Melting temperature of the double-stranded siRNA;
� The probability and DG of forming a self-hairpin;
� Position of the target locus at the mRNA relative to the translation

initiation site;
� Concentration of the siRNA.

Features specific to each position of the antisense strand:
� Presence or absence of mono- and dinucleotides;
� Presence of G or C mononucleotides;
� Probability of the target site positions to form secondary structures;
� Change in free energy during complex formation between the siRNA and

the target mRNA.

Both global and positional features were used. SVM and constrained optimiza-
tion methods performed the iterative selection of the most predictive features
shown in Table 2 and Supplementary Table S1.

Table 2. The predictive performance of features

Predictive performance
Individuala Combinedb

Feature Position r Feature Position Weight

DG 1–2 0.38 DG All 0.146
U 1 0.36 CC All �0.134
G 1 �0.31 p3 All �0.128
DH 1–2 0.30 U 1 0.109
DS 1–2 0.27 DH 18–19 �0.107
U All 0.26 A 19 �0.099
DG All 0.25 G 1 �0.094
UU 1 0.23 UU 18–19 �0.086
G All �0.22 DH 20–21 0.084
DH All 0.22 U 2 0.068
DDG 3–5 � 19–21 0.21 A 2 0.066
DDG 1–3 � 19–21 0.21 AU 6–7 �0.063
DS All 0.21 AA 17–18 �0.059
GG 1 �0.20 GG 20–21 0.058
GC 1 �0.20 AA 18–19 �0.056
UA All 0.18 AU 9–10 �0.055
U 2 0.17 DG 3–4 0.055
C 1 �0.17 C 1 �0.054
GG All �0.17 GG 16–17 �0.053
DDG 1–5 � 17–21 0.17 CG 1–2 �0.052
DG 18 �0.17 AG 20–21 0.052
DG 13 0.17 G 14 �0.050
DG 2 0.17 UG 4–5 �0.049
GC All �0.16 A 20 �0.047
CC All �0.16 UG 20–21 0.046
UU All 0.16 CC 13–14 �0.044
CG 1 �0.16 GU 5–6 0.040
A 19 �0.16 A 1 0.039
DH/DS All �0.15 CC 20–21 �0.036
CC 1 �0.15 U 7 0.035

Weights were optimized by an SVM with linear kernel. The absolute value
of the weight indicates the contribution of that feature to the prediction in
the linear kernel limited to 30 features. Note that the practical predictions
use 142 features, shown in Supplementary Table S1 online. p3 is the probability
of that each base of the tetranucleotide (i, i + 1, i + 2, i + 3) is paired as predicted
by the sfold algorithm.
aThe 30 features with the strongest correlations to siRNA activity in the
Novartis dataset.
bFeatures that in combination account for the most accurate predictions of
the siRNA knockdown activity.
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MATERIALS AND METHODS

The comparability of the conditions of RNAi experiments
underlying the prediction methods has to be ensured. Only
experiments with a single siRNA species are useful to us
since it is difficult to discern the effects of individual mole-
cules from multi-siRNA experiments. Comparability may
be violated by using 19mers (3) instead of 21mers (1).
Knockdown activity has to be measured at the same time
following transfection while maintaining similar cellular
concentrations of siRNAs. The latter requirement can be
approximated by using identical cell lines, transfection agents
and extracellular siRNA concentration. These criteria are
satisfied in two large datasets known to us. First, activities
and sequences of 2252 siRNas targeted to 34 mRNA species
were obtained from a Novartis study (1). These 21mers
included two deoxynucleotide overhangs at the antisense
strand complementary to the mRNA. NCI-H1299 and HeLa
cells were transfected using combined Lipofectamine�
and Oligofectamine� agents. Second, two hundred forty
19mer siRNA molecules designed to silence human or
humanized targets were taken from Dharmacon (3). While
this study targeted as few as eight genes, a major advantage
is that all experiments were conducted in HEK293 cells
using Lipofectamine� maintained at 95% transfection
efficacy or higher, and the siRNA concentration was held
constant at 100 nM. Knockdown activity was measured
after 24 h. Holen’s (15) collection of 176 additional siRNAs
and the database published by Sætrom (17) were also
analyzed.

