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Abstract: The year 2020 will be carved in the history books—with the proliferation of COVID-19
over the globe and with frontline health workers and basic scientists worldwide diligently fighting
to alleviate life-threatening symptoms and curb the spread of the disease. Behind the shocking
prevalence of death are countless families who lost loved ones. To these families and to humanity
as a whole, the tallies are not irrelevant digits, but a motivation to develop effective strategies to
save lives. However, at the onset of the pandemic, not many therapeutic choices were available
besides supportive oxygen, anti-inflammatory dexamethasone, and antiviral remdesivir. Low-dose
radiation (LDR), at a much lower dosage than applied in cancer treatment, re-emerged after a
75-year silence in its use in unresolved pneumonia, as a scientific interest with surprising effects in
soothing the cytokine storm and other symptoms in severe COVID-19 patients. Here, we review
the epidemiology, symptoms, immunological alterations, mutations, pharmaceuticals, and vaccine
development of COVID-19, summarizing the history of X-ray irradiation in non-COVID diseases
(especially pneumonia) and the currently registered clinical trials that apply LDR in treating COVID-
19 patients. We discuss concerns, advantages, and disadvantages of LDR treatment and potential
avenues that may provide empirical evidence supporting its potential use in defending against
the pandemic.
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1. Introduction

Humans have been living in a world affected by the novel coronavirus disease (COVID-
19) for more than a year. Starting from a small group of infections, the highly infectious
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral strain has caused over
213 million reported infections, leading to ~4.46 million deaths so far [1]. Among the closed
cases that had an outcome of either recovery and discharge or death, the case fatality rate is
~2% [1]. Although it has been argued that social measures have been largely ineffective [2],
without the assistance of non-pharmaceutical interventions such as stay-at-home, use of
sanitizers (hand washing), early case detection, and face masking, it is unlikely that the size
of the outbreak can be mitigated or reduced [3]. Whereas active cases temporally declined
in February and June 2021, they have rapidly risen again reaching an even higher record
set in late April, and reaching over 744,000 daily new cases as of 19 August 2021 (among
infected patients, 0.6% being in serious conditions) [1].

As an infectious disease, COVID-19 can be transmitted from human to human through
respiratory droplets and aerosols created within a short distance, as well as prolonged
interaction [4]. The World Health Organization (WHO) presented the “three Cs” as places
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with higher COVID-19 spreading risk: Crowded places with many people nearby, close-
contact settings, where close-range conversations take place, and confined/enclosed spaces
with poor ventilation [5]. These places include restaurants, bars, fitness facilities, theaters,
and museums where people tend to be crowded and less fresh air is available. Thus, social
distancing (at least 2 m apart and less than 30-min of close contact) has been advocated as
a measure to reduce cluster transmission [6].

Similar to the seasonal flu, COVID-19 is a viral, respiratory illness. Whereas the flu
results from an influenza virus infection, COVID-19 is caused by a new type of coronavirus—
SARS-CoV-2 [7,8]. SARS-CoV-2 is one of the seven pathogenic coronaviruses that cause
human respiratory diseases, which also include SARS-CoV, MERS-CoV (Middle-East
respiratory syndrome coronavirus), HCoV-OC43 (human coronavirus OC43), HCoV-HKU1
(human coronavirus HKU1), HCoV-NL63 (human coronavirus NL63), and HCoV-229E
(human coronavirus 229E) [9].

2. Epidemiology of COVID-19

Although the mortality data of COVID-19 are always compared with those of the
flu as both induce severe respiratory symptoms that can lead to death, caution must be
exercised when interpreting incidence. The Center for Disease Control (CDC) in the United
States of America (USA) estimates the seasonal influenza mortality to be at ~0.1% over
the past years [10]. In contrast to indirect counting as in the case of the flu, the CDC
collects each COVID-19-related death report directly. Hence, researchers suggested that a
comparison between the weekly deaths due to COVID-19 or the flu could be a more valid
method [11]. For example, in the USA, the weekly flu deaths were around 500 in early 2020
and decreased at a later time in the year, whereas the weekly COVID-19 deaths soared to
over 16,000 and fluctuated with time (Figure 1) [12]. This fluctuation may result from a
shortage of ventilators and limitations associated with the work of health providers.
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Figure 1. Weekly death analysis of COVID-19 and influenza in the USA. Data may lag by an
average of 1–2 weeks, so the trend of decline in recent weeks may not accurately reflect the current
situation. Available online: https://data.cdc.gov/NCHS/Provisional-COVID-19-Death-Counts-by-
Week-Ending-D/r8kw-7aab (accessed on 24 August 2021).

Several situations complicate the statistics and treatment of COVID-19, including
co-infection with SARS-CoV-2 and the common flu virus simultaneously, or infection with
SARS-CoV-2 itself rendering existing diseases to deteriorate further and causing death [13].
Although asthma was associated with severe diseases during past influenza epidemics,
and respiratory viruses were recognized as cause of acute exacerbations of asthma, sci-
entific analyses did not correlate asthma with a higher severity or mortality in cases of

https://data.cdc.gov/NCHS/Provisional-COVID-19-Death-Counts-by-Week-Ending-D/r8kw-7aab
https://data.cdc.gov/NCHS/Provisional-COVID-19-Death-Counts-by-Week-Ending-D/r8kw-7aab
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COVID-19 [14]. As of early 2021, scientists still could not draw definitive conclusions on
the correlation between asthma and COVID-19 outcomes due to various potential bias
factors [15,16]. However, patients with dermatologic conditions or with gastrointestinal or
liver ailments receiving drugs that affect the immune system may have atypical presenta-
tions of COVID-19, such as no fever [17–19]. Given the devastating influence of COVID-19
on the lung, chronic obstructive pulmonary disease (COPD) patients may have a higher
risk of contracting COVID-19 with severe pneumonia and poor outcomes [20]. Compared
to non-COPD patients, hospitalized COPD patients infected with the SARS-CoV-2 virus are
2.6 times more likely to experience admission to the intensive care unit (ICU), invasive me-
chanical ventilation, or death [21,22]. Although COVID-19 is a growing concern for COPD
patients, the latter might be “protected” from severe consequences with appropriate in-
haled corticosteroids [21,22]. For COVID-19 patients receiving systemic anticancer therapy,
extra caution needs to be taken due to possible treatment-induced immunosuppression [18].
It has been considered that patients are at elevated risk of COVID-19-associated compli-
cations in scenarios that include diabetes, COPD, cardiovascular diseases, hypertension,
malignancies, and infection with the human immunodeficiency virus (HIV). Patients who
have received chemotherapy in the last 3 months, extensive radiotherapy, bone marrow or
stem cell transplants in the last 6 months, or disruption of their immune system are also at
increased risk [23,24].

3. Symptoms and Transmission of COVID-19

COVID-19 patients develop symptoms similar to those caused by the common flu,
such as fever, cough, fatigue, body aches/muscle pain, headache, sore throat, shortness of
breath, nausea, vomiting, or diarrhea [25–27]. One peculiar symptom that distinguishes
COVID-19 from the flu is the loss of taste (dysgeusia) or smell (anosmia). Interestingly,
this was not recognized as one of the criteria for testing until a significant portion of
patients reported anosmia as the primary presenting symptom [28,29]. Notably, when a
medical researcher who experienced a rapid onset of anosmia did not qualify for COVID-19
assessment, scientists signaled an alarm and persuaded decision-makers to include this
symptom as one of the criteria [30].

