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Abstract

It is a long-established fact that neuronal plasticity occupies the central role in generating neural function and computation.
Nevertheless, no unifying account exists of how neurons in a recurrent cortical network learn to compute on temporally and
spatially extended stimuli. However, these stimuli constitute the norm, rather than the exception, of the brain’s input. Here,
we introduce a geometric theory of learning spatiotemporal computations through neuronal plasticity. To that end, we
rigorously formulate the problem of neural representations as a relation in space between stimulus-induced neural activity
and the asymptotic dynamics of excitable cortical networks. Backed up by computer simulations and numerical analysis, we
show that two canonical and widely spread forms of neuronal plasticity, that is, spike-timing-dependent synaptic plasticity
and intrinsic plasticity, are both necessary for creating neural representations, such that these computations become
realizable. Interestingly, the effects of these forms of plasticity on the emerging neural code relate to properties necessary
for both combating and utilizing noise. The neural dynamics also exhibits features of the most likely stimulus in the
network’s spontaneous activity. These properties of the spatiotemporal neural code resulting from plasticity, having their
grounding in nature, further consolidate the biological relevance of our findings.
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Introduction

Neuronal plasticity, both homeostatic and synaptic, is the

central ingredient for the generation and adaptation of neural

function and computation [1]. However, it remains mostly unclear

how neurons in recurrent neural networks utilize neuronal

plasticity to self-organize and to learn computing on temporally

and spatially extended stimuli [2–4].

A full grasp of the principles of self-organization by plasticity in

recurrent neural networks is jointly hampered by the diversity of

existing neuronal plasticity mechanisms [5–7] and the limited

understanding of their functions and cooperations, by the emergent

nature of computation in recurrent systems, in the sense that

computation is a collective phenomenon of the system as a whole

and cannot be fully understood from the contribution of individual

neurons [8,9], and by the fact that neural systems are subject to

noise [10–13]. In this paper, we simultaneously address these

issues by studying the basic principles of self-organization in

recurrent networks that arise from the interaction of synaptic and

homeostatic intrinsic plasticity, and given that the network is subject

to noise. To this end, we use numerical methods to explore the

dynamics of nonautonomous, i.e. stimulus-driven, and plastic

recurrent networks, and we provide a mathematical formalization

for attaining a rigorously sound perspective (see Methods).

Incorporating synaptic plasticity with homeostasis goes back to

Bienenstock, Cooper, and Monro’s groundbreaking work known

as the BCM theory [14]. Through rigorous mathematical analysis,

the BCM theory predicted the necessity of a certain form of a

sliding threshold, i.e. a homeostatic adjustment of neuronal

excitability, for stabilizing the plastic afferent weights of a single

neuron. Empirical findings supported the hypothesis of adjustable

excitability and showed that it manifests through changes of

neuronal properties at the soma [6,7]. While the BCM theory

suggests homeostasis as a stabilization mechanism of synaptic

weights with no direct influence on the neuron’s encoding

properties, Triesch proposed a homeostatic intrinsic plasticity (IP)

mechanism that increases the neuron’s encoding capacity and

cooperates with synaptic plasticity (SP) to discover nonlinear

independent features of the neuron’s inputs [15].

These investigations, among others [16,17], are very insightful

in pinpointing how synaptic and homeostatic plasticity interact in

single neurons. In addition, feedforward neural networks greatly

simplify the analysis and understanding of self-organization and

computation based on neuronal plasticity. For such architectures,

both single plasticity rules, as well as combinations of different

plasticity mechanisms, had been linked to neural computation,

such as the formation of receptive fields [14], the related

identification of statistically-independent components [15,17,18],

and predictive coding [19]. However, it is important to note that

neurons are embedded within large and highly recurrent networks

[20–23], and that an efficient use of neuronal resources entails

distributed encoding schemes [8,9]. In addition, besides the spatial
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features of the world, its temporal structure should also be

captured by the neural code [4,24–26].

Our understanding of neural information processing would

greatly improve by extending the principles of self-organization to

recurrent neural circuits, since the latter constitute the basic

computational units in the cortex [22]. Lazar et al. were the first to

study the emergence of computation from the interaction of

different forms of plasticity on recurrent neural networks [27,28].

This study builds on their findings. However, we do not restrict the

definition of computation to linear classifiers of the reservoir

computing (RC) paradigm [3,29,30]. In addition to training linear

classifiers for measuring the computational performance, we identified

the necessity of analyzing the response of the recurrent neural

network itself as an input-driven dynamical system [31,32], and of

concurrently viewing the network as a communication channel by

taking an information-theoretical perspective [33]. Combining these

tools enables us to understand how information is encoded in

recurrent systems, how such encoding is developing from self-

organization, and how noise is effecting both.

Analyzing the dynamics of a large and, most importantly, input-

driven neural system shaped by biologically-relevant plasticity is a

hard task due to several methodological constraints. First, most

analysis tools from dynamical systems theory are confined to small

dynamical systems with very few degrees of freedom [34].

Exceptions are studies that circumvent this limitation by focusing

on the low-dimensional collective dynamics of neural networks,

e.g., [35], or studies that probe the high-dimensional phase space

of the neural network, such as the classic example of Hopfield

Networks [36]. Other instances of high-dimensional dynamical

systems include ring networks and their coexisting periodic

attractors [37], stable heteroclinic orbits [38,39], unstable periodic

attractors [40], and others [41–43].

The second and most important methodological constraint is

that the use of standard dynamical systems theory is inappropriate,

since it deals with autonomous systems only, i.e. systems with no

explicit dependence on time. In reality, however, neural networks

are subject to a flux of ever changing stimulation that renders them

nonautonomous. A theory of nonautonomous dynamical systems is only

recently taking shape as a branch of applied mathematics [31,32].

The fields of neural computation and computational biology are

constantly contributing to the theory with concepts such as meta-

transients and attractor morphing [37,44], c-systems [45], and the

nonautonomous dynamics of echo state networks [46].

A simple intuition of the difference between nonautonomous

and autonomous systems can be stated as follows. Attractors of an

autonomous dynamical system are defined by the system alone,

and are therefore fixed. In contrast, attractors of a nonautonomous

system are jointly defined by the dynamical system and its input.

As the input changes, so does the attractor landscape of the system.

This highlights the fact that studying computations in a driven

system using the methods of autonomous dynamical systems is

insufficient, since the input-induced changes of the system, i.e.

changes of its attractor landscape, are ignored in that case.

The third constraint is that the complexity of the dynamics

increases due to the neural system’s adaptability. The presence of

plasticity imposes restrictions on the dynamics a network can

exhibit, thus keeping the network dynamics in a regime that can

support complex computations. To the best of our knowledge, no

attempt prior to this work has been taken to combine high-

dimensionality and nonautonomy with the consequences of

plasticity on dynamics. We demonstrate that plasticity sculptures

the stimulus-specific dynamic landscapes, and by that, serves in

improving representation of the provided input. Moreover,

neuronal plasticity can adapt and learn stimulus-induced sequenc-

es of such stimulus-specific landscapes. We thereby show that

neuronal plasticity improves spatiotemporal computations.