Features

SVMs and constrained optimization methods effectively
selected the optimal subset of features from several hundred
initial features in reasonable central processor unit (CPU)
time. This allowed us to select from an unprecedented set
of 572 sequence, thermodynamic and target accessibility
features (Table 1). Sequence features included the global

frequencies of mono- and dinucleotides and the presence or
absence of mono- and dinucleotides at each of the 21 posi-
tions. Longer runs of identical bases were also considered
since homotri- and tetranucleotides can act as termination
signals for the RNA polymerase III enzyme used in certain
vectors. Thermodynamic features, including the Gibbs free
energy (DG), enthalpy (DH) and entropy (DS) differentials,
and the DH/DS ratio, which is the major determinant of Tm

(melting point), were calculated according to Xia et al.
(18). Their derivative feature is the thermodynamic dif-
ferential between the 50 ends of the antisense and sense
strands, which has been proposed as a distinctive feature of
potent siRNAs (7). DG and the number of hydrogen-bonded
nucleotide pairs characterize self-hairpins that can obstruct
duplex formation. These features were predicted as described
in (19). Target accessibility predictions require Bayesian
sampling from a large number of alternative mRNA struc-
tures. The probability of the mRNA to form secondary struc-
tures and the free energy of these structures was calculated
by the sfold tool (20–22) implemented at http://sfold.
wadswort.org.

Feature selection required the compatibility of feature
distributions. Therefore, feature values were standardized
for the constrained optimization methods to a mean of zero
and a SD of unity. For SVMs, feature values were normalized
to the interval of [0,1].

Methods

We applied existing and created new machine learning meth-
ods for feature selection and predictions. Constrained optim-
ization (mathematical programming or operations research)
(23) is a powerful mathematical tool for maximizing or mini-
mizing an objective function. Here we perform the optimal
allocation of the regression plane to minimize the sum of
deviations from this plane. Constrained optimization finds
the globally optimal solution for a very large set of equations
or inequalities in practically polynomial time (24).

SVMs are supervised learning methods used for classifica-
tion and regression (25). SVMs transform the original data
with nonlinear relationships into a higher dimension space
to allow linear regression. SVMs have provided solutions to
numerous biological problems as reviewed in Camps-Valls
et al. (12). Support vectors were generated by the core vector
machine (26) and the SVMlight (27) packages using linear,
polynomial and Gaussian radial basis function kernels. To
assess the robustness of the predictions and the underlying
features, we implemented fundamentally different methods
using constrained optimization. First, we created a BC model
to separate above-average (>70% knockdown) siRNAs from
those with <60% activity. A nontraditional multivariate
regression was performed for the molecules predicted as
above-average. Experimenting with other cutoffs for high-
and low-activity siRNAs resulted in lower accuracy in the
combined BC-MVR cross-validation analyses (data not
shown).

Robust BC is performed by the iterative elimination of fea-
tures and misclassified objects (28), a highly reliable method
for feature selection, applying Misclassification Minimization
models (29). The score zs for each sequence s is defined as
the optimally weighted sum of values of the features f in

 

 

Figure 1. Overlap between the distributions of DG at positions 1 and 2, global
G + C content and U content between siRNAs with >90% (full-lines) and
<80% activity (dotted lines) in the Novartis dataset (1).
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the set of all features F:

zs ¼
X

f2F

wf · rf , s‚ 1

where wf is the weight for feature f. Scores for the highly
active molecules are expected to exceed the scores of less
active molecules by a value not less than a positive threshold
parameter d, which is the width of the separating zone
between the two classes. Increasing d improves the robust-
ness of the solution: when predicting untrained molecules,
we can reduce the number of misclassified molecules. This
comes at the cost of increasing the number of unpredicted
molecules since scores within the separating zone are not
significant enough to classify the underlying siRNA.