As the absence or presence of COVID-19 signs and symptoms are not accurate enough
for a reliable diagnosis, the standard method of diagnosis is real-time reverse transcription-
polymerase chain reaction (RT-PCR), one of the most sensitive and accurate laboratory
methods to detect viral ribonucleic acid (RNA) [31–34]. Upper respiratory specimens,
including nasopharyngeal swab, oropharyngeal swab, nasal mid-turbinate specimen,
anterior nares specimen, and saliva specimen, are collected for initial diagnostic testing [35].
In addition, as a traditional fast diagnostic procedure, chest computed tomography (CT)
scans have been applied as a complement to RT-PCR for diagnosing COVID-19 due to its
high sensitivity [36]. Typical and common CT findings include pulmonary parenchymal
ground-glass opacities and consolidation, affecting at least one lobe [37]. In contrast to
their sensitivity, the specificity of chest CT scans is relatively low—for instance, the CT
findings overlap with signs of other infections, such as influenza, SARS, MERS, and other
viral pneumonia [38,39]. Therefore, the CDC and ACR (American College of Radiology)
do not recommend chest imaging as a first-line test or routine screening for COVID-19
as it is insufficient for diagnosis [40]. CT scans were recommended only for hospitalized,
symptomatic patients with clinical indications for imaging.

The vast majority of COVID-19 patients experience mild or moderate symptoms—
ranging from no symptoms to cold-like symptoms and to mild pneumonia. Some patients
may have long-term effects, including neurological [41], cardiac, and respiratory harm [42],
as well as mental health problems, and other potential challenges, such as business fail-
ure, unemployment, health inequality, social isolation, and even domestic abuse [43,44].
Unfortunately, 15% of COVID-19 patients develop severe symptoms (requiring oxygen)
and 5% present with critical infections (requiring ventilation), and present with breathing
difficulties, bluish face or lips, sudden confusion, serious pneumonia, and even respiratory
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failure [45]. In critical cases, patients end up with complications including acute respiratory
distress syndrome (ARDS), sepsis, septic shock, and multi-organ failure (heart, kidney),
and succumb to death [46–48]. It was also found that the infection was more likely to
affect elderly individuals with chronic comorbidities, including hypertension, diabetes,
cardiovascular disease, and cerebrovascular disease [46,49].

3.1. Transmission and Basic Reproduction Number

The COVID-19 infection transmits easily through coughing, sneezing, singing, talking,
and breathing heavily, as long as enough virus particles get into the other person’s mouth,
nose, or eyes [5]. The incubation period between exposure and symptom onset ranges
from 1 to 14 days, with a median time of 5 to 6 days [50]. Significantly, patients can shed
the virus even 2 days before showing any symptoms, thus greatly enhancing the infection
rate. However, the virus is most transmissible (viral shedding peak) when the RNA level is
highest, which coincides with the onset of the symptoms [50].

One of the most discussed terms regarding the transmission capacity of COVID-19 is
R0, or basic reproductive number, a mathematical and epidemiological metric to estimate
the transmission potential of an infectious disease [51]. The term R0, pronounced “R
naught”, originated from demography and ecology studies for calculating the number
of offsprings born to one female in her entire life [52]. Epidemiologists then adopted the
concept of R0 and defined it as the expected average number or a range of secondary cases
in which one case would infect a completely susceptible population [53–56]. In general,
if R0 is greater than 1 (R0 > 1), then each infected individual causes more than one new
infection, indicating an outbreak or epidemic. If R0 is less than 1 (R0 < 1), then each infected
individual causes less than one new infection, indicating a reduction or dying out of the
disease [51,56,57]. In the context of COVID-19, R0 values range from 1.3 to 7.7 (which is
more variable than the WHO-reported R0 range of 2–4), according to different variables,
different methods for modeling, and different estimation procedures [51,58–63]. Specifically,
an estimate of the mean R0 for COVID-19 in China for the period of January to April 2020
was 1.58–2.24, whereas the preliminary estimation of the mean R0 in January 2020 was
2.24–3.58, reflecting the possible effectiveness of lockdown and control strategies [62,64,65].

3.2. Additional Transmission Routes

Two additional possibilities for COVID-19 transmission attracted attention: Pre-
symptomatic (virus detected before symptom onset) and asymptomatic (virus detected
without symptom having developed) transmission [66]. One report claimed that 12.6% of
cases might be transmitted during the pre-symptomatic period [67], and other models sug-
gested that up to half of infections were caused by pre-symptomatic transmission [66,68].
Although the feasibility of actual transmission is still unclear [69], pre-symptomatic and
asymptomatic transmissions, along with the majority of cases with mild symptoms, might
contribute not only to disease sustainability but also to tolerance across populations.

In addition to the pre-symptomatic transmission and asymptomatic transmission,
the super-spreading event is another significant and challenging situation. Though a
recent study shows that super-spreading may be largely driven by heterogeneity in contact
behavior [70], and maybe overestimated due to biases in data collection [70]. Furthermore,
patients can get re-infected on separate occasions, which means prior exposure to COVID-19
might not guarantee a hundred percent immunity to the virus whose genome is constantly
mutating [71]. This also indicates that when the immune system fails to mount a protective
response, viral reinfection, memory antibody levels reduction, and viral nucleic acids
persistence could contribute to the second wave of virus replication and another positive
test result [72,73].

4. The Structure and Pathogenesis of SARS-CoV-2

Coronaviruses are not newly identified pathogens. In 1968, an informal group of
virologists recognized a new group of rounded shape viruses under the electron micro-
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scope. They named them coronavirus, recalling the characteristic appearance of the solar
corona [74].

The structure of the coronavirus consists of enveloped, spherical, crown-shaped pro-
teins covering the positive-sense, single-stranded RNA (+ssRNA). Its genome size is ~
30 kb, classifying it as the largest of all RNA viruses [75]. It is thought that bats were
the source of the initial coronavirus infections in humans and animals by potential cross-
species transmission and spread [76]. Similar to other coronaviruses, the structural proteins
of SARS-CoV-2 consist of a membrane (M) glycoprotein, an envelop (E) protein, a nu-
cleocapsid (N) protein, and a spike (S) protein (Figure 2) [77]. The coronavirus particles
are pleomorphic, without a defined structure, and the RNA is contained in the N pro-
tein [78,79]. The M glycoprotein, known as matrix protein, forms the outside layer of
the virus, forming a connection between the membrane and the N protein through the
transmembrane domain [78,79]. Rather than producing the lipid envelop by itself, the virus
uses the host’s lipids for replication and morphogenesis [78,79]. The S protein, prominent
on the viral envelop similar to a crown, is critical for the viral entry process [78,79].
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Figure 2. SARS-CoV-2 structure. Similar to other coronaviruses, SARS-CoV-2 contains a membrane
(M) glycoprotein, an envelop (E) protein, a spike (S) protein, and a nucleocapsid (N) protein (not
shown at the outer layer).

Although most human coronavirus infections are mild, three coronavirus-induced
outbreaks—SARS, MERS, and COVID-19—burst out in the last 20 years. Notably, the
two viruses causing SARS and COVID-19, namely SARS-CoV and SARS-CoV-2, share the
same route in infecting humans by binding to human virus entry receptor angiotensin-
converting enzyme 2 (ACE2) (Figure 3) [80–83]. Research showed that the binding affinity
of SARS-CoV-2 to ACE2 was similar to or even higher than the binding affinity of SARS-
CoV to ACE2, consistent with the high structural similarity between SARS-CoV-2 and
SARS-CoV [83–86]. Additionally, neuropilin-1 (NRP-1) and the tyrosine-protein kinase
receptor UFO (AXL) were identified as receptors to facilitate SARS-CoV-2 infection of the
human respiratory system [87–90]. The overall structural homology and high affinity to
the same receptor of these two viruses may explain the high transmission rates of SARS
and COVID-19 from human to human [84,85].