Given the above, we highlight and explain that spatiotemporal

computations require two basic ingredients: a homeostatic

mechanism that regulates neuronal activity, and synaptic learning

that adapts the network’s recurrent connectivity to the stimulus.

We show that combining both types leads to a system that: first,

learns the temporal structure of the input and carries out nonlinear

computations, second, is noise tolerant, and third, even benefits

from the presence of noise that sets the system to an input-sensitive

dynamic regime.

The paper is structured as follows. We first characterize the

effects of self-organized adaptation that is based on synaptic and

homeostatic intrinsic plasticity and their combination. For that, we

use tasks where both random and temporally-structured inputs are

reconstructed and predicted, as well as a task where nonlinear

computations are performed. We estimate the network’s self-

information capacity (its entropy), and its input-information capacity

(the mutual information between the input and the network). We then

interlude to qualitatively analyze the resulting dynamics of plastic

changes based on the theory of nonautonomous dynamical

systems. We explain the superior computation of conjoining

synaptic and intrinsic plasticity based on both the informational

and dynamical analyses. Building upon that, we study network

noise, and demonstrate how noise is combated and exploited

through the interaction of synaptic and intrinsic plasticity.

Results

In this section, we guide the reader through the following topics.

We start by elucidating the computational power gained through

the combination of synaptic and homeostatic plasticity mecha-

nisms on recurrent neural networks of the k-Winner-Take-All (kWTA)

type. We investigate the role of these plasticity forms in shaping

the neural code through their effects on the informational and

dynamical landscapes of the network. We conclude by illustrating

how synaptically and homeostatically organized recurrent net-

works both benefit from noise and tolerate its presence. Figure 1

Author Summary

The world is not perceived as a chain of segmented
sensory still lifes. Instead, it appears that the brain is
capable of integrating the temporal dependencies of the
incoming sensory stream with the spatial aspects of that
input. It then transfers the resulting whole in a useful
manner, in order to reach a coherent and causally sound
image of our physical surroundings, and to act within it.
These spatiotemporal computations are made possible
through a cluster of local and coexisting adaptation
mechanisms known collectively as neuronal plasticity.
While this role is widely known and supported by
experimental evidence, no unifying theory of how the
brain, through the interaction of plasticity mechanisms,
gets to represent spatiotemporal computations in its
spatiotemporal activity. In this paper, we aim at such a
theory. We develop a rigorous mathematical formalism of
spatiotemporal representations within the input-driven
dynamics of cortical networks. We demonstrate that the
interaction of two of the most common plasticity
mechanisms, intrinsic and synaptic plasticity, leads to
representations that allow for spatiotemporal computa-
tions. We also show that these representations are
structured to tolerate noise and to even benefit from it.

Computations in an Excitable and Plastic Brain
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schematically illustrates the network model, the plasticity rules,

and the formal probes we used to evaluate and describe the

resulting computational properties. More details are available in

the Methods section.

Computational Power
The interaction of different forms of plasticity produces a rather

complex emergent behavior that cannot be explained trivially by

the individual operation of each. We therefore start with exploring

the effects induced by the combination of spike-timing-dependent

synaptic plasticity (STDP) and intrinsic plasticity (IP). We compare the

computational performance of recurrent networks trained either

with both synaptic and intrinsic plasticity (SIP-RNs), with synaptic

plasticity alone (SP-RNs), or with intrinsic plasticity alone (IP-RNs),

in addition to nonplastic recurrent networks, where the synaptic

efficacies and firing thresholds are random.

Following the plasticity phase, a network is reset to random initial

conditions and the training phase starts. Output weights from the

recurrent network to linear readouts are computed with linear

regression so that the readouts activity is the optimal linear

classifier of a target signal. The target signal depends on the

computational task. That is followed by the testing phase, at which

performance is computed. Performance is measured by the per-

centage of correctly matched readout activity to the target signal.

Naturally, during simulation, the recurrent network is excited

by a task-dependent external drive. The battery of tasks we

deployed was designed to abstract a certain aspect of the

spatiotemporal computations faced by biological brains, i.e.

Figure 1. Overview of the recurrent network model and the methods for analyzing its computational capabilities. (A) An exemplary
recurrent neural network of 12 neurons. The network state x has a 4-Winner-Take-All (4WTA) nonlinear dynamics, where the 4 neurons with the
highest membrane potential fire and the rest are silent. The membrane potential is the sum of the recurrent afferents and the external drive d. It is
also depolarized (hyperpolarized) with decreasing (increasing) excitability threshold h. The recurrent network can also be subject to noise, while
reserving the 4WTA dynamics: when a neuron fails to spike due to noise, another fires instead. (B) The recurrent network is adapted by two plasticity
mechanisms. The excitability threshold h is modulated by intrinsic plasticity (IP), the recurrent afferents w by spike-timing-dependent synaptic
plasticity (STDP). (C) The external drive d consists of discrete symbols that follow a certain stochastic dynamics, and each projects to a corresponding
receptive field (RF). The exemplary drive is a 3-symbols Markov chain A?B?C that allows a probability for noisy transitions, i.e. A?C. (D) Linear
functions of the network state x parametrized by output weights wo fitted to (possibly nonlinear) target functions of sequences of the external drive.
(E) Nonlinear information-theoretic quantities are measured: network state entropyH and the mutual information I of the network state x and input
sequence u. (F) Analysis of the appearance and disappearance of attractors due to the external drive within the network as an input-driven dynamical
system.
doi:10.1371/journal.pcbi.1003512.g001

Computations in an Excitable and Plastic Brain
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recalling past stimuli, predicting future ones, and nonlinearly

transforming them. The memory task RAND x 4, the prediction

task Markov-85, and the nonlinear task Parity-3, as well as the

plasticity models and simulation conditions, are detailed in the

Methods section.

Figure 2 shows that SIP-RNs significantly outperform both IP-

RNs and SP-RNs in all tasks. Inputs from 3 time steps in the past are

successfully retained far beyond chance level in the memory task

RAND x 4 (Figure 2A). Understandably, performance drops to

chance level for future stimuli (positive time-lags), since input

symbols are equiprobable and their temporal succession carries no

structure. Such is the case for the nonlinear task (Figure 2C). It is

worth noting that solving the nonlinear task Parity-3 requires

recalling three successive stimuli, which adds to the computational

load. The recurrent network, through learning the temporally-

structured input of the task Markov-85, boosts the readouts’

ability to reconstruct past symbols in comparison to the

structureless memory task RAND x 4. It also allows for the

prediction of future stimuli far beyond chance (Figure 2B).