The sets of above-average and low-activity siRNAs are
linearly inseparable. To make the solution of the model
feasible, nonnegative error variables eh are introduced for
each sequence h in the set H, sequences with experimentally
determined high-activity:
X

f2F

wf rf , h þ eh > g þ d‚ 2

where the geometric interpretation of g is the intersection
with the vertical axis. For each sequence l in the set L of
low-activity sequences we require that
X

f2F

wf rf , l þ el < g : 3

The sum of absolute values of weights wf must be limited
to keep the model from growing unbound:

kwk1 ¼ 1: 4

Here kwk1 is the standard mathematical notation for the
sum of the absolute values (first norm). We solve the system
of the above inequalities and equations to minimize the sum
of the error variables eh.

min
l

nH
·
X

h2H

eh þ
ð1 � lÞ

nL
· eh þ y · kwk1: 5

Here the user-defined parameter 0 < l < 1 fine-tunes the
balance between sensitivity and selectivity. When l is set
to a value higher than 0.5, errors related to above-average
activity molecules are decreased by allowing more errors in
the low-activity molecules. nH and nL are the number of the
above-average and low-activity molecules in the training set,
respectively. y is a small factor necessary for the calculation
of the absolute values of the weights.

Solving the above system of linear inequalities by con-
strained optimization packages (e.g. CPLEX from ILOG,
Incline Village, Nevada) leads to the minimization of errors by
selecting the optimal values for the weights wf and the add-
itive variable g . Provided that the model has a unique, globally
optimal solution, any of the simplex, dual or barrier algo-
rithms (23,30) finds it in practically polynomial time (24).

Note that the solution for the above model is more sensi-
tive to a few large errors than to several smaller ones. Incor-
rect experimental measurements of the knockdown activity
may considerably exceed the magnitude of real prediction

errors. Such incorrect input data may dislocate the separating
zone, resulting in an unjustifiably large number of misclassi-
fied molecules. We reduce this effect by iteratively elimi-
nating the siRNA with the largest error in the previous
optimization. The saved basic solution allows solving the
model about ten times faster than the first time. This is the
key to the computational feasibility of several hundred
iterations during feature selection (28).

For the numerical prediction of the knockdown activities,
brute force traditional multivariate regression analysis has
limited utility due to the high number of features. Robust
Regression (31) was not as accurate as constrained optimiza-
tion methods or SVMs (data not shown). In our regression
model, for each sequence s, we minimize the absolute value
distance from the regression plane:

as �
X

f2F

wf · rs, f � g þ es ¼ 0‚ 6

where as is the experimentally determined knockdown
activity of molecule s. Now we minimize the sum of the
error variables es and the sum of the absolute values of the
wf weights:

min
X

s2S

es þ y · kwk1: 7

Here y is a small factor for the contribution of absolute
values.

Feature (property or variable) selection emerges as a highly
successful new technique (32) for finding those biological or
physical features that indicate or cause a certain effect; e.g. a
disease. Selecting the most predictive features by traditional
manual methods from among several hundred initial featu-
res over thousands of observations is prohibitively time-
consuming. Fortunately, machine learning tools can perform
such complex tasks in short processor time. Examples include
differentially expressed genes as indicators and/or causative
agents of cancer (33), semi-supervised learning for molecular
profiling (34) and optimal selection of hydrophobicity-
related, structural and other features determining protein
secretion signals (28), physicochemical descriptors to dis-
criminate protein–protein interactions (35), and automatic
parsing of the biomedical literature (36). These studies
revealed diagnostic combinations of features that frequently
constituted some important biological signature. Feature
selection also reduces overtraining. This is a fundamental
issue when we do not have 5–10 times more observations
than features (32).

