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Summary
Objectives: There exists a communication gap between the 
biomedical informatics community on one side and the computer 
science/artificial intelligence community on the other side 
regarding the meaning of the terms “semantic integration”and 
“knowledge representation“. This gap leads to approaches that 
attempt to provide one-to-one mappings between data elements 
and biomedical ontologies. Our aim is to clarify the represen-
tational differences between traditional data management and 
semantic-web-based data management by providing use cases 
of clinical data and clinical research data re-representation. We 
discuss how and why one-to-one mappings limit the advantages 
of using Semantic Web Technologies (SWTs). 
Methods: We employ commonly used SWTs, such as Resource 
Description Framework (RDF) and Ontology Web Language 
(OWL). We reuse pre-existing ontologies and ensure shared onto-
logical commitment by selecting ontologies from a framework 
that fosters community-driven collaborative ontology develop-
ment for biomedicine following the same set of principles.
Results: We demonstrate the results of providing SWT-compliant 
re-representation of data elements from two independent projects 
managing clinical data and clinical research data. Our results 
show how one-to-one mappings would hinder the exploitation of 
the advantages provided by using SWT.
Conclusions: We conclude that SWT-compliant re-representation 
is an indispensable step, if using the full potential of SWT is the 
goal. Rather than providing one-to-one mappings, developers 
should provide documentation that links data elements to graph 
structures to specify the re-representation.
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1   Introduction
1.1   A Communication Gap in 
Biomedical Informatics
The technical means that enable data sharing 
and data integration are a key problem in 
biomedical data management. Integration 
of data can happen at multiple levels, and 
semantic integration is the second to last 
integration level, only followed by shared 
business process, according to Blobel and 
Oemig [1]. Semantic integration aims to 
preserve “the detail, uncertainty, and above 
all the context of the data involved” [2]. 
Ontologies are an integral part of current 
semantic integration approaches. To achieve 
computer-assisted integration solutions, 
ontologies should be machine-interpretable 
and thus, need to provide information about 
details, uncertainty, and context in a comput-
er-interpretable language [2] (as opposed to 
textual definitions written in any given natu-
ral language). Ontologies are an increasingly 
popular and successful tool for encoding and 
sharing machine-interpretable knowledge, 
such as background information about an 
area of biomedicine or other domains, as well 
as general information about the structure 
of the world such as is provided by upper-
level ontologies like the BFO (Basic Formal 
Ontology) or the SUMO (Suggested Upper 
Merged Ontology) [3]. These ontologies 
are usually implemented and distributed as 
OWL (Web Ontology Language) files [4, 5] 
containing logical definitions.

In a 2018 paper, Brochhausen et al. indi-
cated a communication gap in biomedical 
informatics regarding the interpretation of 
the term “semantic integration” and, more 
generally, “semantics” [6]. They showed 

how common data models (CDMs) were 
cited as fostering semantic integration or 
providing “semantics” despite their lack of 
representation of detail-oriented contextual 
information expressing levels of diagnostic 
confidence (suspected vs. confirmed, etc.) 
provided in a machine-interpretable lan-
guage. This shows that the interpretation 
of the terms “sematic interpretation” and 
“semantics” differs between the biomedical 
informatics community and the computer 
science/big data community, which is 
found in the publication by Cheatham and 
Pesquita [2]. To help mitigate that situation 
and address issues of the ability of resources 
(such as ontologies, controlled vocabularies, 
and terminologies) to contribute to semantic 
integration, Brochhausen et al. proposed 
“computable semantics” as a baseline to 
establish whether a resource is capable of 
supporting semantic integration [6]. For a 
resource to provide computable semantics 
means there must be an effective method that 
could assign or validate the meaning of the 
symbols and expressions. In logic and math-
ematics, an effective method (sometimes 
also called mechanical method) is a method 
that allows to compute the answer to a given 
problem in a finite number of steps, and is 
logically bound to give the correct answer 
(and no wrong answers) [7].

Utecht et al. [8] have shown one way 
of demonstrating that an ontology-driven 
system entails the capability to provide com-
putable semantics. For a project managing 
drug-drug interaction evidence information, 
they created an ontology that represented 
44 different evidence types (such as longi-
tudinal studies, observational studies, etc.) 
completed with necessary and sufficient 
conditions for class inclusion. In a pilot test, 
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the team retrieved 30 evidence items (e.g. 
a journal paper), that had previously been 
assigned to one of the evidence types man-
ually. In the test, a person had to answer five 
questions about each evidence item filling in 
a web-based form. As they were captured, 
the answers about these evidence items 
were used to generate Resource Description 
Framework (RDF) representations. Based on 
the information entered and the axiomatic 
definitions of the evidence types, running 
the OWL reasoner HermiT (http://www.
hermit-reasoner.com) sorted all evidence 
items correctly into evidence types. 