STDP alone fails to provide the recurrent network with means to

encode necessary information. This leads to SP-RNs performing at

almost chance level in all tasks. Intrinsic plasticity, on the other

hand, endues recurrent networks with an intermediate ability to

sustain past inputs (Figure 2A). IP-RNs also seem to learn the

temporal structure of the input, as optimal linear classifiers are

capable of predicting future stimuli (Figure 2B). Intrinsic plasticity

is, however, insufficient for nonlinear computations, as IP-RNs

barely perform above chance in the nonlinear parity task.

We also compare the performance of nonplastic kWTA networks

with similar weight and threshold distributions as SP-RNs (shown

in gray in Figure 2). They perform better than IP-RNs on the

memory and nonlinear tasks, and worse on the prediction task. In

all tasks, these nonplastic networks perform worse than SIP-RNs.

We also show in Text S1 that nonplastic networks with

comparable weight and threshold distributions as SIP-RNs also

perform significantly lower than plastic networks. These results

supply the evidence that the presence of plasticity enhances the

computational power of recurrent neural networks (see Text S1 for

a discussion on heuristics for finding comparable random

networks). No further analysis is carried out on these nonplastic

networks, since the aim of this paper is to discern the effects of

synaptic and intrinsic plasticity on spatiotemporal computations.

Neural Code
Explaining the superiority of networks modified by deploying

both STDP and IP starts from isolating the individual role of each

plasticity mechanism in defining the spatiotemporal neural code.

In that regard, a well-informed intuition is that STDP learns the

basic structure of the input as the connectivity resulting from STDP

reflects the input sequence transitions. IP, on the other hand,

increases the neural bandwidth by introducing redundancy to the

code, as IP leads to the longest periodic cycles in the spontaneous

activity of kWTA networks (See Figure 8 and Figure 4A in [27]).

The spatiotemporal neural code, or the neural code for short, can

be characterized by both the absolute capacity of the network activity

to store information and by how network activity encodes the

spatially and temporally extended network input. Entropy of the

network activity measures its absolute capacity, i.e. the repertoire

of network states that the network can actually visit and potentially

assign to some input sequence. The assignment of a network state

to an input sequence means that this particular network state

encodes or represents that input sequence. Mutual information between

network input sequences and network states quantifies the extent

of how successful this assignment is. Not every visited network state

needs be assigned an input sequence. A redundant code is reflected

by input sequences being represented by multiple network states.

Also, a network state might fail to encode an input, thus reflecting

uninformative noise states.

We investigate the neural code characteristics of kWTA networks

by estimating both the entropy of the network state and the mutual

information between network input sequences and network states.

We drive the network by RAND x 4 input, and for computational

tractability, we limit the estimation of mutual information to three-

step inputs. An optimal encoder of this input sequence will then be

a network with 6 bits of mutual information. The information-

theoretical quantities are computed at intervals of the plasticity

Figure 2. Average classification performance. 100 networks are trained by STDP and IP simultaneously (orange), IP alone (blue), STDP alone
(green), or are nonplastic (gray). Optimal linear classifiers are then trained to perform (A) the memory task RAND x 4, (B) the prediction task Markov-
85, and (C) the nonlinear task Parity-3. Nonplastic networks have their weights trained by STDP and then randomly shuffled, so that they have
the same weight and threshold distributions as SP-RNs. However, due to the shuffling, their weight matrices carry no structure. Error bars indicate
standard error of the mean. The red line marks chance level. The x-axis shows the input time-lag. Negative time-lags indicate the past, and positive
ones, the future.
doi:10.1371/journal.pcbi.1003512.g002

Computations in an Excitable and Plastic Brain

PLOS Computational Biology | www.ploscompbiol.org 4 March 2014 | Volume 10 | Issue 3 | e1003512



phase under the three plasticity conditions. At these intervals, the

plastic variables are fixed and the driven network is reinitialized

and run for a sufficient number of steps, and passed along with the

input to the entropy and mutual information estimators. More

details on how these measurements are carried out are found in

the Methods section.

Figure 3 shows how these measures develop through the

plasticity phase (For a discussion on the effects of longer plasticity

exposure, see Text S2). SP-RNs’ entropy remains constant at 2 bits.

This means that SP-RNs visit only 4 network states (green in

Figure 3A). However, these network states encode no information

of the input sequence, as mutual information remains practically

zero (green in Figure 3B). We call this 2 bits input-insensitive code

the minimal code, as it captures no more than a single possible

succession of the 4 inputs. This effect is the result of the interaction

between the machination of STDP and the initial firing thresholds

and weights configuration. Transitions, such as A?C in the input

space, are to be stored in some of the synapses that connect

neurons in the receptive field of A(RFA) with those in the

receptive field of C(RFC). At each time step, one transition, such

as A?C, could be easier to reinforce with the causal (potentiating)

side of STDP for RFC neurons having little higher excitability

(internal drive plus their own firing threshold). Without IP to tune

down this excitability and with further contribution from the

recurrency of the network, a positive feedback loop is generated,

and this transition becomes more and more potentiated at the

expense of others. This transition then becomes independent of

the actual drive the network is receiving: the network becomes

input-insensitive.

On the other side of the entropy spectrum, we find IP-RNs.

Through IP’s constant adjustment of the neuronal excitability,

many neurons contribute to the neural code and IP-RNs visit a

large number of states. Entropy and the network state bandwidth

are the highest (blue in Figure 3A). One may view IP’s effect as an

introduction of intrinsic deterministic noise to the network activity. The

increase in bandwidth of the network activity raises the odds for

the random weights of an IP-RN to store an input sequence. In

fact, many network states encode the same input sequence,

resulting in a redundant code. However, without a synaptic

reinforcement of representations, many states are visited due to the

internal dynamics of the network, and not due to the external

drive. These states remain uninformative and input sequences not

successfully encoded: the mutual information (blue in Figure 3B),

and hence the classification performance, are low.

The development of the neural code for SIP-RNs follows,

however, a more interesting path. At the beginning, STDP has the

upper hand and a 2 bits minimal code is generated. Through

providing intrinsic deterministic noise, IP enriches the neural code

by increasing redundancy and entropy (orange in Figure 3A). At

the same time, STDP incrementally associates different network

states to different input sequences by adjusting the synaptic weights

as seen from the increase of mutual information (orange in

Figure 3B). Then together, synaptic and homeostatic plasticity

cooperate to create a code that is both redundant and input-specific.

These properties are crucial for noise-robustness, as will be shown

later in this text.

Post-Plasticity Perturbation
A dynamical system’s behavior depends on its past activity.