For linear SVMs and constrained optimization models, we
use a weight-based feature elimination algorithm (28). For
comparability with related algorithms below, we abbreviate
this algorithm as WFE. A feature’s weight is proportional
to its contribution to the prediction (Equations 2 and 3). Fea-
tures with zero weights do not contribute to the model and
therefore should be eliminated. In each of the subsequent
iterations, the feature with the lowest absolute value is elimi-
nated. This iteration is repeated until the number of features
reaches a user-specified limit and the cross-validation accu-
racy decreases. Fortunately, the wf feature weights are trans-
parent in constrained optimization models. In SVMs with
linear kernels, wf ¼

P
v av rf,v, where av is the Lagrangian
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multiplier of support vector v and rf,v is the normalized value
of feature f in support vector v (37). For the compatibility
of features measured in different units, feature values
are normalized in SVMs since SVMlight (38) and similar
implementations limit feature values to the [0,1] interval.
In constrained optimization, we standardize feature values to
zero mean and unit SD. Standardization is less sensitive to
a few outliers than the above normalization.

For nonlinear SVMs, the effect of leaving out a feature on
the objective function is more informative than the weight
itself (39). This justifies the computationally much more
intensive recursive feature elimination (RFE) (33) method.
Basically, in every iteration, a leave-one-out procedure is
performed for each for the surviving features. The feature
with the smallest effect on the objective function is removed.

Validation

Ten independent cross-validation experiments were used.
In each experiment, the Novartis data were divided into a
training set and a test set of equal size using a random number
generator. siRNAs with 16 or more identities were eliminated.
Blind tests were performed using a large enough dataset
(either the Novartis or the Dharmacon data) for training and
any other set for testing.

RESULTS

Predictions with 92.3% accuracy were achieved by SVMs
with a polynomial kernel using WFE (28) in 10· cross-
validation experiments (Figures 2 and 3). This accuracy is
defined as 100 minus the average percentage difference bet-
ween predicted and observed knockdown activities. SVMs
with Gaussian radial basis function or linear kernel provided
for less accurate predictions than the polynomial kernel. BC
between <60% and >70% active siRNAs was 94% accurate.
Here we set the parameter l to 0.35 to reduce false positives.
The subsequent MVR on the >70% active molecules is 
95%
accurate. Altogether, the BC-MVR combination predicted
89% of the >90% active siRNAs with a 12% false-positive
rate. Regressing 19mers [from the Dharmacon (3), Holen’s
(15) and Sætrom’s (17) sets] by any method trained on
21mers with deoxynucleotide overhangs in the Novartis set
(1) or vice versa reduced the accuracy to 78% or lower
(data not shown). Supplementing the missing two nucleotides
did not lead to significant improvement.

BC and MVR automatically reduced the number of fea-
tures at the first iteration to 72 and 86, respectively. At ident-
ical feature numbers, WFE led to quite unexpected results:
basically similar features were selected by constrained optim-
ization methods and linear SVMs. This observation increases
the confidence for finding the biological and thermodynamic
signature for RNAi.

As a rule, either identical or analogous features are selected
by WFE over linear methods and by RFE using a polynomial
kernel (Supplementary Table S1). Although WFE requires
as many as 142 features to reach maximal accuracy compared
to 68 features with RFE/polynomial kernel, 30 features are
shared between these two sets. More importantly, several
remaining features form analogous combinations (Figure 4).
As an example, the selection against AAA starting at 18 is

expressed in WFE by selection against AA at positions 18
and 19. Analogously, RFE indicates selection against A at
18 and AA at 19. Another example is the negative preference
for CC at 12, which is expressed in RFE by that single fea-
ture. However, WFE uses two features, AC at 11 and CC at
13, to the same effect. Yet another example is disfavoring C
at 9 and CC at 10 in RFE, which is expressed by selection
against AC at 8 and CC at 8, 9 and 10 in WFE.

As a more complex example, the global G + C content is
selected by the polynomial kernels used in RFE, whereas
WFE chooses a wide-array of local mono- and dinucleotide
features that are clearly related to the global G + C content.
We postulated that the features selected by WFE account for

 

Figure 2. The accuracy of SVM using different kernels and constrained
optimization methods as functions of the number of features. Results of
10· cross-validation experiments (see Materials and Methods) are shown.
Note that constrained optimization eliminated all but 72 features in the
first iteration.