Similar to other coronaviruses, the SARS-CoV-2 entrance process consists of three
steps (Figure 3) [91]:

1. Host cell attachment and receptor binding;
2. Host cell membrane and viral membrane fusion;
3. Viral genomic material residing in the host cell.
Coronaviruses employ a class 1 viral fusion protein, the homotrimeric S glycoprotein,

which protrude from the viral surface to attach and bind to cell receptors [86,92–95]. SARS-
CoV-2 S protein, in which a receptor-binding domain (RBD) structure is similar to that of
SARS-CoV as it shares around 75% overall amino acid sequence identity, attracts ACE2
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as a receptor to infect target cells [83,96–98]. ACE2 is not only highly expressed in lower
respiratory tract cells such as type II alveolar cells (AT2) of the lung, but is found in organs
such as the heart, kidney, and gastrointestinal tract, as well. This presumably contributes
to COVID-19-induced ARDS, heart attack, kidney failure, and digestive syndromes [91,99].
During the infusion step, the S glycoprotein-ACE2 complex is proteolytically cleaved at a
polybasic cleavage motif (PPAR) at the junction of two subunits of the spike protein (S1
and S2) by type 2 transmembrane serine protease (TMPRSS2) expressed on the surface
of the host cell, leading to S protein activation and conformational alterations [100–103].
Similar to other coronaviruses, the S protein in SARS-CoV-2 is composed of two functional
subunits, designated S1 and S2, of which the S1 subunit comprises the RBDs and stabilizes
the prefusion state of the viral membrane-anchored S2 subunit [83,95,104]. Upon the
dissociation of S1 from ACE2 by TMPRSS2, S2 undergoes a transition from a metastable
pre-fusion state to a more stable post-fusion state, promoting the virus to enter target
cells and release its genomic material into their cytoplasm [83,86,91–94]. Consistent with
the sequencing map, S2 fusion machinery is more conserved than the S1 subunit, in line
with the discovery that S1 is more exposed at the viral surface and is subject to more
stringent pressure from the host immune system compared with the S2 subunit [83,104].
The sequence overall identity and structure conservation of non-RBD regions in the S
protein such as the S2 subunit suggest potential targets for neutralizing antibodies and
vaccines [83,86].
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Figure 3. SARS-CoV-2 infection route. Infected COVID-19 patients can spread the virus by sneezing
or coughing, or by any other route that drops the infectious particles onto another surface. When
a person contracts the virus, the virus recognizes its binding target, ACE2, which is expressed on
type II alveolar cells (AT2) in the lower respiratory tract. In the fusion step, the S protein on SARS-
CoV-2 binds to ACE2, followed by cleavage of the S glycoprotein-ACE2 complex at polybasic motif
(PPAR) at S1/S2 by type 2 transmembrane serine protease (TMPRSS2) and other proteases, leading
to conformational alteration and activation of the S-glycoprotein. After fusion with the host cell
membrane, the virus releases its genomic material into the cytoplasm.

5. Mutations of SARS-CoV-2

Similar to other RNA viruses, SARS-CoV-2 may develop mutations in a relatively
easier manner compared with DNA viruses, especially in the spike region due to genetic
drift [85]. Genomic sequencing allows the identification and monitoring of changes in
SARS-CoV-2, which helps in understanding and predicting the associated characteristics
and their influence on public health [105]. The surveillance of emerging variants plays
an important role in detecting viruses that spread rapidly, cause more severe symptoms,
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evade detection by diagnostic tests, reduce susceptibility to therapeutics with monoclonal
antibodies, and escape natural or vaccine-induced immunity [105].

As early as March 2020, a D614G mutation was identified in the S glycoprotein of
SARS-CoV-2, namely a single amino acid replacement of aspartic acid (D) with glycine
(G) [106,107]. By April 2020, G614 has become the global dominant variant in the pan-
demic compared to the D614 form originally identified in the first human cases in Wuhan,
China [106,108]. This variant is caused by an A (adenine) -to- G (guanine) nucleotide
mutation at position 23,403 relative to the Wuhan reference strain, and is accompanied
by three C (cytosine) -to-T (thymine) mutations: One in the 5’UTR (untranslated region)
at position 241, one silent mutation at position 3307, and one missense mutation in RNA-
dependent RNA polymerase (RdRp P323L) at position 14,408 [106,109]. G614 is associated
with potentially higher viral load in COVID-19 patients and patients of younger age, but
not with disease severity or mortality, compared with its counterpart D614 form [106,107].

As reported in November 2020, a unique variant of SARS-CoV-2 associated with
farmed minks was identified in humans in Denmark [110]. This “Cluster 5” variant
contains three substitutions (I692V and M1229I, and Y453F in RBD) and one deletion (HV
69–70 deletion, namely histidine and valine at positions 69 and 70, respectively) in the S
protein that had not been observed previously [111]. Concerning the multiple mutations in
this variant, there was worry that viruses can potentially reduce antibody neutralization
in humans, leading to attenuated immune protection [111]. With extensive investigation
and surveillance, no more cases related to the Cluster 5 variant have been observed since
September 2020, suggesting that it is no longer circulating [110,111]. However, variants
with Y453F (tyrosine substituted by phenylalanine at position 453) mutation on the S
protein are still common in the Netherlands and have been reported sporadically in several
other countries including the Russian Federation, South Africa, Switzerland, and the
USA [111].

More complicated than the above variants, lineage B.1.1.7 (also known as 20B/501Y.V1)
is a phylogenetic cluster that is widespread and outcompeting an existing population of
circulating variants with a more transmissibility rate observed in the United Kingdom [108].
B.1.1.7 contains an unusually large number of mutations, particularly in the S protein, in
which N501Y (asparagine replaced by tyrosine at position 501, one of the key contact
residues in RBD) was correlated with potentially higher binding affinity to human and
mouse ACE2 [112–114]. Globally, two other variants with multiple S protein mutations
including N501Y but without HV 69–70 deletions have been circulating rapidly in Australia
and South Africa [115,116]. In addition to N501Y, lineage B.1.1.7 was identified with
other mutations, including thirteen non-synonymous mutations, three deletions, and six
synonymous mutations which may be induced by chronic infection [112]. Since December
2020, N501Y has become the top variant of SARS-CoV-2 worldwide, identified in more
than 1.1 million individual samples sequenced for COVID-19 virus and clinically recorded
since its first detection in February 2020 [117,118]. Since June 2021, the T478K and L452R
variants are growing quickly, culminating to 1 million in a total of the sequenced samples.
These variants are among the top ten harboring RBD region mutations (the variants also
include T478K, K417T, S494P, F490S, S477N, N439K, L452R, K417N, and E484K) [117,118].

6. The immunological Changes Associated with COVID-19

When the viral infection starts (i.e., when SARS-CoV-2 reaches the cells that line
the respiratory tract), the host responds by triggering the immune system to fight back.
Although most patients recover successfully, a few but a non-negligible proportion of
infected patients develop severe symptoms characterized by severe pneumonia, ARDS,
lymphopenia, exhausted lymphocytes, cytokine storm, and possibly antibody-mediated
enhancement of viral entry [47,119,120]. While the immune response attempts to defend
against the infection, variable(s) yet to be clearly elucidated often counterbalance immune
benefits leading patients to be hospitalized. Although the symptoms and outcomes are
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extraordinarily heterogeneous, understanding the relationship between disease severity
and the various immunological changes that occur is under intense investigation [121].