Therefore, testing a system requires assuming plausible initial

conditions. The recurrent neural network at hand, even though it

is small in comparison to a real neural circuit, has a number of

possible initial conditions too large for all its initial conditions to be

tested. So far, we have chosen random initial conditions for the

network activity following the plasticity phase. From now on, we

choose the initial conditions systematically by reinitializing the

network activity depending on a perturbation p. This perturbation is

applied to the end state of the plasticity phase, such that the end

state of the plasticity phase and the initial state of the training

phase are at a distance 2p from one another. For details of how the

initial conditions are selected depending on the parameter p, we

refer the reader to the Methods section.

To discern the effect of this perturbation, we compute the

performance of the trained system with the three combinations of

synaptic and intrinsic plasticity. We do this both for a system that

is perturbed and for a system that starts from the last state that the

dynamics reaches at the end of the preceding plasticity phase. We

find no difference between the two cases of initial conditions for

either IP-RNs or SP-RNs. However, when the neural network is

trained by both synaptic and intrinsic plasticity (SIP-RNs), we find

that the perturbed networks have better performance, as is

illustrated in Figure 4A–C. The high performance of SIP-RNs that

results from random initial conditions, as is shown in Figure 2, is

easily explainable. It stems from the fact that random initialization

is merely a large perturbation, since the probability of choosing a

random state from such a large set of possibilities that is at a small

distance from a particular region of the state space is insignificant,

compared to a state that is at a large distance. Moreover, we find

Figure 3. Network state entropy and the mutual information with input. (A) Network state entropy H(X ) and (B) the mutual information
with the three most recent RAND x 4 inputs I(U ,X ) as they develop through the plasticity phase for SP-RNs (green), IP-RNs (blue), and SIP-RNs
(orange). Mutual information for IP-RNs is estimated from 500000 time steps, and is averaged over 5 networks only. Other values are averaged over
50 networks and estimated from 100000 samples for each network. Error bars indicate standard error of the mean.
doi:10.1371/journal.pcbi.1003512.g003

Computations in an Excitable and Plastic Brain
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that regardless of the task, larger perturbations result in higher

average performance. This is also reflected in the neural code,

where network state entropy and the mutual information with

input correlate with higher perturbation (see Figure 4D–E).

This suggests that within the phase space of SIP-RNs there exist

at least two dynamic regimes. Post-plasticity perturbation also

provides the first sign of how SIP-RNs can benefit from noise, as it

might put the system in the regime more suitable for computation.

Dynamic Regimes
Optimal linear classifiers show that kWTA networks equipped

with both homeostatic and synaptic plasticity are capable of

creating spatiotemporal codes and performing nonlinear compu-

tation. Measuring entropy and mutual information allows for a

quantification of the emerging neural code. But what are the

geometric features of the neural code that allow for such

computations? How do network states represent the spatiotemporal

input in a useful way? A major part of the Methods section is

devoted to developing the mathematical formalization of discrete-

time nonautonomous dynamical systems. References to defini-

tions, a proposition, and a theorem from that section are featured

in the following results, as we apply these concepts to our model

neural network. We view this treatment not merely as an exercise

in mathematics. It allows for a rigorous description of the

computational properties emerging from plasticity that are

beyond the scrutiny of quantitative measures, such as linear

classification performance and carried information. A conse-

quence of these properties is also the two noise-related features

we examine later.

For a formal treatment of spatiotemporal computations which

result from plasticity, we need to extend the theory of nonauton-

omous dynamical systems to provide a notion for representations,

to specify how these representations allow for computations, and

to discern the effect of plasticity in enhancing these representations

for the sake of computation. But first, we start by identifying the

modes of operation, i.e. the dynamic regimes, the model plastic

neural network has, since not all regimes might be suitable for

computation.

According to Proposition 3 and Definition 6, when subject to

stimulation, kWTA networks are input-driven discrete-time dynamical

systems. For such systems, two extremes exist regarding the degree

of sensitivity the system exhibits in response to its input. At one

extreme, the system shows no change of response for different

inputs, so that it follows its own dynamics, as if no input exists. In

such a mode of operation, the system is input-insensitive. The other

extreme is when the system’s response is different for each input

and initial condition. A single system can show, in principle,

multiple modes of operation, depending on the initial conditions.

The set of initial conditions that show a single mode of operation

defines a dynamic regime and a basin of attraction.

Figure 4. Post-plasticity perturbation. 100 networks are trained by STDP and IP simultaneously on (A) the memory task RAND x 4, (B) the
prediction task Markov-85, and (C) the nonlinear task Parity-3 with increasing perturbation level: p~0 (yellow), p~4 (orange), and p~12 (red).
Error bars indicate standard error of the mean. The red line marks chance level. The x-axis shows the input time-lag. Negative time-lags indicate the
past, and positive ones, the future. (D) Network state entropy H(X ) and (E) the mutual information with the three most recent RAND x 4 inputs
I (U ,X ) at the end of the plasticity phase for different perturbation levels. Values are averaged over 50 networks and estimated from 5000 samples
for each network. Error bars indicate standard error of the mean.
doi:10.1371/journal.pcbi.1003512.g004

Computations in an Excitable and Plastic Brain
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In a first step, we visualize the high-dimensional response of the

system to its input. To that end, we down-project the network

activity to the first three principal components, and we study the

effects of STDP and IP on the network’s dynamics and input

representations in this reduced 3-dimensional space (Figure 5).

This analysis is performed on networks with Markov-85 input

which fully demonstrate the relevant properties. It is important to

note that while our analysis concerns the dynamics following the

plasticity phase, we are still able to infer how it unfolds during this

phase from the development of the neural code (Figure 3), as we

make clear later.

As suggested by the performance of SP-RNs (Figure 2) and their

neural code entropy and mutual information (Figure 3), their state

space is dominated by an input-insensitive basin of attraction and

these networks behave like autonomous semi-dynamical systems

(prefixing with ‘‘semi’’ refers to the fact that the dynamics needs

not be invertible). This is confirmed by the asymptotic dynamics of

SP-RNs, which is independent of the input (Figure 5B). The

dynamics within this dynamic regime follows the minimal code.

The minimal code manifests itself through a period-4

periodic attractor which corresponds, in the case of Markov-85

input, to the most probable transition in the input space

Figure 5. Plasticity effects on networks dynamics and input representations under the prediction task input. The three dimensions
correspond to the first three principal components (PCs) of the network activity. (A) Highly-overlapping order-1 volumes of representation of an IP-
RN. (B) Input-insensitive global attractor of a SP-RN that corresponds to a minimal code. (C) With no perturbed (p~0), a SIP-RN dynamics also
converges to an input-insensitive attractor and exhibits a minimal code. (D) Approximate visualization of order-1 volumes of representation of a
SIP-RN. The approximation uses the means and the standard deviations of the corresponding coordinates of the network activity in the principal
components space as the center and semi-axes lengths of ellipsoids. Arrows correspond to the transitions from one input symbol to the other. Their
thickness symbolizes the probability of a transition, which reflects the Markov-85 transition probability. The collection of volumes of representation
and the arrows show the perturbation set within which the nonautonomous attractor resides. (E) Order-2 volumes of representation of a SIP-RN
also approximated using the mean and standard deviations of coordinates. Order-2 volumes are more exact approximations to the order-1
representations according to the volumes’ inclusion property. The correspondence is clarified by using similar color coding. (F) Autonomous periodic
attractors of a SIP-RN, each belonging to one of the autonomous semi-dynamical systems associated with one Markov-85 input. For clarity, no
arrows are drawn between the vertexes of an attractor.
doi:10.1371/journal.pcbi.1003512.g005
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A?B?C?D? � � �. This observation confirms the fact that STDP

allows the system to learn the basic structure of its input.