Providing the ability to automatically 
sort data items, e.g. diagnoses based on 
properties such as anatomical location, has 
inspired developments in clinical vocabu-
laries, specifically the SNOMED Clinical 
Terms (SNOMED CT), over the last years. 
For example, the SNOMED CT represen-
tation of “Herpes simplex iridocyclitis” 
(SCTID: 13608004) specifies in a machine 
interpretable language [9]  that the finding 
site for this disorder is the “ciliary body 
structure” or “iris structure”, the causative 
agent is “human herpes simplex virus”, the 
associated morphology is “inflammation”, 
and the pathological process is “infection”. 
This means that any instance of a disorder 
that does not fulfill these criteria would not 
be sorted in that category. These specifica-
tions would potentially also allow the valida-
tion of clinical coding by checking whether 
the finding site, causative agent, associated 
morphology, and pathological agent spec-
ified elsewhere in the medical record are 
consistent with the code. Miñarro-Giménez 
et al. have made the point that an increase 
in formal logical axioms to SNOMED CT 
would help to overcome still existent low 
code coincidence between annotators [10].

A recent paper that aimed to assess knowl-
edge representation of clinical data across 
health systems demonstrated the existence 
of a communication gap regarding the term 
“knowledge representation”, in particular in 
distinction to “data representation”. Rosen-
bloom et al. [11] assessed three commonly 
used standards for sharing clinical data: 
Observational Medical Outcomes Partnership 
(OMOP) Common Data Model (CDM) [12, 
13], PCORNet (National Patient-Centered 
Clinical Research Network) CDM [14, 15], 

and Health Level Seven International (HL7) 
Fast Healthcare Interoperability Resource 
(FHIR) [16]. While we agree with the authors 
that the resources reviewed in their paper 
contribute to “a recent growth in high-im-
pact efforts to support quality-assured and 
standardized clinical data sharing across 
different institutions and EHR (Electronic 
Health Record) systems”, we do not agree 
with those resources contributing to better 
knowledge representation and, thus, fostering 
semantic integration.

Rosenbloom et al. do not provide a 
definition of knowledge representation, but 
use “knowledge representation” as a search 
term for their review. According to Davis et 
al. [17], knowledge representation is best 
understood by looking at five distinct “roles” 
that it plays: (i) it is based on a surrogate, a 
representation of the entities in the world; 
(ii) it consists of a set of ontological commit-
ments; (iii) it provides a fragmentary theory 
of intelligent reasoning, including rules of 
inference; (iv) it acts as a medium of prag-
matically efficient computation; and (v) it is 
a medium of human expression. Knowledge 
representation or knowledge representation 
and reasoning (KRR), as it is sometimes 
called, is a subfield of artificial intelligence 
and has a long history dating back to the 
early days of symbolic Artificial Intelli-
gence (AI). The reasoning aspect of KRR, 
i.e., the capability of a computer system to 
automatically draw inferences based on a set 
of inference rules, is what allows for filling 
the roles (iii) and (iv) of Davis’ definition of 
knowledge representation.

Brochhausen et al. showed that neither 
OMOP CDM, nor PCORNet CDM exhibit 
roles (iii) and (iv) defining knowledge rep-
resentation [6]. Hence, they do not provide 
knowledge representation in the sense 
of computer/information science. FHIR 
does provide avenues to fill roles (iii) and 
(iv). While an extensive review of FHIR’s 
knowledge representation capabilities is out 
of the scope of this paper, Martinez-Costa 
and Schulz have pointed out from the per-
spective of knowledge representation that 
despite the fact that FHIR at the time of their 
writing (2017) required some manual effort, 
there are feasible strategies to use FHIR 
for knowledge representation and semantic 
integration [18].

A rich corpus of literature about the lack 
of reliability in coding clinical data [10, 
19–23] demonstrates the reason why axiom-
atic definitions, even for tasks or databases 
that do not (yet) explicitly require reasoning, 
are relevant. Without the capability of using 
an effective method to ascertain the correct-
ness, consistency, and reliability of coding, 
semantic integration will not be possible in 
a way that can be validated.