Figure 3. Observed versus predicted activities in the Novartis dataset (1).
Predictions were performed by the polynomial kernel SVM using 142
features shown on Supplementary Table 1.
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a more accurate prediction than the G + C content. To test
this postulate, we complemented the feature set selected by
WFE with G + C. As expected, adding G + C did not increase
prediction accuracy, even with polynomial kernels.

However, the position of the target site was important for
RFE but eliminated by WFE. We believe that the polynomial
kernel uses this feature better since loci too close to or too far
from the translation initiation site appear to decrease activity.
To improve predictions, we overruled WFE and manually
complemented it by the target site feature. The accessibility
of the target site as measured by the sfold p3 feature is one
of the heaviest weighted features of WFE both in MVF and
SVM with a linear kernel. However, RFE with a polynomial
kernel eliminated p3.

Although WFE outperformed RFE with a small margin in
our study, this does not substantiate far-reaching conclusions.
WFE with a linear kernel is more robust and better in han-
dling a high number of features. However, RFE can identify
features that have highly nonlinear effects on silencing activ-
ity. An example would be the distance of the target from
the translation initiation site. Such features may be missed
by WFE.

DISCUSSION

Highly active siRNA molecules, although diverse in
sequences, appear to conform to a widespread dinucleotide,
thermodynamic and accessibility signature. This signature is
highly probabilistic, meaning that there are numerous excep-
tions to each ‘rule.’ Fortunately, appropriate methods allow
accurate prediction, which in turn lets us identify the most
active siRNAs for the gene to be silenced.

A total of 92.3% accuracy was achieved in weight-based
feature elimination. The most accurate predictions in cross-
validation experiments required as many as 142 features
(Supplementary Table S1). For brevity, Table 2 shows
the linear kernel that was limited to 30 features. Further
indications include the need for 
150 features and the lack

of high weights (over 5% of the sum of the absolute values).
RFE on polynomial kernels was somewhat less accurate
(89.4%) than the weight-based feature elimination. However,
this accuracy was achieved using as few as 68 features (Sup-
plementary Table S1). Of these, 30 features are shared with
the 142 obtained with weight-based feature elimination.

The lack of absolute criteria may be due to sequence
diversity. Since a large number of genes are subject to
posttranscriptional regulation, a wide spectrum of mRNA
segments is sensitive to RNA interference. This diversity
requirement can still accommodate probabilistic criteria spe-
cific for the RISC complex (see below). Silencing activity
appears to be determined by a wide-range of flexible combi-
nations of weighted sequence, thermodynamic and accessibil-
ity features.

A wide spectrum of sequences can fit this thermodynamic
profile (40), which can provide a (partial) solution for the
paradox of sequence diversity versus RISC-specific criteria.
Accurate and rigorous analysis and prediction of RNAi in
free energy terms may be a real possibility, akin to structural
predictions of RNA (41) or proteins (42). Machine learning
is also facilitated by the 16-fold reduction in dimensionality
of DG profile as compared to dinucleotides.

Several key features are related to the change in free
energy, enthalpy or entropy related to duplex formation. Glo-
bal DG is assigned the highest weight by SVMs. For the 500
most active siRNAs, the average of DG is �164.43 kJ/mol,
whereas for the 500 least active siRNAs it is �180.20 kJ/
mol. In siRNAs with >90% activity, preference for lower
stability is also indicated by the selection against CC and
GG dinucleotides at the whole antisense strand. On the
contrary to the expected antisense frequency of 0.0625, CC
dinucleotides occur with a frequency of 0.0489 and GG
with a frequency of 0.0540. CC was assigned a weight of
�0.04503 and GG received a weight of �0.03433. The gen-
eral preference for less negative global DG is fine-tuned by
a preference at the 50-terminus of the antisense for A and U
and selection against G, C, CG and UG. The 30 end shows
a preference for C, G, GG, AG, UG, GU and a negative selec-
tion against A, UU, AA and CC. The putative cleavage site
for the Argonaute-2 (43) or similar endonuclease at around
position 7 is rich in U, but GU is preferred to AU. These
results complement the thermodynamic profile reported earl-
ier (7) and the proposition that the lower terminal stability is
supposed to facilitate duplex unwinding by the topoisomerase
enzyme (44).