In general, when humans are virally infected, specific cells produce interferons to
block viruses from reproducing. Furthermore, the immune system marshals antibodies to
target the invaders [122]. Specifically, IFN-γ (interferon-gamma)—a lymphokine secreted
by activated T cells—directs and regulates the synthesis of IP-10 (IFN-γ-inducible protein-
10), a protein involved in the inflammatory response [123]. IP-10 directs the recruitment
of T-helper-1 (Th1) cells for both normal host defense against intracellular pathogens of
the lung and acute and chronic inflammatory processes [124]. For example, studies in
mice showed that a strong interferon response is crucial in the timely resolution of SARS-
CoV and MERS-CoV infections. Alternatively, lethal inflammatory immune reactions are
activated if the interferon response is delayed [125,126]. Significantly increased IP-10 levels
have been shown in both SARS and MERS patients by independent groups over the past
years [127,128].

In addition to the COVID-19 common symptoms such as fever and dry cough, bilat-
eral patchy shadows, or ground-glass opacity on chest CT images, indicate lung damage.
Together with CT scans that reveal damage to the lung, patients also present with high
levels of IL-1B (interleukin-1B, an inflammatory cytokine), IFN-γ (T helper cytokine), IP-10,
and MCP-1 (monocyte chemoattractant protein-1), which is similar to the association of
these pro-inflammatory cytokines with pulmonary inflammation in SARS patients [47,129].
Depressed total lymphocytes counts (lymphopenia), prolonged prothrombin duration, and
elevated lactate dehydrogenase were documented as the three most common abnormal-
ities in hospitalized patients [46]. One of the early clinical reports in the city of Wuhan
observed that compared to non-ICU patients, ICU patients had higher plasma levels of IL-2
(interleukin-2, a T helper cytokine), IL-7 (interleukin-7, a cytokine essential for lymphoid
cell survival), IL-10 (interleukin-10, an anti-inflammatory cytokine), GCSF (granulocyte
colony-stimulating factor), IP-10, MCP-1, MIP1α (macrophage inflammatory protein 1α, a
small inducible cytokine involved in inflammatory responses), and TNF-α (tumor necrosis
factor α, a pro-inflammatory cytokine) [47,130,131]. It was also found that white blood
cell count, neutrophil count, the levels of D-dimer (indicator for blood vessel dysfunction
and clot formation), blood urea, and creatinine levels continued to increase, while lympho-
cyte counts continued to decrease in non-surviving patients [46,132]. Despite COVID-19
being such a heterogeneous disease affecting patients with different ethnicities, ages, and
underlying conditions, the triad of cytokines IP-10, IL-10, and IL-6 was identified to be
severity-related, which might help in anticipating disease progression and the length of
hospitalization [133].

7. Therapeutic Strategies

In general, three pathologic mechanisms might be associated with poor prognosis [46]:
Virus-induced neutrophilia related to the cytokine storm;
The sustained inflammatory process related to activated coagulation;
Virus-caused hypoxia and shock related to multi-organ dysfunction.
Hence, a cytokine storm, which is associated with high concentrations of pro-inflammatory

cytokines in the plasma, is positively correlated with the severity of COVID-19 [47].
Several approaches to treat COVID-19 have been advocated. Symptomatic manage-

ment and oxygen therapy are two mainstay clinical treatments [119]. Furthermore, in
early studies, convalescent plasma transfusion showed an effective clinical outcome for
patients with severe and critical symptoms. Whereas the preliminary data were promising,
a retrospective study calculated that the effective rate was below 60% [134,135]. In a survey
of 16,287 UK hospitalized patients, the convalescent plasma treatment made no significant
improvement in the survival of patients who received the treatment compared to those
who did not [136]. Numerous clinical trials have been undertaken to explore additional
options to treat COVID-19, with ~7662 COVID-19 ongoing studies, among which 1382
studies focus on pharmaceuticals [137,138], as highlighted below.
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In a retrospective study of clinical treatment of hospitalized COVID-19 patients in
early 2020, most patients received antiviral therapy (oseltamivir), many received antibacte-
rial therapy (moxifloxacin, ceftriaxone, or azithromycin), and a few received glucocorticoid
therapy when no specific treatment was recommended except supportive care in early
2020 [46]. Antibacterial drugs proved to be ineffective, and neither oseltamivir nor methyl-
prednisolone (a strong corticosteroid) improved outcomes. Among those admitted into
the ICU—patients who also often presented with hypertension, diabetes, cardiovascular
disease, or cerebrovascular disease—high-flow oxygen therapy, non-invasive ventilation,
and invasive ventilation (including extracorporeal membrane oxygenation as a rescue
therapy) were applied according to specific individual situations [46].

During the early chaotic period of the COVID-19 pandemic, no antiviral drugs were
efficacious until remdesivir showed limited improvement in shortening the recovery time
in hospitalized adult patients [139]. Nonetheless, the cytokine storm-induced morbidity
and mortality remained elevated [140]. Baricitinib, an inhibitor targeting the intracellular
signaling pathway of cytokines, including IL-6, IL-10, IFN-γ, and GMCSF (granulocyte-
macrophage colony-stimulating factor), improved patients’ quality of life. It also reduced
conventional inflammatory parameters and IFN biomarkers (serum IP-10 level and 25-
gene IFN score) in clinical trials treating monogenic IFN-mediated auto-inflammatory
diseases [141]. Recently, the United States Food and Drug Administration (FDA), issued an
emergency use of the anti-inflammatory drug baricitinib, in combination with the antiviral
drug remdesivir, for the treatment of dysregulated inflammation for severe COVID-19
patients [142]. It was found that baricitinib plus remdesivir were superior to remdesivir
alone in shortening the recovery time and improving clinical status with fewer serious
adverse events in patients with COVID-19 [143].

Although the US FDA has authorized the emergency use of baricitinib in combination
with remdesivir, additional investigation of treatment methods is needed due to the many
confounding factors. The compensating effect of other key events in the involved molecular
pathways is always a complicated issue for molecular targeting drugs. This is also the
reason for clinical trials with various drug combinations, conducted in the hope of obtaining
co-effective outcomes such as shortened recovery and reduced mortality. Considering the
unbalanced immune conditions in severely ill patients, the mortality rate was not reduced
significantly, although there was some improvement (Figure 4).
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8. Vaccine Development

As an important pandemic control measure, various groups began seeking a safe
and effective vaccine for this highly transmissible disease once the SARS-CoV-2 genome
sequence was released [144,145].