1.2   Using Semantic Web 
Technologies for Biomedical Data – 
an Engineering-oriented Perspective
The initial motivation for semantic Web tech-
nologies (SWTs) was to enable computers 
to play a more active role in handling, orga-
nizing, and managing data on the Internet: 
 “The concept of machine-understand-

able documents does not imply some 
magical artificial intelligence allowing 
machines to comprehend human mum-
blings. It relies solely on the machine’s 
ability to solve well-defined problems 
by performing well-defined operations 
on well-defined data. So, instead of 
asking machines to understand people’s 
language, the new technology, like the 
old, involves asking people to make some 
extra effort, in repayment for which they 
get major new functionality — just as the 
extra effort of producing HTML mark-up 
is outweighed by the benefit of having 
content searchable on the web” [24]. 

SWT include numerous key methodologies, 
but at its core is the Resource Description 
Framework (RDF) [25]. In RDF, infor-
mation such as the fact that “Hydrogen 
potassium ATPase” is a “proton pump”, is 
captured by a statement that identifies the 
two entities about which the statement is 
made, and by specifying the relation that 
holds between the two. These statements 
are referred to as triples, because they con-
sist of three parts: subject, predicate, and 
object [26, 27]. The bold rectangle in Fig. 
1 shows a representation of a triple. RDF 
uses unique resource identifiers (URIs) to 
refer to the entities and relationships in a 
domain [28]. Using URIs for the entities in 
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the domain, such as “Hydrogen potassium 
ATPase” in the example in Figure 1, allows 
us to build complex and large graphs based 
on the simple triple structure. Due to the 
use of URIs, the two triples that contain 
Hydrogen potassium ATPase, [Omeprazole, 
inhibits, Hydrogen potassium ATPase] and 
[Hydrogen potassium ATPase, is a, Proton 
pump] get connected to build a small graph 
consisting of three nodes and two edges. 

Through RDF together with languages 
to define controlled vocabularies and ontol-
ogies, such as RDF Schema (RDFS) [29] 
and OWL [30], we can present the SWT 
knowledge representation strategy [26, 27]. 
At the core of this representation strategy is 
the possibility to use formal logic to draw 
inferences from premises and axioms to 
make implicit information explicit. Figure 
1 shows the example of a reasoner using 
the RDF statements and a necessary and 
sufficient condition for the class “Proton 

pump inhibitor” to infer the statement that 
“Omeprazole is a proton pump inhibitor”. 
The use of such axioms and rules of infer-
ence, for example in ontologies [6], marks 
one of the key features of using SWTs.

The goal of this paper is not to claim 
that sharing and integration of clinical 
data requires SWTs, but the considerations 
presented above and in Brochhausen et al. 
clearly demonstrate that semantic integra-
tion requires a knowledge representation 
approach that is absent from both OMOP 
and PCORNet CDM. Those resources, of 
course, still provide value in biomedical 
informatics, but previous research indicates 
a number of use cases that require or benefit 
from using SWTs:
• From the material presented above it is 

obvious that semantic web technologies 
are useful tools for all use cases where 
we seek to validate coding or automate a 
classification of cases into different cate-

gories [8]. Axiomatically rich ontologies 
have been shown to support a number of 
medically relevant functionalities such 
as automatic sorting of entities based on 
axiomatic definitions. Utecht et al. have 
shown that studies reporting evidence 
regarding drug-drug interactions can be 
sorted automatically into a complex sys-
tem of study types using the Drug-drug 
Interaction and Drug-drug interaction 
Evidence Ontology (DIDEO) based on a 
six questions about the studies [8]. 

• SWTs are used to allow integration of 
structured, but uncoded data for clinical 
and clinical research purposes. Mate 
et al. demonstrated an ontology driven 
system to manage extract, transform, and 
load (ETL) procedures to reuse standard 
care data from electronic medical record 
(EMR) to answer research questions [31].

• Integrating heterogeneous uncoded but 
structured data describing instances of 

Fig. 1   Example of using RDF triples and axioms to represent knowledge in the pharmacology domain. The transparent boxes represent RDF subjects and objects, the lines represent predicates between subject and object. 
The gray box shows a necessary and sufficient condition for being a member of the class ‘Proton-pump inhibitor’. The dotted line represents an inferred relationship.
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the same types of medical phenomena 
to allow either query data in a truth 
preserving manner using the biomedical 
context. Brochhausen et al. demonstrated 
that ontology-based representation was 
able to fix problems in querying biobank 
data from different biobanks at the same 
institution, by using RDF and the Ontol-
ogy of Biobanking (OBIB) [32].