SIP-RNs exhibits similar dynamics at the end of the plasticity

phase (Figure 5C). However, as is evident from varying the

perturbation parameter for SIP-RNs (Figure 4), the set of initial

conditions that constitutes this input-insensitive basin is confined

by a distance relation to the neighborhood of the periodic

attractor: the probability of being in this basin diminishes the

further away the initial conditions are from the input-insensitive

periodic attractor.

The increase of performance and the neural bandwidth of SIP-

RNs for higher p (Figure 4) shows that outside of the input-insensitive

dynamic regime there exists a different basin of attraction. Within

this basin, the network is sensitive to input, and computations are

possible. The observation that p has no effect on IP-RNs and that

they show intermediate performance and mutual information

suggests that they are dominated by a dynamic regime with

intermediate input-sensitivity. It also confirms that intrinsic

plasticity is responsible for the emergence of the input-sensitive

dynamic regime in SIP-RNs.

Volumes of Representation
Now that the dynamic regimes of trained networks with the

three combinations of synaptic and intrinsic plasticity are

identified, we next move to formulating the notion of represen-

tations inside the input-sensitive dynamic regime. Developing such

a notion allows linking the theory of nonautonomous dynamical

systems to a theory of spatiotemporal computations. To this

purpose, we coin the term volumes of representation, which is a concept

that describes the response of a nonautonomous dynamical system

in respect to its drive. The volume of representation of some input

sequence within some dynamic regime is the set of network states

that are accessible through exciting the network with the

corresponding input sequence, starting from all network states in

this dynamic regime as initial conditions (Definition 10). The order

of a volume is defined by the length of the input sequence it

represents. We also introduce the volumes’ inclusion property which

hierarchically links the system’s response to spatiotemporal input

sequences to their sub-sequences.

To visualize a network’s volumes of representation, we sample

the network’s response. We do this because the size of the state

space and the input-sensitive dynamic regime is too large, making

a complete coverage impossible. Also, since volumes of represen-

tation can have complicated shapes in both the full and reduced

state space, we approximate these volumes with ellipsoids.

Figure 5D provides such an approximation to the volumes of

representation of order-1. The sample is a single sequence of

10000 Markov-85 inputs to a SIP-RN. Each volume is replaced

by an ellipsoid. The center of this ellipsoid is the coordinates’

average of the visited network states in the principal components

space. Each of its semi-axes has a length that is the standard

deviation from the mean of the corresponding coordinate. Also,

according to the volumes’ inclusion property, stated formally in the

Methods section, a volume of representation of order-1 of some

input p includes all volumes of order-2 for sequences whose most

recent input is p. As such, Figure 5E, that depicts a similar

approximation to all volumes of order-2, is also a better

approximation to volumes of order-1. In Figure 5E, each order-

1 volume consists of four order-2 volumes that are color-coded to

match the rougher approximation in Figure 5D. In a supporting

figure, we further show that this way of presentation is sufficient,

compared to using percentiles of bootstrapped network states (see

Figure S1).

The volumes of representation provide a geometric view of

spatiotemporal computations as the ability of the recurrent neural

network to represent in its activity, in other words to encode, useful

functions of the network’s input sequences, and for these

representations to be distinguishable and reliable. In the case of

the tasks RAND x 4 and Markov-85, the functions that the network

activity represents are the identity, delayed or forecast. As shown

in Figure 5D–E, the volumes of representation of SIP-RNs under

Markov-85 input exhibit higher separability, which explains both

their high classification performance and high mutual information.

One also notices that the volumes of representation of order-2 that

belong to the most probable transitions in the Markov-85 input,

e.g., B?C, are also the most distant from one another (Figure 5E).

This results in the most probable transitions to be more easily

distinguishable by optimal linear classifiers.

In order to isolate the roles of synaptic and intrinsic plasticity in

generating useful representations, we show in Figure 5A the order-

1 volumes of representation of an IP-RN in response to Markov-

85 input. Compared to the SIP-RN, these volumes are highly

overlapping, which explains the lower classification performance.

Also, the low mutual information between the network state and

the input (Figure 3) can now be explained by various network

states belonging to multiple volumes of representation, at once.

Also, many network states represent the same single input which is

a signature of redundancy resulting from IP. These observations

point towards STDP being the source of separability of represen-

tations in SIP-RNs, in addition to learning the structure of the

input through situating the representations of the input’s most

probable transitions at further distances from one another.

In the case of the task Parity-3, the function that the network

activity needs to represent is the sequential exclusive or operation

over three successive binary inputs. As such, within the input-

sensitive dynamic regime, two volumes of representation exists,

each encodes one outcome of the nonlinear task Parity-3.

According to Definition 10, these volumes are formed from an

appropriate union of order-3 volumes of representation of the

binary input. We provide an illustration of these two volumes of

representation in Figure S2. Here also, STDP provides the

separability that allows these representations to be distinguishable,

while IP gives the possibility of an input-sensitive and redundant

regime to emerge, and, aided by STDP, for the volumes of

representation to expand.

Attractor Landscape
The presence of dynamic regimes entails the existence of

attractors, i.e. limit sets of the dynamics, that apply a pulling force

on the dynamical system’s activity and dictate its course of flow. In

an input-driven dynamical system, attractors are not easily defined

as sets of states. Instead, nonautonomous attractors are input-

dependent moving targets of the dynamics, which adds a temporal

aspect to their definition (see Definition 8). As follows, for our

nonautonomous dynamical systems theory of spatiotemporal

computations to be complete, we link the geometry of the

computational entities, i.e. the volumes of representation, to the

geometry of the nonautonomous attractors. This allows us to

connect the features of the volumes of representation emerging

from plasticity, namely, separability and redundancy, to the effects

of plasticity on the nonautonomous attractor. To that end, starting

from the volumes of representations, we define the perturbation set

(Definition 10) as a moving source of the neural activity towards its

moving target, the nonautonomous attractor. Since the perturba-

tion set changes with time, it is called a nonautonomous set (Definition

7). This also applies to nonautonomous attractors. The set of states

constituting a nonautonomous set at a fixed time t is called the
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set’s t-fiber. We later show how the t-fibers of these nonautonomous

sets relate to each other.