The classical vaccine platforms commonly used for humans include a whole-inactivated
virus, live-attenuated virus, protein subunit, and virus-like particle [146]. These platforms
successfully prevented polio, MMR (measles, mumps, and rubella), seasonal influenza, and
human papillomavirus, respectively [146]. As of August 2021, four out of 20 vaccines under
the WHO evaluation process have been based on classical platforms, such as inactivated
antigens [147]. Traditional virus-based vaccine development methods, such as attenuated
or inactivated pathogens, although effective, require a large number of active viruses that
only biosafety level 3 laboratories can safely produce in the case of COVID-19 [148]. Rather
than dependence on the ability to culture live viruses, sequence information of the viruses
alone can initiate the development of next-generation vaccines, leading to highly adaptable
platforms in facing pandemics such as COVID-19 [146]. The next-generation platforms
include viral vector vaccines, nucleic acid-based vaccines (DNA or mRNA), and antigen-
presenting cells. For these platforms, the vesicular stomatitis virus-based Ebola virus
vaccine (rVSV-ZEBOV) is a representative example—a recombinant, replication-competent
vaccine consisting of a VSV vector engineered to express the main glycoprotein of the Zaire
Ebola virus [146,149,150]. According to the WHO, as of 13 August 2021, 110 COVID-19
vaccine candidates are in clinical development, among which the protein subunit platforms
account for 34%, followed by non-replicating viral vector, DNA, inactivated virus, and
RNA platforms (15%, 9%, 15%, and 16%, respectively) [151]. Interestingly, intramuscularly
injectable candidate vaccines with two doses were found to be the preferred choice among
the candidates in the pre-clinical phase, compared with vaccines with other dosages (one
dose or three doses) and routes of administration (oral, subcutaneous, intradermal, or
intranasal) [151].

Having been studied for more than three decades, the use of mRNA is not a novel ap-
proach for vaccine development [152,153]. The search for effective vaccine tools that can be
quickly designed and applied with flexible adaptiveness to antigenic changes in circulating
strains is constant, together with updated strategies to combat newly emerging viruses and
potential pandemics [146]. Previous efforts to combat SARS and MERS outbreaks acceler-
ated the understanding of the epidemiology, pathogenesis, and diagnosis of SARS-CoV-2,
contributing to the accelerated development of therapies as well as vaccines [148,154].
Although the pandemic worsened for almost 1 year until the first COVID-19 vaccine was
developed, the turnaround cycle of a mature product for such broad recipients has been
lightning-fast compared with vaccines for measles (~10 years), hepatitis B (~15 years), and
especially meningitis (~90 years) [145].

Late in 2020, two mRNA-based vaccines were sequentially granted emergency use
authorization by the FDA: The Pfizer-BioNTech (on 11 December 2020) and Moderna (on
18 December 2020) COVID-19 vaccines [155,156]. Pfizer-BioNTech (a more than 170-year-
old pharmaceutical conglomerate collaborating with a previously little-known German
biotechnology company) developed a lipid nanoparticle-formulated, nucleoside-modified
mRNA (modRNA) vaccine called BNT162b2, which encodes the membrane-anchored
pre-fusion full length of SARS-CoV-2 S protein whose conformation is locked by two
proline mutations [157]. Most vaccinated healthy adults in phase 1 and 2 clinical trials
produced S-specific CD8+ and type 1 helper T-cells (Th1 CD4+) with a high serum level
of IFN-γ [157]. Although another candidate called BNT162b1, which encodes a secreted
trimerized SARS-CoV-2 receptor-binding domain, showed a similar immunogenicity profile
(antibody responses), BNT162b2 elicited a milder systemic reactogenicity profile (such as
fatigue, headache, and fever) than what BNT162b1 caused in recipients, particularly in
the elderly [158]. This stimulated further phase 2 and 3 clinical trials with the BNT162b2
vaccine, with the two-dose regimen showing high efficacy irrespective of age, sex, ethnicity,
body-mass index, and pre-existing comorbidities [159,160].
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Similar to Pfizer, Moderna (a pioneer mRNA biotech company founded in 2010), in
collaboration with the Vaccine Research Center of the US National Institute of Allergy
and Infectious Diseases (NIAID), developed a lipid nanoparticle-encapsulated mRNA
vaccine called mRNA-1273, which encodes a pre-fusion stabilized full-length SARS-CoV-2 S
protein [161,162]. In preclinical studies in nonhuman primate models, mRNA-1273 induced
Th1 CD4+ cells and interleukin-21-producing CD4 T follicular helper (Tfh) cell responses,
with low or undetectable Th2 or CD8 T-cell responses [163]. In addition to detecting robust
SARS-CoV-2 neutralizing activity, rapid protection of airways, and absence of pathologic
alterations in the lung of nonhuman primates, a phase 3 clinical trial involving more than
30,000 volunteers proved the mRNA-1273 vaccine to be effective in preventing COVID-19
without safety concerns [163,164].

Almost simultaneously to Pfizer and Moderna, Oxford University and AstraZeneca
developed a recombinant adenovirus vaccine for COVID-19 consisting of a replication-
deficient chimpanzee adenoviral vector (ChAdOx1), which contains the gene that encodes
the codon-optimized full length of SARS-CoV-2 S protein [165,166]. This vaccine was
redesigned from ChAdOx1 MERS, and a single dose of the vaccine proved to be protective
for nonhuman primates (rhesus macaques) against MERS-CoV-induced disease [166,167].
In preclinical studies, ChAdOx1 nCoV-19 vaccine elicited robust humoral and cellular
immune responses in both mice (strong Th1 response with high levels of IFN-γ and TNF-α
and low levels of IL-4 and IL-10) and rhesus macaques (significantly increased spike-
specific antibodies after the second immunization and detectable T cell responses when
challenged by S protein) [166]. Follow-up clinical trials showed that, compared to the ~95%
efficacy of Pfizer-BioNTech (BNT162b2) and Moderna (mRNA-1273) vaccines, the overall
efficacy of the Oxford-AstraZeneca COVID-19 vaccine (ChAdOx1 nCoV-19) was above
70%: 60% in the group receiving two standard doses (SD/SD cohort, 5 × 1010 viral particles
per dose), and 90% in the group receiving a half-dose followed by a standard dose (LD/SD
cohort), respectively [165]. Unlike the two previously mentioned vaccines, ChAdOx1
nCoV-19 is the first reported non-profit vaccine, committed to low-income and middle-
income countries with a promised price of USD 2–3 per dose [168–170]. In particular,
concerning transportation, the ChAdOx1 nCoV-19 vaccine can use routine refrigerated
cold-chain delivery (2–8 ◦C), which is more affordable and practical compared with the
ultra-low temperature freezers (−80 ◦C) required for mRNA-based vaccines [165,168].
On 15 February 2021, the WHO listed two additional versions of ChAdOx1 nCoV-19—
produced in the Republic of Korea and in India, rolling them out for emergency use in
more than 70 countries across six continents and heading to cover 142 countries [171,172].
Several European Union (EU) countries temporarily suspended the use of this vaccine
due to reports of 37 thrombotic events, including 15 deep vein thrombosis cases and 22
pulmonary embolism cases, among over 17 million vaccinated individuals in the EU and
UK [172,173]. The decision was taken even though the number of thrombotic events in
vaccinated individuals is significantly lower than what naturally occurs in a similar size
cohort. Considering that the vaccine was not designed to address medical issues other than
preventing COVID-19, the WHO, along with other EU countries, have advised continuation
of the use of ChAdOx1 nCoV-19-based vaccine [172].

Although viruses may sustain genetic drift, there is the confidence that the homoge-
neous protein produced by the spike gene construct would maintain most neutralization-
sensitive epitopes [85]. Undoubtedly, functional studies on viral proteins can play an
important role in antiviral drug screening and vaccine development with the assistance
of next-generation platforms, which may permanently change our ability to respond to
newly emerging viruses [96,146]. As for how long antibody protection induced by nat-
ural infection lasts, this is still unknown. Vaccination against SARS-CoV-2 regardless of
antibody status is currently recommended. Follow-up time will inform how long the
vaccine-induced antibody protection can last [174]. For detailed information on COVID-
19 vaccines in clinical development, refer to Table S1 which is adjusted from the WHO
document [151]. Although a few claim vaccination is ineffective for limiting contagion,
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especially considering the vaccine breakthrough by the Delta variant (B.1.617.2) [175–179],
vaccination is still recommended for everyone (≥12 years old) to prevent COVID-19 and
particularly to avoid hospitalization and death [180].