• SWTs have shown great promise in 
improving the curation and usage of drug-
drug interaction information [33–36].

These are, of course, only a few examples, 
illustrating the type of problems and the 
scope of applying semantic web technologies 
in the biomedical arena. A PubMed query for 
“’semantic web technologies’ OR ‘semantic 
web technology’ OR SWT[all]” retrieved 
560 hits in December 2018. 

2   Objectives
In the daily practice of an SWT specialist 
working with clinical data and clinical 
research data, requests to map or annotate 
existing clinical data and clinical research 
data with “ontology terms” are quite 
common. One reason for these requests 
is an understandable lack of awareness on 
the consumer side that using ontologies 
productively is an effort that goes beyond 
coding or re-coding existing data, but that 
it requires transforming (mostly) tabular 
data into a graph data format. The results of 
such approaches have been reported in the 
literature [37–39]. Previous works showed 
that using terms from OWL ontologies 
to annotate biomedical data that is not 
graph data may yield some results, such 
as assessing the domain coverage of the 
ontology or semantic integration based on 
the taxonomy that is part of the OWL file 
[40, 41]. However, utilizing the artificial 
intelligence capabilities linked to KRR 
requires the data is transformed to graph-
based data representation. 

Our aim is to provide use cases for using 
preexistent ontologies and SWTs to map 
clinical data and clinical research data in a 
way that realizes the Artificial Intelligence 
capabilities of those technologies. In our 

ontological representation, we follow the 
best practice of reusing existing ontologies 
where possible [42, 43].

Our focus in this effort is to promote 
awareness and understanding of the level 
of re-representation necessary to enable 
true knowledge representation based on 
this data. As such, we present conceptual-
izations of what the data is about, to help 
alleviate the communication gap between 
medical researchers and biomedical infor-
maticians on the one side and computer 
scientists and the artificial intelligence com-
munity on the other side. Researchers and 
data curators in biomedical informatics are 
encouraged to embrace pre-existing tools 
for restructuring tabular data as graph data, 
such as W3C CSV2RDF [44] or RDB2RDF 
[45]. Our aim is to foster understanding of 
the re-structuring of the data that is useful 
for those curating it, especially those with 
medical domain knowledge, to ensure auto-
matic transformation delivers correct and 
meaningful results. We point to ontology 
resources that foster orthogonal and consis-
tent ontology development and demonstrate 
reuse of OWL entities from ontologies 
following those strategies. We demonstrate 
the semantic ambiguity of terms from 
clinical and clinical research standards and 
Common Data Elements (CDEs). Modeling 
ontologies to be one-to-one mappable to 
those artifacts leads to diminishing the 
advantages of the SWT approach by creat-
ing a multitude of study-specific classes in 
a pre-coordination approach.

3   Knowledge Representation 
Applied to Medical Data
3.1   General Approach
In our reuse of pre-existing ontologies we 
have embraced the collaborative, commu-
nity-driven development paradigm in the 
biomedical ontologies community led by the 
Open Biological and Biomedical Ontologies 
(OBO) Foundry [46]. The OBO Foundry is 
a collaborative effort to build a library of 
orthogonal ontologies for both biomedical 
and biological domains following a core set 
of principles. In addition, the OBO Foundry 

provides a consistent way to manage naming 
and identifiers [46]. The results of the OBO 
Foundry are made available through the 
OBO Foundry website [47] and through the 
Ontobee service [48], which allows users 
to explore many OBO Foundry ontologies 
using one term search [49].

Smith and Ceusters stressed that the need 
for a shared upper ontology is a practical 
consequence of the need for collaborative 
ontology development in science [50]. They 
pointed out the relevance of the ontological 
realist methodology in building the OBO 
Foundry. The advantage of adopting a realist 
stance for collaborative ontology develop-
ment is that the appropriateness and correct-
ness of the ontological representation (and 
thus the ontological commitments) is linked to 
scientific research, including experimentation 
and scientific arguments [50]. The linkage 
between the ontological realist methodology 
and the individual OBO Foundry ontologies 
is ensured by the fact that the Basic Formal 
Ontology (BFO) is the upper ontology of most 
OBO Foundry ontologies [51–54]. According 
to Arp et al., all OBO Foundry domain ontol-
ogies have adopted BFO as their upper level 
ontology [53].