In the input-insensitive dynamic regime, the dynamical system

behaves as an autonomous dynamical system, and so does its

attractor, which is the period-4 attractor in Figure 5B–C. In

addition, the existence of a nonautonomous basin of attraction

(Definition 9), that constitutes the input-sensitive dynamic regime

in SIP-RNs, necessitates the existence of a nonautonomous attractor.

It is not possible to fully identify the nonautonomous attractor

by looking into the nonautonomous dynamics. This is because the

attractor is not fixed in space and because the dynamics almost

never converges to it. However, we prove in Theorem 11.1 that in

an input-driven discrete-time dynamical system, and within a

basin of attraction, the nonautonomous attractor is a subset of the

basin’s perturbation set, and that the t-fibers of a nonautonomous

attractor are subsets of the t-fibers of the perturbation set. Given

this result, the location of the nonautonomous attractor within the

state space of the network can be approximated by the

perturbation set. The perturbation set summarizes how the

network activity passes from one volume of representation to

another, at every time step, according to the input’s transition

statistics. We replace the time dimension in Figure 5D by arrows

that correspond to the transitions in Markov-85 input. The

volume of representation visited at time t is the volume

corresponding to the input at that time, and it forms the t-fiber

of the perturbation set.

Instead of defining the asymptotic dynamics of the model neural

network within the input-sensitive basin of attraction by a single

nonautonomous attractor with different t-fibers, we can define it

by multiple autonomous attractors, each belonging to a particular

input. According to Theorem 11.2, within the input-sensitive basin

of attraction, there exists for each input p, an autonomous

attractor (Definition 4) of the autonomous semi-dynamical system

defined by p. The theorem also shows that this attractor is a subset

of the volume of representation of p. Theorem 11.3 further shows

that the basin of attraction of the autonomous attractor is also the

input-sensitive basin. Accordingly, the network dynamics under-

goes a bifurcation at each time step the input changes its identity. A

bifurcation is a change in the topological properties of invariant

sets, such as attractors. We observe bifurcations in the input-

sensitive regime of kWTA networks. The topological property

undergoing the change is the loss of stability of the periodic

attractor associated with an input p(t{1), and the appearance of

an attractor with a different period and location that is associated

with the input p(t).

Figure 5F shows the autonomous periodic attractors associated

with each Markov-85 input within the input-sensitive basin of

attraction of a SIP-RN. Each of these attractors is also a t-fiber of

the nonautonomous input-sensitive attractor. While these auton-

omous attractors are depicted in one state space, overlaying them

in a single plot serves only in illustrating the geometric relations

between them. In reality, these attractors do not coexist. Each

autonomous attractor appears in the phase space of the network

when its associated input drives the network, and the attractor

from the previous time step disappears.

The geometry of the nonautonomous attractor within an input-

sensitive dynamic regime is very important regarding spatiotem-

poral computations. In fact, computations are completely defined

according to the relative positions of the nonautonomous

attractor’s t-fibers to one another, and to the volumes of

representation. An attractor consists of limit points of a basin of

attraction. Thus, it exerts a pulling force on the network states that

define the volumes of representation. So, if the t-fibers of a

nonautonomous attractor are close to one another in the state

space of the network, different volumes will be overlapping and

computations will be difficult to carry through. Such is the case in

IP-RNs. On the other hand, distant t-fibers of the nonautonomous

attractor result in separate volumes of representation and better

spatiotemporal computations, which is the case in SIP-RNs

(Figure 5D–F). Also, the number of states comprising the t-fibers

of the nonautonomous attractor effects the redundancy of

representations. As intrinsic plasticity increases the number of

states of these t-fibers, the perturbation set becomes more

redundant. Given the above, while the perturbation set contains

the nonautonomous attractor, it is the attractor that defines how

the perturbation set, and as a consequence the volumes of

representation, extends in space.

For a correct characterization of spatiotemporal computations

according to the geometry of the nonautonomous attractor and

function representations, we borrow the concept of meta-transients

[44]. A transient activity of an autonomous (semi-)dynamical

system is the trajectory its dynamics follows as it approaches a

fixed attractor. Alternatively, an attractor of an input-driven

dynamical system changes constantly. This leads the trajectory

pursued by the dynamics to switch its course, so as to keep track of

its moving target. Such an input-dependent trajectory is termed a

meta-transient. When the input changes, the meta-transient passes

from one volume of representation to another, i.e. the dynamics

bifurcates and the meta-transient approaches the vertexes of the

current attractor, while being repelled from the others that are

now unstable. It is in this geometric relation to the different

attractors (or t-fibers) that computation resides. In fact, as a proof

of principle, the autonomous attractors of SIP-RNs were allocated.

This was done by clamping each input for a sufficient time until

the dynamics converges to that input’s periodic attractor. Then,

optimal linear classifiers were fitted to perform the three

computational tasks. As training data, the Hamming distances

between the meta-transient and the vertexes of these periodic

attractors were used. Figure S3 shows the performance resulting

from this computational procedure, which outperforms both SP-

RNs and IP-RNs. While the performance is far from what is

achieved directly from the activity of SIP-RNs, especially in the

nonlinear task Parity-3, it is important to note that distance is a

very rough compression of the geometric relations between the

meta-transient and the autonomous attractors. For instance,

distance does not allow the distinction between network states

that are symmetrical in relation to the autonomous attractors.

Emergence of Computation
We now outline how the interaction of homeostatic and

synaptic plasticity gives rise to spatiotemporal computations

through developing useful representations. To this end, we

combine the analysis of dynamic regimes, volumes of representa-

tion, and autonomous and nonautonomous attractors (Figure 5)

with the informational-theoretic intuitions regarding the evolution

of the neural code (Figure 3).

At the beginning of the plasticity phase, STDP has the upper

hand and it generates a minimal code of the input. This is evident

from the 2 bits network state entropy (Figure 3A) and the close to

zero mutual information with input (Figure 3B) at the beginning of

the plasticity phase of SIP-RNs. The minimal code captures,

through an input-insensitive periodic attractor, the most probable

transitions in the input (Figure 5B). Another feature of the input-

insensitive periodic attractor is the high separability of its vertexes

in the state space of the SIP-RN.

At the same, IP time succeeds in reducing the excitability

thresholds of some neurons, such that more network states become

accessible at the vicinity of the vertexes of the input-insensitive
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attractor: entropy increases alongside the potential for redundan-

cy. STDP concurrently assigns these network states to the inputs

that induce them: mutual information and redundancy increase.

This incremental process manifests dynamically in the appearance

of the input-sensitive basin of attraction, and the associated

appearance and expansion of volumes of representation

(Figure 5D–E). Due to the highly separate vertexes of the input-

insensitive attractor and the neighborhood relations of the volumes

with these vertexes, the volumes of representation are highly

separate. This shows that the input-insensitive dynamics is a

necessary prerequisite for the emergence of spatiotemporal

computations, as it sets the stage for the appearance of separate

representations that also carry the structure of the input.