9. The History of Low-Dose Radiotherapy of Non-COVID-19 Pneumonia

Radiation therapy, which has been used to treat cancer for more than 100 years, is not
new in disease management. After the discovery of X-rays in 1895 and the development
of therapeutic methods in the early1900s, clinicians have used radiation to kill malignant
cells [181]. Unlike the relatively high doses used to sterilize tumors, lower doses were also
applied in treating non-cancerous diseases.

Low-dose radiotherapy, in which the total dose applied is significantly less than the
dose used in cancer treatments, was historically a successful option for pneumonia before
the discovery of penicillin [182,183]. Reports have suggested that an absorbed dose of
1 Gy, which is 50 to 100 times lower than the total doses used by oncologists, has anti-
inflammatory effects [183,184]. As early as 1905, Musser and Edsall reported on their X-ray
treatment of five patients with unresolved pneumonia, which shed the first light on the
potential benefit of radiation in treating respiratory diseases [185]. Almost two decades
later, Heidenhain and Fried observed a systematic inflammatory-blocking function of
low-dose X-ray treatment, showing clinical utility in treating deeper penetrating infections
such as pneumonia [186].

In most follow-up studies performed in the 1930s, the applied doses ranged from
0.3 to 0.5 Gy [187]. In 1936, Powell applied low-dose radiotherapy in a clinical study
with 231 patients after his first success on a patient with a complete recovery from lobar
pneumonia [188]. A concern is that Powell did not randomize his patients as his staff
recognized near-immediate relief from respiratory distress and circulatory distress after
treatment [183,187,188]. In a study that appeared soon after, Scott noted that the patients
experienced initial relief of symptoms, followed by a reduction of fever [189]. Surprisingly,
no record of any toxicity events in the treatment group was noted as the investigators
monitored for adverse radiation effects [189]. However, it may be argued that longer follow-
up periods may have revealed a different spectrum of health effects. In 1942, Rousseau
reported a full clinical recovery in the majority of patients with atypical sulfanilamide
non-responsive pneumonia treated with low-dose radiotherapy, noting that the patients
were free from toxic side effects [190]. In the following year, Oppenheimer reported
that presumed-viral pneumonia patients treated with X-rays also showed complete fever
resolution and disappearance of pulmonary consolidations [191]. Details of the brief history
of X-ray therapy on non-COVID-19 patients are listed in Table 1.

In short, the early reports suggest that low-dose radiotherapy can reduce mortality
rate, alleviate symptoms rapidly, and substantially reduce the severity of pneumonia [183].
Although the reported toxic effects of low-dose radiotherapy were minimal, systematic,
evidence-based reasoning for the mechanisms underlying the efficacy of low-dose ra-
diotherapy is needed. The promising early studies did not last long with the discovery
of penicillin shifting scientific focus and funding mechanisms on antibiotics. Further-
more, there were safety concerns about long-term adverse outcomes including cancer
and other degenerative diseases. The silence on the efficacy of low-dose radiotherapy
was broken after 80 years as the global pandemic brought scientists to consider again
the anti-inflammatory effects of low-dose radiotherapy in attenuating the severity of life
threatening symptoms of COVID-19 [192].
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Table 1. Brief History of X-ray Therapy on non-COVID-19 Pneumonia.

Time Author Location Radiation Type Dosage Patients
Number Diseases/Conditions Result

Adverse
Radiation

Effects
Reference

1905 Musser and
Edsall Pennsylvania X-ray N/A 5 Unresolved

pneumonia
40% symptoms

disappeared N/A [185]

1907 Edsall and
Pemberton Pennsylvania X-ray Various 2 Unresolved

pneumonia 100% cured N/A [193]

1916 Quimby and
Quimby New York X-ray Not given 12 Chronic chest

conditions
100% prompt

benefit N/A [194]

1924 Heidenhain and
Fried

Worms,
Germany X-ray Low doses 243 Unresolved chronic

bronchopneumonia

75% good and
very good

improvement
N/A [186]

1925

Krost
(cooperation

with M.T.
Blumenthal)

Chicago X-ray Small doses (*) 12 Unresolved
pneumonia (children)

92% apparent
benefit None [195]

1930 Merritt and
McPeak N/A X-ray N/A 7 Unresolved

pneumonia 86% cured N/A [196]

1936 Powell Houston, Texas X-ray N/A 47 Unresolved
pneumonia (lobar?)

100%
convalescence

with 2.5%
mortality

N/A [188]

1938 Powell Temple, Texas X-ray Small doses (!) 104 Lobar pneumonia Mortality rate
less than 5% N/A [197]

1938 Powell Temple, Texas X-ray small doses (!) 30 Bronchopneumonia
Mortality

reduced from
30% to 13%

N/A [197]

1939 Powell N/A X-ray N/A N/A Acute pneumonias N/A N/A [198]

1939 Scott Niagara Falls X-ray N/A 138 Acute Lobar
pneumonia 80% cured None [189]
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Table 1. Cont.

Time Author Location Radiation Type Dosage Patients
Number Diseases/Conditions Result

Adverse
Radiation

Effects
Reference

1942 Rousseau North Carolina X-ray Small doses (@) 72
Atypical

bronchopneumonia
or lobular pneumonia

N/A None [190]

1942 Rousseau North Carolina X-ray Small doses (@) 104 Acute pneumococcic
lobar pneumonia 94% recovered None [190]

1942 Rousseau North Carolina X-ray Small doses (@) 29

Sulfonamide
non-responsible

pneumococcic lobar
pneumonia

76% recovered None [190]

1943 Oppenheimer New Hampshire X-ray Low doses ($) 36 Interstital pneumonia
(children)

92% rapid and
consistent

improvement
N/A [199]

1943 Oppenheimer N/A X-ray N/A 56 Presumed-viral
pneumonia 80% cured N/A [191]

(*) The dose was 5 mA, spark gap 7.5 in, distance 8 in, filter 3 mm of aluminum (Al) and 4 mm of sole leather, and time 5 min [195]; (!) 250–350 roentgens of 0.3 Åunit of effective radiation (135 kVwith 3 mm Al
filter) given anteriorly or posteriorly over an area a little larger than the involved portion of the lung [197]; (@) 120 kV, 3 mm Al filter at a single dose at intervals of 36 h, if necessary, for one, two, or three doses
[190]; ($) 1/3 to 1/5 of recommended pneumonia treatment; 140 kV, 20 mA, 0.5 mm Cu plus 1 mm Al filtration, the dose varying from 20 to 90 roentgens measured on the skin, through portals 15 cm2 directed to
the involved region with the inclusion of the hila; the anode to skin distance is 35 cm [199].
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10. Low-Dose Radiation Treatment of COVID-19