As a collective of open biological and 
biomedical ontologies collaborating around 
shared design principles, OBO Foundry has 
broad and expanding term coverage for enti-
ties that one might need to model when cre-
ating semantic representation for data in the 
biomedical domain. However, even with this 
broad coverage, it is not unusual to encounter 
phenomena for which there are no adequate 
terms existing in OBO Foundry ontologies. 
We generally approach this issue in our proj-
ects by working with the developers of the 
relevant ontology, proposing terms and their 
definitions, and requesting their addition to 
the ontology [55]. Because this process is 
not immediate, it is sometimes necessary 
to create a small application ontology that 
has placeholders for the desired terms that 
we can use as we proceed with crafting our 
representations. Of course, having already 
defined and implemented a draft for the 
required term makes the term request easier 
to discuss and fulfill. 

 In some cases, there may not be an 
existing ontology that is a natural fit for 
the term or terms needed. Depending on 



144

IMIA Yearbook of Medical Informatics 2019

Bona et al.

the scale of this gap and the nature of the 
terms in question, including how generally 
useful they are likely to be for the larger 
community, it may make sense either to 
simply develop our own terms for internal 
use in an application ontology, or to initiate 
the development of a new OBO ontology 
that covers the relevant subdomain. Note 
that because BFO provides a full upper-
level theory that is shared by all OBO 
ontologies, and because there are already 
existing interoperable OBO ontologies for 
many areas of biology and medicine, even 
in the case where we develop new terms 
without the intention of releasing them 
as part of a new ontology, these terms are 
not built in isolation but are developed in 
the context of existing OBO ontologies, 
with logical definitions that capture their 
relations to those resources.

3.2   The Cancer Imaging Archive
The Cancer Imaging Archive (TCIA) is the 
National Cancer Institute’s primary resource 
for acquiring, curating, managing, and dis-
tributing images and related data to support 
cancer research [56–58]. TCIA hosts over 
36 million de-identified medical images of 

cancer (28 distinct cancer types) organized 
into 96 distinct collections [59]. TCIA was 
created to support research reproducibility 
and research reuse. 

We are developing PRISM (Platform for 
Imaging in Precision Medicine) as the future 
basis of TCIA and offering this advanced 
informatics platform as an open source, easily 
deployable resource to support other research 
communities. Within the PRISM platform, 
we are developing state-of-the-art technolo-
gies for semantic integration of clinical and 
research information drawn from multiple 
sources. Identified near-term goals and chal-
lenges include: uniform management of 
non-image data; semantic query mechanisms 
and enhanced data exploration; and automatic 
curation of current and new data types. Many 
TCIA collections include non-image data in 
a variety of formats, often as downloadable 
spreadsheet files, which makes them difficult 
to combine or query. Further complicating this 
is the use of different representation schemes 
for similar information in different collections.

Our ongoing work to make these diverse 
non-image data more accessible and usable 
transforms them into shared semantic rep-
resentations in OWL that use OBO Foundry 
resources, and will allow for queries that 
span collections to answer questions such as:

• Which patients in lung cancer collections 
have been diagnosed with metastatic 
colon cancer, and how was that diagnosis 
obtained? 

• Which patients in head and neck cancer 
collections have tumors specifically in 
their oropharynx, and have been diag-
nosed with human papillomavirus, and 
how were those diagnoses obtained? 

Our semantic representations based on 
these data use OBO Foundry ontologies 
including the Human Disease Ontology 
and The Uber Anatomy Ontology (Uberon). 
Instances for individual entries in TCIA col-
lection data are linked to ontology classes to 
explicitly represent locations, disease types, 
diagnosis methods, etc.

Figure 2 shows excerpts of similar 
data contained in two different head and 
neck cancer collections in the TCIA: 
the Head-Neck-PET-CT collection [60], 
which contains non-image data, including 
diagnostic and treatment information for 
patients with head and neck cancer, and the 
HNSCC (Head and Neck Squamous Cell 
Carcinoma) collection [61], which contains 
much of the same information. Though 
using different notation, these collections 
overlap signif icantly in their contents, 

Fig. 2   Data excerpts from two head and neck cancer collections
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Fig. 3   RDF representation of positive HPV status for head and neck cancer records. “Positive” or “+” map to this representation. “Negative” or “-” will map to a representation with a human undergoing the HPV assay, 
not establishing the existence of a papillomavirus infectious disease.