The emerging dynamics can also be viewed through formulat-

ing the SIP-RN during the plasticity phase, as an input-driven

dynamical system parametrized by the weights and the excitability

thresholds. Through varying the parameters of the system with

STDP and IP, the dynamics at some point in the parameters space

bifurcates from one stable dynamics, the input-insensitive dynam-

ics, to two stable dynamics with the appearance of the input-

sensitive attractor in whose basin computations are realizable. This

also applies to each member of the family of semi-dynamical

systems with the appearance of new dynamics and the associated

new periodic attractor (Figure 5F).

Noise-Robustness
Equipped with different vantage points to describe the

information processing properties of plastic recurrent neural

networks, we now turn to ask a central question: what does an

information processing system like the brain require in order to be

noise-robust? We state the following hypothesis. Noise-robustness

is an effect of the interplay between 1) a redundant code that provides

multiple possible encodings of an input, and 2) separability of

representations which allows for a margin of noise without obscuring

the identity of the input.

The analysis of the neural code (Figure 3) shows how IP

increases the potential for redundancy by increasing the neuronal

bandwidth. STDP could exploit this potential redundancy by

assigning multiple neurons to the same input. Viewing the network

dynamics in the principal components space, on the other hand,

made clear that STDP ensures separability in the volumes of

representation (Figure 5D–E). This also suggests that the recurrent

network should be more robust to noise, the more recent the

decoded input is, as the margin of noise becomes smaller for older

inputs. The expansion of volumes of representation in IP-RNs also

points towards a higher potential redundancy.

We test the hypothesis and the role of STDP and IP interaction

in noise-robustness by injecting nondeterministic noise into the

recurrent network. Following the plasticity phase, we deploy a

certain rate of random bit flips on the network state that reserves

the kWTA dynamics, i.e. if some neuron is silenced due to noise,

another neuron is selected at random and it fires instead. Different

networks with different input statistics will amplify the same

amount of noise to a varying extent. The shaded area in Figure 6

marks the ratio-of-noisy-spikes range within the network states of

100 recurrent networks. For all tasks and networks, we measured

performance of optimal linear classifiers on both the noise-free and

noisy network states, and computed the relative change in

performance.

We compare the change in performance for each time-lag with

the ratio of noisy spikes. To understand how this comparison aids

in characterizing noise-robustness, we rely on an example. If 10%

of a network’s spiking activity has been replaced by noise, spikes

being the carriers of information, 10% of the information in the

network would be lost. However, if the activity of other neurons

within the network is a replica of half the lost spikes, only 5% of

the information would be lost, and the performance of the linear

classifiers would decrease just as much. Having the change of

performance below noise level is evidence of noise-robustness due

to redundancy and intrinsic plasticity.

Information carried by the network cannot deteriorate beyond

the amount of noise; the ability to perform computations, on the

other hand, is another story, since distinguishing between

representations is a necessary condition for computation. Noise

can lead to an overlap in the volumes of representation, which

hinders the information processing capability of the recurrent

Figure 6. Noise-robustness is achieved through the interaction of synaptic and intrinsic plasticity. Bootstrapped median relative change
from the noiseless performance of 100 networks trained with both STDP and IP on (A) the memory task RAND x 4, (B) the prediction task Markov-
85, and (C) the nonlinear task Parity-3. High perturbation of p~12 is applied at the end of the plasticity phase. Error bars correspond to the 25th

and the 75th percentiles. Noise level N3~3% is the probability of a bit flip in the network state, that is, the probability of one of the k spiking neurons
at time step t to become silent, while a silent neuron fires instead. The shaded area indicates the ratio of noisy spikes which is measured in
comparison to the noiseless SIP-RNs. The green line indicates the median and the orange lines the 25th and the 75th percentiles of the noisy spikes ratio.
doi:10.1371/journal.pcbi.1003512.g006
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neural network, since overlapping representations are indistin-

guishable and prone to over-fitting by decoders, linear or

otherwise. However, when volumes of representation are well

separated due to STDP, and redundancy is at play, performance

will not exceed the amount of noise in the network: noise-

robustness is still achieved.

Figure 6 shows that redundancy and separability are assuring

noise-robustness in the three tasks. The effects are the strongest for

the task RAND x 4. The change of performance never exceeds the

range of noise for all time-lags. The change of performance on the

task Markov-85 remains below the range of noise for few time-

lags in the past and it remains within the bounds of the noise range

for older stimuli. The networks then are still capable of tolerating

noise, while the volumes of representation are becoming more

overlapping. The decrease of noise-robustness for larger time-lags

in the past confirms our suggestion that volumes of representation

become less separate for older inputs. The analysis of order-2

volumes of representation (Figure 5E) also suggests that less

probable transitions of the input are more prone to noise. This,

however, was not tested. The task Parity-3 is noise-robust for 0-

time-lag only and with the change in performance being within the

noise range. This is understandable, since for each time-lag,

order-3 volumes of representation and the associated volumes of

the Parity-3 function should be separate and redundant.

These observations confirm our hypothesis that redundancy and

separability are the appropriate ingredients for a noise-robust

information processing system, such as our model neural network.

These properties being the outcome of STDP’s and IP’s

collaboration, suggest the pivotal role of the interaction between

homeostatic and synaptic plasticity for combating noise.

Constructive Role of Noise
Now that we have demonstrated the contributions of STDP and

IP in combating noise, we turn to investigating noise’s beneficial

role. We have seen that perturbation at the end of the plasticity

phase provides a solution to the network being trapped in an input-

insensitive regime. Besides viewing perturbation as a form of one-

shot strong noise, which is, biologically speaking, an unnatural

phenomenon, what effect would a perpetual small amount of

noise have on the dynamics of the recurrent neural network?

We again deploy a certain rate of random bit flips on the

network state that reserves the kWTA dynamics. Unlike the

previous section, we do not restrict noise to the training and

testing phase, but apply it also during the plasticity phase. We also

do not reset the network activity after the plasticity phase, i.e. the

perturbation parameter p is set to 0.