Although COVID-19 pneumonia is a novel disease that is different from other types
of ARDS, severe COVID-19-associated ARDS shares typical ARDS lung pathology such
as diffuse alveolar damage and hyaline membrane formation [120,200]. As Prasanna
et al. summarized, the general rational for low-dose radiation treatment of COVID-19
is its inhibition of the cytokine storm, which promotes pulmonary dysfunction and ulti-
mately ARDS [201]. Inflammation is a dynamic and progressive process that is tightly
associated with redox-modulated reactions [202]. When recruited to sites of inflammation,
macrophages and neutrophils generate reactive species, including reactive oxygen and ni-
trogen species (ROS and RNS). With multiple pro-inflammatory cytokines and chemokines
being secreted, the latter together with elevated levels of ROS and RNS deteriorate redox
homeostasis, and further worsen the disease [203]. During the past two decades, research
has revealed that low-dose radiation-mediated homeostasis is associated with enhanced
cellular detoxification of ROS by a major antioxidant enzyme (manganese superoxide
dismutase, MnSOD) within the mitochondria [204–207]. This adaptive protection of mito-
chondrial metabolic functions is thought to provide experimental and theoretical support
for using low-dose radiation to limit virus replication [207]. Other antioxidants, including
glutathione, were also shown to be increased following exposure to low doses of sparsely
ionizing radiation such as X and γ rays [208,209]. Schaue et al. suggested that it might
be difficult and challenging for patients with complicated conditions and advanced age
to rebalance redox levels, and low-dose radiation treatment might be of clinical value
with its broad suppression of various inflammatory, pro-oxidant pathways at multiple
levels [203,210].

Among the over 6000 clinical trials on COVID-19, only 17 focus on the relative efficacy
of low-dose radiation therapy [211]. In June 2020, clinicians at Emory University reported
their phase I interim analysis of a small pilot trial to treat oxygen-dependent elderly
patients with COVID-19 pneumonia. They found that four out of five patients rapidly
improved their breathing within 24 h after a single fraction of 1.5 Gy of X-rays applied to
both lungs [212]. The patients recovered to breathe room air (unmodified, ambient air with
a typical oxygen concentration of 21%) after being on supplemental oxygen for an average
of 1.5 days after whole-lung irradiation [212,213]. Thereafter, clinical trials conducted in
Iran found improvements similar to those observed in the latter study. An 80% response
rate was observed in severe COVID-19 patients after whole-lung irradiation with a single
fraction of 0.5 Gy [214]. These preliminary observations support the hypothesis that
radiation at doses of ~0.5 Gy modifies the immune reaction to COVID-19 pneumonia by
activating anti-inflammatory M2 macrophages [215]. Following up on the safety outcomes
of the phase I trial, the same clinicians at Emory University carried out a phase II trial
exploring the efficacy of immunomodulatory, single fraction, whole-lung moderate-dose
of 1.5 Gy for patients with SARS-CoV-2 hyper-inflammatory pneumonia [216]. They
reported a significantly shorter time of 3 days to clinical recovery in the radiotherapy cohort
compared to 12 days in the control cohort. They also noticed significantly reduced levels of
the inflammatory biomarker CRP (C-reactive protein) and LDH (lactate dehydrogenase),
which suggest modulatory effects on immune cells. In November 2020, another pilot
study in India showed a 90% response rate for low-dose radiotherapy (0.7 Gy in a single
fraction) in COVID-19 patients having moderate to severe disease, which further supports
the feasibility and clinical effectiveness of low-dose radiotherapy [217]. Overall, all of
these clinical trials reported no early toxic effect of low-dose radiation (LDR). However,
in February 2021, a study from Switzerland reported an identical survival rate (63.6%) in
both 1 Gy-whole-lung radiation treated and sham treated groups, although the standard
treatment of dexamethasone to ICU patients may have masked the anti-inflammatory
effects of low-dose radiation [218]. Details of current radiation treatment of COVID-19
patients are listed in Table 2 (completed trials) and Table 3 (ongoing trials).
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Table 2. Summary of Completed Clinical Trials Using Radiation in the Treatment of COVID-19.

ClincalTrial.gov
ID Acronym Dosage Fraction Participants Control Median

Age/Range
Female

Percentage Phase Overall
Recovery

Mean Time
to Clinical
Recovery

Mean Time
to

Discharge

No Acute
Toxicities Locations Reference

NCT04366791 RESCUE
1–19

1.5 Gy Single
10 No 90 (64–94) 80% 1 80% 1.5 days 12 days No

USA
[212]

20 10 76 (43–104) 55% 2 90% 3 days 12 days No [216]

NCT04394182 ULTRA-
COVID 0.8 Gy Single 15 No 80, 65 50% 1 100% Various (*) 11 days No Spain [219]

NCT04394793 N/A 70 cGy Single 10 No 51 (38–63) 0% N/A 90% 3–7 days 15 days No India [217]

NCT04390412 N/A
0.5 Gy Depends (!) 5 No 69 (60–84) 20%

1 and 2
75% 1 day 6 days No

Iran
[214]

0.5 Gy, 1 Gy Depends (#) 10 No 75 (60–87) 20% 55.5% N/A 8.7 days No [220]

NCT04598581 COVID-RT-
01 1 Gy Single 22 Sham

irradiation 75 (54–84) 23% 2 73%($) N/A N/A No Switzerland [218]

NCT04534790 N/A 1 Gy Single 30 Not radio-
therapy N/A N/A N/A N/A N/A N/A N/A Mexico [221]

NCT04724538 N/A
99 mTc-

pertechnetate
aerosol

N/A 25 No
intervention N/A N/A 1 and 2 N/A N/A N/A N/A Russian [222]

(*) Patient 1: Day 5 after treatment; Patient 2: Day 2, 5, 7 less need, and dropping the intermittent oxygen support 2 months after treatment; improvement of symptoms such as asthenia and dyspnea after 48 h of
treatment; (!) single fraction of 0.5 Gy, with another fraction of 0.5–1 Gy at least 72 h apart if necessary; (#) 5 received single-dose 0.5 Gy, one received two-dose 0.5 Gy, and four received single-dose 1 Gy; ($) 73%
is the estimate of survival at 15 days in the low-dose radiation treatment group, whereas the 28-day survival estimates were the same at 63.6% in both low-dose radiation-treated group and sham-treated group.

Table 3. Summary of Current Ongoing Clinical Trials Using Radiation Therapy for COVID-19.

ClincalTrial.gov ID. Acronym Dosage Fraction Participants Control Phase Locations Reference

NCT04433949 RESCUE1-19 ≤ 1 Gy Single 52 Not radiotherapy 3 US [223]

NCT04414293 COVRTE-19 LDR Single 41 No control group 2 Spain [224]

NCT04427566 VENTED 80 cGy Depends ($) 24 No control group 2 US [225]

NCT04466683 PREVENT 35 cGy, 100 cGy Single 100 Not radiotherapy 2 US [226]

NCT04393948 N/A 100 cGy: single lung or
whole lung Single 48 Not radiotherapy 1 and 2 US [227]

NCT04493294 N/A LDR Single 500 No control group 1 and 2 Switzerland [228]

NCT04572412 N/A 50 cGy Depends (ˆ) 13 No control group 1 UK [229,230]

NCT04377477 COLOR-19 70 cGy Single 30 No control group 2 Italy [231]

NCT04420390 LOWRAD-COV19 ≤ 1 Gy Single 41 No control group N/A Spain [232]

NCT04380818 N/A 0.5 Gy Depends (&) 106 Not radiotherapy 1 and 2 Spain [233,234]

NCT04904783 LOCORAD 0.5 Gy Single 20 Not radiotherapy N/A India [235]