including patient sex and other demographic 
data, tumor staging, HPV status, and an 
indication of the primary tumor location. 
Figure 3 shows our semantically-enhanced 
representation of positive HPV status for a 
patient in a head and neck cancer collection, 
which provides a unique contextually-rich 
and axiomatically-defined representation 
for what the different values (“positive”, 
“negative”, “+”, “-”, “N/A”) represent. 
Note that while in a conversation or even in 
written documentation one might say, “this 
patient’s HPV status is positive,” an “HPV 
status” per se is a fairly nebulous entity 
from the realist perspective, which strives 
to represent things as they actually are. Our 
goal is to represent, in a form even a com-
puter can understand, the relevant portions 
of reality that the authors of this collection 

were trying to describe by creating a col-
umn named “HPV status” and populating 
it with entries like “positive” or “+”. The 
best description we can extract based on that 
information is that at some point a “diag-
nostic process” occurred that involved the 
infected human, and involved some “HPV 
assay”. “HPV assay” is a subclass of OBI: 
assay, defined as “A planned process with 
the objective to produce information about 
the HPV status of the human that is the eval-
uant, by physically examining the human 
or samples taken from their body”. That 
diagnostic process produced a “diagnosis” 
as its output, and if there is some instance of 
the “papillomavirus infectious disease” that 
inheres in that human, the diagnosis is about 
that instance of the HPV infectious disease. 
For the pilot described here, mapping rules 

for the value sets to an ontological repre-
sentation were specified manually and then 
automatically executed in transforming the 
source data into RDF.

These representation patterns are used 
to transform tabular non-image data asso-
ciated with TCIA collections into OWL/
RDF instance data linked and annotated 
with the corresponding ontology terms. 
These data are then loaded into a triple 
store database for reasoning and querying. 
The resulting triple store contains assertions 
linking patient identifiers to RDF instances 
representing patients, affected body parts, 
diagnoses, relations among those, etc. We are 
able to query this database using SPARQL 
(SPARQL Protocol and RDF Query Lan-
guage) to identify patient records matching 
criteria based on fields that were previously 
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not queryable in TCIA collections, as well 
as queries that retrieve results spanning 
collections. Work is ongoing to implement 
this approach for additional data types and 
additional existing TCIA collections, with 
the eventual goal of a shared representation 
for all TCIA non-image data, including the 
ability to automatically curate new incoming 
data as it is submitted.

3.3   The Data Coordinating and 
Operations Center
The IDeA (Institutional Development 
Award) States Pediatric Clinical Trials Net-
work (ISPCTN) is a research network with 
the goal to provide medically underserved 
and rural populations with access to state-
of-the-art clinical trials, apply findings from 
relevant pediatric cohort studies to children 
in IDeA Program state locations, and build 
pediatric research capacity at a national level 
[62]. It is part of the Environmental influ-
ences on Child Health Outcomes (ECHO) 
program, which is funded by the National 
Institutes of Health (NIH) [63–65]. The 
University of Arkansas for Medical Sci-
ences serves as the Data Coordinating and 
Operations Center (DCOC) for the ISPCTN. 
One study undertaken by the ISPCTN deals 
with Neonatal Opioid Withdrawal Syndrome 
(NOWS), aiming to characterize current 
clinical practice in opioid withdrawal in 
newborns. The study data collection form 
includes patient demographics, facility 
characteristics, maternal and fetal expo-
sure, maternal history, pharmacologic and 
non-pharmacologic treatment, and discharge 
disposition. As part of the DCOC mission to 
provide reliable and innovative data coordi-
nation and management, one of the authors 
(MB) was asked to provide an overview of 
how the NOWS data dictionary could be 
translated into a graph-based data represen-
tation using Semantic Web Technologies. 

The NOWS data dictionary consists of 
267 elements that are closely linked to ques-
tionnaire items to be completed by study 
representatives. Examples for those questions 
are: “Was the infant ≥ 36 weeks of gestational 
age?”, “Was there a maternal history of opioid 
use?”, “Did the infant need major surgical 
intervention ?”, and “What lactation interven-

tions were employed?”. The data dictionary 
assigns an item name, a description label, a 
response type, and a response label to each 
data element. There is additional information 
for each element, such as information about 
the questionnaire order and logic.

In Table 1, we present three examples 
illustrating that a one-to-one mapping 
between a data element and an OWL/RDF 
class would be suboptimal. We elaborate the 
shortcomings of one-to-one mapping and 
demonstrate how such mapping would lead 
to losing the advantage of SWT.