Using WFE, the accessibility of the target site emerges as
the most predictive of the 142 features (Supplementary Table
S1) and the third most important feature among the 30 shown
in Table 2. Extreme negative weight is assigned to p3, the
probability that all bases of a tetranucleotide are involved in
secondary structures. p3 is estimated by a Bayesian sampling
from the Boltzmann probability distribution of conformations
as implemented in the sfold algorithm (20). Therefore, it is
not surprising that p3 consistently received more significant
weights than the DG of the single most stable structure. How-
ever, for BC between <60% and >70% active siRNAs, all
accessibility features receive zero weights (data not shown).
This indicates that most structured target sites can be
silenced by <70% efficacy. Whereas the correlation between
activity and p3 is low (r ¼ 0.0584), this is significant at the

Figure 4. Three examples of aligned feature (dinucleotide) combinations
selected by RFE and/or WFE with common sequence motifs. All of these
features decrease siRNA activity. The selection against the dinucleotide CC
at position 9 is expressed by disfavoring cytosines at position 9 in RFE and
the dinucleotide CC at position 10 in both methods. In WFE, the selection
against CC at 9 is expressed both directly (CC at 9) and indirectly by
disfavoring AC and CC at 8, and CC at positions 8, 9, and 10 (see text).
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p ¼ 0.0035 level. The considerable weight assigned to p3

indicates that the target sites of siRNAs with >90% activity
are either highly accessible or other features must compensate
for limited accessibility.

The formation of self-hairpins within a single strand may
inhibit silencing action (45). SVMs with over 100 features
(Supplementary Table S1), BC, and MLR assigned strong
negative weights to this feature, which was estimated by
the RNAup package (19). While self-hairpin probability
received zero weights in the SVM models with <50 features,
it was strongly penalized indirectly by p3 from the sfold pre-
dictions and sequence patterns that decrease the chances for
Watson–Crick base pairing between the 50 and the 30 ends.
Interestingly, while the 50–30 thermodynamic differential
was eliminated during feature selection, high weights were
assigned to sequence features that express the same thermo-
dynamic differential. These include a preference for U and
A at positions 1 and 2 but selection against these nucleotides
at position 19. AG and UG are preferred at positions 20–21,
whereas AA at 17–18, AA and UU at 18–19 and U at 20 are-
less frequent than expected on a random basis.

Contrary to some earlier rules (2), we found 12 siRNA
molecules with >90% knockdown that contain GGGG
tetranucleotide(s), which may form highly stable tetraplexes.
Ten other highly active siRNAs contained overly stable runs
of 7 or more G or C bases.

The distribution of weights along the sequence follows a
consistent pattern across SVMs, BC and MVR with widely
varying numbers of features (Figure 5). The first and second
antisense positions dominate the predictions with the excep-
tion of BC and MVR. SVMs had another major peak at
position 19, in line with the hypothesis that loose termini
facilitate duplex unwinding by the topoisomerase enzyme (7).
The importance of the possible Argonaute-2 (43) cleavage
site at position 7 was pronounced only with BC and SVM

with 60 features. The most accurate models specified prefer-
ences for all positions. However, when the number of features
was limited to 30, all features at positions 8, 11, 12 and
15 were eliminated. The accuracy of predictions dropped at
such a low number of features (Figure 2).

Cross-validation experiments and blind tests on untrained
data show the robustness (stable high-performance over
new data) of the biophysical signature and the predictions.
Dinucleotide preferences form a marked pattern that cannot
be attributed purely to energetic or entropic factors. We pos-
tulate that these patterns are related to at least three sets
of criteria. First, siRNAs need to be integrated into the
RISC complex and have to facilitate helix unwinding by
the topoisomerase and cleavage by Argonaute-2 enzymes.
Second, accessible target sites are preferred or other features
should compensate for reduced accessibility. Third, there is a
selection against strands that can form self-hairpin structures.

Availability: fast siRNA activity predictions can be
performed on our web server at http://optirna.unl.edu/.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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