($) Eighty cGy single fraction, with a second option of 80 cGy if no improvement after 3–10 days; (ˆ) single fraction of 50 cGy, with second option of 50 cGy, if necessary; (&) bilateral lung single dose LDR of 0.5
Gy, with option of additional 0.5 Gy after 48 h.
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Whereas reports show attenuation of COVID-19 symptoms with relatively low-dose
radiotherapy, scientific and public concerns about long-term side effects are evident. There
is worry that radiation exposure will induce long-term adverse outcomes, including by-
stander effects, oxidative stress, chronic inflammatory responses, cytotoxicity, genomic
instability, and ultimately cancer and degenerative conditions [202,236]. In particular,
current regulatory guidelines are based on a linear no-threshold (LNT) model that assumes
exposure to any dose of ionizing radiation increases cancer risk. The LNT model is a practi-
cal operational framework used in radiation protection to ensure the safety of workers and
members of the public, which includes those who are particularly vulnerable to the effects
of ionizing radiation. However, from the point of view of risk assessment, several studies
claim beneficial effects from low-dose radiation (reviewed in [237,238]) and show that low-
dose radiation effects often differ from those induced by high-dose radiation, at least in
the case of the low-linear-energy transfer types of radiation such as X and γ rays [239,240].
These studies reveal that in vitro exposure of cells maintained in culture and in vivo expo-
sure of rodents to low doses of sparsely ionizing radiation (i.e., X and γ rays) modulate
changes at the molecular level, and provide significant evidence supporting up-regulation
of DNA repair, anti-oxidation, and expression of adaptive responses [202,241].

With respect to treatment for COVID-19, low-dose radiotherapy may have unique
advantages emerging from its successful history in treating inflammatory diseases and
unresolved pneumonia:

1. Low-dose radiotherapy can target inflamed areas such as the lung specifically,
whereas antiviral, anti-inflammatory drugs, and statins are systemic drugs that affect the
whole body.

2. The benefits of low-dose radiotherapy appear to outweigh the risk of long-term
effects in the case of seriously ill COVID-19 patients.

3. Low-dose radiotherapy is less likely to induce drug-resistant mutation in the virus
compared to anti-viral drugs [242].

It is generally accepted that radiation is a mild mutagen [243]. As an RNA virus,
SARS-CoV-2 is characterized by a moderate to high mutation rate. Mutation hot spots have
been identified during the current pandemic, indicating potential drug resistance [109].
Antiviral drugs, the research topic granted the 2018 Nobel Prize in Chemistry (for phage
display) demonstrated that therapeutic protein engineering can be modified under selective
pressure, to target viruses [244]. Conversely, based on the reaction of viruses to antiviral
drugs, a more resistant group of viruses might be selected under target drug therapies.

Low-dose radiotherapy is a cost-effective treatment that is available in most hospitals.
In contrast, the expense for molecular-targeting therapies is challenging for a large number
of patients in both developed and developing countries. Considering economic reasons,
it may be argued that low-dose radiotherapy would reach more patients than targeted
therapies and with a reduced financial burden. In this context, portable low-dose radiation
systems for bedside treatment, in ICU, of critically ill COVID-19 patients would be advan-
tageous [245]. Such devices have the added benefit of keeping COVID-19 patients separate
from other patients, especially vulnerable patients receiving radiation therapy in the same
hospital, thereby minimizing the probability of infection [245].

11. Discussion

Although the clinical outcomes of low-dose radiotherapy for COVID-19 patients are
promising, the specific mechanisms for its immunomodulatory effects remain unclear.
Various mechanisms may be involved in reducing inflammation by ionizing radiation,
including the induction of apoptosis in immune cells, secretion of anti-inflammatory fac-
tors, and the reduced function of macrophages [246]. To further elucidate the underlying
mechanisms, in vitro studies may apply strategies to induce molecular modifications in
cells interacting with the coronavirus. Furthermore, low-dose radiotherapy may induce
alterations in the immune microenvironment. Using flow cytometry, identification of
molecular markers on immune cells as well as other cells impacted by the virus upon
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irradiation might be informative. It will also be interesting to study whether apoptosis
of cytokine-producing infiltrating cells is a substantial component, as a fast response in
COVID-19 patients was noticed after low-dose radiotherapy [241]. It has been recognized
that low-dose radiotherapy does not induce post-treatment pancytopenia or immunosup-
pression, which implies that low-dose radiotherapy might not worsen immune activation
or slow viral clearance [216]. This proposed idea may be tested by applying low-dose
radiotherapy on pseudovirus-infected cells that are co-cultured with immune cells, and by
comparing the spectrum of changes in cell surface biomarkers by flow cytometry, as well
as the speed of viral clearance by live-cell imaging using confocal microscopy. Specifically,
qPCR or sequencing technology may be applied to analyze gene expression during the
interaction between immune cells and viral particles. This may shed further light on the
molecular pathways associated with healthy cells fighting a viral attack.

There is a concern that the anti-inflammatory effect of low-dose radiotherapy may
not be strong enough to inhibit the cytokine storm [241]. To elucidate the mechanisms
for further application, low-dose radiotherapy may be combined with FDA-approved
anti-inflammatory drugs, molecular-targeting drugs, and anti-viral drugs, such as dex-
amethasone, baricitinib, and remdesivir [139,143,247]. If the combined therapy shows an
additive effect at the cellular level, verifying the effect in animal studies is essential before
obtaining approval for eventual administration to patients in serious conditions. It will be
interesting to explore whether low-dose radiotherapy would improve the effectiveness of
those top candidates for targeted treatment.

With respect to the concerns about adverse effects of radiation exposure, different
dosages may be applied to determine the minimum therapeutic dose level that can be
effective in relieving inflammation, and whether the radiation dose should be delivered
as a single bolus or be fractionated. Many confounders may bias and limit the result
regarding the long-term effect of low-dose radiotherapy on humans. Considering that not
enough studies of low-dose radiotherapy are available on animal models, Prasanna et al.
indicated that additional pre-clinical studies in non-human primates, hamsters, or mice are
required before proceeding with low-dose radiation therapy in COVID-19 patients [201].
Hence, in vivo experiments using different animal models are necessary to understand
the variables associated with radiation delivery (i.e., dose, dose-rate, fractionation) on
attenuating inflammation [201]. The use of low-dose radiation as an adjuvant therapy was
recommended by others, opening more avenue for multi-modal therapy for severe COVID
patients [248]. With suitable experimental models, various parameters can be optimized
for beneficial clinical effects [248].

In alignment with Schaue’s opinion, it is critical—although tricky—to identify the
patients who are likely to benefit from radiation treatment and to set the time point early
enough for them to receive treatment and recover [203]. Theoretically, the patients with a
clinical and radiological diagnosis of severe bilateral interstitial pneumonia might benefit
from low-dose radiation to the lungs. Dr. Jian-Jian Li, who advocated low-dose radiother-
apy early in the COVID-19 pandemic, suggested the necessity of precise evaluation of the
potential effects of low-dose radiation in control of the cytokine storm and ARDS, as well
as the proper timing and dosage using animal models [207]. By identifying biomarkers
associated with relief of the cytokine storm by low-dose radiation, and by comparing
their correlation with clinical laboratory results, it becomes possible to provide a checklist
of critical markers to triage patients when they first step into the hospital. Those who
might develop severe disease and might benefit most with the least risk from low-dose
radiotherapy can get immediate treatment and avoid deterioration of their condition. If
pandemics are inevitable, by expanding research on therapeutic avenues for COVID-19
and understating the underlying mechanisms, we may become better prepared to defend
against other novel viral infection.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10092212/s1. Table S1: The development of COVID-19 vaccines in clinical trials (adjusted
from WHO document) [151].
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