The INGAGE data element is one exam-
ple of NOWS data elements that has a yes/
no answer. Though study administrators 
frequently employ this type of questions, the 
information captured that way is particularly 
sparse from the perspective of semantics. In 
a case like this capturing only the response 
(yes, no) does not provide any machine-in-
terpretable semantic information on what 
that piece of data means. Obviously, changing 
the text of the answer to reverse the meaning 
of the answer, if, for example, one changed 
the description label to “Was the infant < 36 
weeks gestational age?” would not be discern-
ible by representing the answer alone. Thus, 
our first aim is to provide semantically-rich 
data that is machine-interpretable. Doing so 
requires capturing the semantics in the form 
of a question and maintaining the association 
between the question and the answer. Figure 
4 shows the semantic presentation we have 
chosen for this INGAGE data element. 

Using a one-to-one mapping approach 
to the INGAGE data element would mean 
creating a class of potential participants in 

an OWL file that were all born with at least a 
gestational age of 36 weeks. Doing so would 
indeed be completely possible and, of course, 
also possible in RDF. If the class created was 
also axiomatically defined, we would lose 
less semantics than with the yes/no answer 
option. However, doing so is not advisable. 
Following that strategy, we would need 
one added class for every study that needs 
a different gestational age as an inclusion 
criterion. If those classes are axiomatically 
defined, we would add a lot of reasoning to 
our ontology, without much gain, except for 
individual studies. From an SWT perspec-
tive, it is much more advisable to ensure 
that all elements that we need to define the 
inclusion criterion do exist in our RDF data. 
For the example at hand, this means we can 
capture the integer value for the gestational 
age for all participants or patients regardless 
of the inclusion criteria of one specific study, 
e.g. NOWS. Using SPARQL, we are then 
able to query for all participants and patients 
that are at least 36 weeks of gestational 
age or at least 34 weeks of gestational age, 
depending on the requirements of the study 
at hand. We do not need to deal with numer-
ous predefined classes in our ontology that 
slow down reasoning. The numerical values 
can now be extracted along with the units of 
measurement and used in calculations, such 
as analyses. For operations that go beyond 
the capabilities of SPARQL, it is advisable 
to run these calculations in tools external to 
the SWT suite. SWTs are, at their core, not 
analysis tools but knowledge management 
tools that can help to feed better and more 
meaningful data into our analysis cycles. 

Table 1   An excerpt from the DCOC’s NOWS data dictionary

Item name

INGAGE

BRTHDTC

INMEDSUSD

Description label

Was the infant ≥ 36 
weeks gestational age?

Date of birth

Indicate the 
medication(s) used to 
treat NOWS for this 
infant at the transferring 
hospital

Response type

radio

[empty]

checkbox

Response label

YN

[empty]

MMBCPUO

Response options

Yes, No

[empty]

Morphine, 
Phenobarbital, 
Methadone, 
Buprenorphine, 
Clonidine, 
Unknown, Other

Data type

INT

DATE

ST
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Date of birth is an extremely common 
data element in clinical data and clinical 
research data. It is also a data element the 
meaning of which is highly contextual. While 
some data repositories specify that this is the 
patient’s or the participant’s date of birth, we 
still regularly find “date of birth” as the form 
or question prompts. Strictly speaking, this 
practice is semantically ambiguous, since 
we can only know contextually that what is 
meant is the date of birth of the patient and 
not, say, the date of birth of the healthcare 
provider. However, typically the context is 
sufficient to elucidate that situation. In the 
data for the NOWS study, it is relevant to 
specify that this is the date of birth of the 
infant, which is the NOWS participant and 
not the date of birth of the mother. The latter 
is also relevant, as NOWS collects numerous 
data elements related to the mother’s medical 
history, such as history of opioid use. The 
RDF presented in Figure 5 shows how these 
issues are disambiguated.

Regarding the mapping of data, we also 
considered the same route rejected for the 
previous example (INGAGE), i.e., creating 
a class that captures a NOWS participant’s 

Fig. 4   SWT representation of INGAGE from Table 1

Fig. 5   SWT representation of BRTHDTC from Table 1
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date of birth. For the same reasons as 
explained previously, we chose not to do 
so. Instead, we wanted to ensure that all 
elements necessary to retrieve that kind 
of information using a SPARQL query to 
match the corresponding pattern of triples 
were present.

Figure 6 shows a representation of 
information about drugs being used in 
the transferring hospital to manage the 
infant’s neonatal opioid withdrawal symp-
tom. The way this data element is set up, 
with discrete answer options, except the 
ubiquitous “other” and “unknown,” pro-
vides data that can easily be semantically 

enriched linking the information to existing 
controlled vocabularies and terminologies. 
The advantage of doing a re-representation 
like the one above lies in a better chance of 
maintaining semantic integrity, if the data 
is integrated with data from other sources, 
using a different level of granularity regard-
ing drug information or using a different 
terminology or controlled vocabulary. 
Using ChEBI identifiers (Chemical Entities 
of Biological Interest) [66] for the active 
ingredients allows the integration of data 
from the NOWS study with data that reports 
drug products using the Drug Ontology 
(DRON) [67–69] as a bridge.

4   Discussion
The projects described above aim to 
enhance pre-existing data by crafting 
detailed semantic representations based 
on axiomatically rich ontologies, and 
using those to re-represent these data. By 
building the semantics directly into our 
representations of the data using freely 
available open biomedical ontologies, 
we make these data understandable and 
useable, both to researchers and software, 
including software that performs auto-
mated reasoning to support producing new 
inferences about the data. 

Fig. 6.  WT representation of INMEDSUSD from Table 1.
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In the PRISM case, this work made 
available key information about TCIA col-
lections that was previously not retrievable. 
Additionally, it supports combining similar 
information across collections, for instance 
clinical data about imaging subjects, that 
provides essential context for understanding 
and analyzing the disease depicted in these 
images. Figure 7 shows a SPARQL query and 
results illustrating this. This query retrieves 
identifiers across two head-and-neck cancer 
collections for records whose subjects have a 
“positive HPV diagnosis” and have also been 

“diagnosed with cancer of the oropharynx”. 
Prior to this effort, a researcher interested 
in investigating HPV diagnoses and tumor 
images in head and neck cancer cases would 
have had to navigate a wiki page, download 
separate spreadsheets, and figure out how 
to interpret and how to query each of those 
spreadsheets in order to make combined use 
of these data. This is already a huge advantage 
for cohort identification including clinical 
data in the TCIA. In order to further facilitate 
this type of investigation using these data, 
work is ongoing within this project to pro-

duce a user-friendly interface that will allow 
investigators to search and access this seman-
tically integrated data without requiring any 
knowledge of ontologies, query languages, or 
other semantic web technologies.

Regarding the Neonatal Opiate With-
drawal project, our effort was exploratory. 
Using the study form as an example, the 
goal of exploring an SWT-based knowledge 
management approach is to assess:
1) The feasibility of representing, curating, 

and extracting all information relevant to 
reporting;

Fig. 7   SPARQL query with results across head and neck cancer collections for individuals with HPV and cancer of the oropharynx
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2) The scope to which pre-existing ontolo-
gies provide coverage for the representa-
tions necessary;

3) Reusability of representation patterns 
across studies;

4) Flexibility and maintainability of knowl-
edge representation against evolving 
needs and objectives of studies.

The project to date has shown that SWT-ori-
ented data representation is able to adequately 
represent the information and data at hand. 
In comparison to an approach that rests 
exclusively on definition of common data ele-
ments, the SWT-enhanced approach provides 
knowledge representation capabilities, such as 
representing context. The coverage of pre-ex-
isting ontologies has been very good. Most of 
the concepts that did not already exist in OBO 
Foundry ontologies were study-specific. At 
this point we cannot make a statement about 
3) and 4) with any certainty, but we can report 
that regarding 3) the generic representation of 
many aspects and the addition of few study 
specific entities suggest that re-use will be an 
option across studies and will create synergies 
for data management.

5   Conclusion
As illustrated by the examples discussed 
above from our ongoing projects working 
with semantic representations of biomedical 
data, mapping data elements directly to ontol-
ogy terms is often not a feasible solution for 
representing the meaning of data in a useful 
way. Even when in some cases such one-
to-one mappings of data elements to newly 
created ontology terms may be feasible, doing 
so comes at the additional cost of increased 
reasoning over the ontology. Furthermore, 
doing so puts an unnecessary burden on 
developers to pre-coordinate information that 
could instead be easily aggregated from the 
knowledge graph at the time a query is run.

For these reasons, we argue that progress 
in the practice of representing biomedical 
data with ontologies requires a shift in think-
ing about how these resources are to be used: 
rather than mapping data elements directly 
to classes or individuals in an ontology, we 
work to always provide a full graph represen-
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tation of the patterns of elements involved 
in relaying the meaning behind the data 
elements. This allows developers to begin 
with a set of data elements to identify the 
elements needed in their ontology and allows 
straightforward creation of RDF based on 
instance data coming from tabular and other 
less knowledge-structured formats. Toward 
that end, one of the authors’ ongoing projects 
establishes a web repository of ontology use 
patterns built on SWT to promote open shar-
ing and discussion of applying such patterns 
to represent biomedical instance data.
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