Figure 7A–C compares the performance of optimal linear

classifiers on the three tasks for different levels of noise. For all

Figure 7. Noise at certain levels is rendered constructive when synaptic and intrinsic plasticity interact. Average classification
performance of 100 networks trained with both STDP and IP on (A) the memory task RAND x 4, (B) the prediction task Markov-85, and (C) the
nonlinear task Parity-3 for increasing levels of noise and no perturbation at the end of the plasticity phase (p~0). (D) Network state entropyH(X )
and (E) the mutual information with the three most recent RAND x 4 inputs I(U ,X ) at the end of the plasticity phase for different levels of noise.
Values are averaged over 50 networks and estimated from 5000 samples for each network. (A–E) Noise levels are applied during the plasticity,
training, and testing phases. They indicate the probability of a bit flip in the network state, that is, the probability of one of the k spiking neurons at
time step t to become silent, while silent neuron to fire instead. N1~0:6%,N2~1:2%,N3~3%,N4~6%, and N5~12%. Error bars indicate standard
error of the mean.
doi:10.1371/journal.pcbi.1003512.g007
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tasks, some levels of noise resulted in a significantly higher average

performance than the noiseless case. The task Markov-85 had the

highest average performance at the largest level of noise, while the

tasks RAND x 4 and Parity-3, where the input was uniformly

random, had the highest performance at the third and fourth levels

of noise, and the average performance dropped substantially at the

fifth level of noise. In all tasks, performance was far off the levels it

reached in the noiseless case (Figure 2).

Information-theoretical quantities are again measured on

networks with RAND x 4 input. As expected, the network state

entropy increases monotonically with noise (Figure 7D). Mutual

information, on the other hand, starts dropping for noise larger

than the third level (Figure 7E). This is also expected from the

change of performance (Figure 7A). Noise then appears to provide,

in some of the SIP-RNs, the necessary means to escape the input-

insensitive dynamics. At some levels, however, the network activity

becomes dominated by noise beyond the compensatory effects of

redundancy and separability achieved through plasticity. In

addition, more unstructured noise during the plasticity phase

delays the creation and expansion of useful volumes of represen-

tation, thereby hindering computations further.

Discussion

We demonstrated how the interaction of synaptic learning and

homeostatic regulation boosts memory capacity of recurrent

neural networks, allows them to discover regularities in the input

stream, and enhances nonlinear computations. We provided a

geometric interpretation of the emergence of these spatiotemporal

computations through analyzing the driven dynamic response of

the recurrent neural network. We view computations as a

geometric relationship between representations of functions over

stimuli, representations that consist of network states, and the

asymptotic dynamics of the network, i.e. attractors. Accordingly,

Figure 8A shows a possible driven-dynamics viewpoint on

computation, which is the following. As the stimulus changes, a

bifurcation occurs where the current attractor of the network

becomes unstable, while another stabilizes according to the

current stimulus. That leads the network dynamics to change its

course towards the new stable region, or attractor, of the state

space, and away from the previous attractors that are all unstable.

As such, this path of the network activity, i.e. the meta-transient

[44], is defined by both the stimulus sequence and the locations of

the network’s attractors. Together, they lead the meta-transient to

pass through particular representations which encode computa-

tions. An equivalent alternative to the chain of bifurcations between

autonomous attractors is that of a single nonautonomous attractor that

behaves as a stimulus-dependent moving target of the dynamics.

We showed that a successful implementation of these spatio-

temporal computations requires the interaction of synaptic and

homeostatic intrinsic plasticity which generates useful representations

in the dynamics of excitable cortical networks. Figure 8 schemat-

ically illustrates the stimulus-driven dynamical viewpoint of

spatiotemporal computations and the effects of plasticity. Synaptic

plasticity produces stimulus-insensitive dynamics that captures the

temporal structure of the input. Intrinsic plasticity increases the

Figure 8. Schematics of the driven dynamics of networks endowed by synaptic and homeostatic plasticity, and the emergence of
noise-robust spatiotemporal computations. (A) The dynamics of a recurrent network that is trained by homeostatic and synaptic plasticity and
driven by a Markovian input. Each layer corresponds to one input. The layer illustrates a two-dimensional projection of the phase space of the
autonomous (semi-)dynamical system associated with that input. A layer that corresponds to the spontaneous activity (SA) is added for
completeness. Due to the interaction of synaptic and homeostatic plasticity, each of these (semi-)dynamical systems has two dynamic regimes: an
input-insensitive dynamic regime that is shared by all the layers and that captures the temporal structure of the input, and an input-sensitive dynamic
regime that contains a single periodic attractor. The input-sensitive attractor depends on the layer and is close to one of the vertexes of the input-
insensitive attractor. The network is excited by the exemplary input sequence B?C?D?A?C. The red cross refers to the initial conditions that are
chosen within the input-sensitive dynamics. Given the input sequence, the network dynamics follows the meta-transient that is illustrated by the
arrows between the different layers. For instance, when the network is excited by the input B, the network activity approaches the B-attractor within
the corresponding layer. When C follows, a bifurcation occurs, where the B-attractor becomes unstable and the C-attractor becomes stable. The meta-
transient approaches the C-attractor from the direction of the unstable B-attractor. When C is preceded by the less common input A, the C-attractor is
approached differently, such that the distance to it is bigger than in the case of the most common transition B?C. (B) Noise-robust computations
are a result of the interaction between synaptic and homeostatic intrinsic plasticity. Synaptic plasticity leads to high separability and intrinsic plasticity
to redundancy. These effects lead to a neural code that allows a higher margin of noise and alternative representations of computations, thus
facilitating noise-robustness.
doi:10.1371/journal.pcbi.1003512.g008
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neuronal bandwidth by increasing sensitivity to stimuli, which

reduces the dominance of the stimulus-insensitive dynamics. This,

in combination with synaptic plasticity, generates stimulus-

sensitive attractors and redundant representations around them.

These stimulus-sensitive components are pulled apart by the

stimulus-insensitive dynamics, so that the structure of the input is

preserved, and the separability of representations is higher and

computations are realizable.

We pointed out throughout the text that computation is an

emergent property of the recurrent network, and that it cannot be

fully understood from the individual contribution of the parts, be it

neurons or plasticity mechanisms. It might appear contradictory to

that statement that the analysis was often concerned with the

isolated role of each single plasticity mechanism. However, the

quantitative assessments of computations point back to the

emergent and collective aspect of computation. Namely, measured

on SIP-RNs, neither performance of linear classifiers nor mutual

information with input can be accounted for by a linear

relationship between the respective quantities measured on SP-

RNs and IP-RNs. In fact, the performance of networks where the

recurrent weights and firing thresholds are adapted separately, and

then combined following the plasticity phase, is far less than the

performance of SIP-RNs, where intrinsic and synaptic plasticity

are mutually active (see Figure S4). This further consolidates the

claim that computations in SIP-RNs emerge from the interaction of

STDP and IP, and not from their isolated contributions. It also

points back to the formation of separate and redundant

representations from the continuous interplay of these two

mechanisms.

We also illustrated the combined role of synaptic and

homeostatic intrinsic plasticity in creating noise-robust encoding

through the generation of a redundant neural code. Many studies

have investigated the redundant nature of neural information

transmission in many cortical regions, and have justified this

expensive allocation of neural recourses by redundancy serving as

an error-correction strategy that provides neural assemblies with

the capacity to average out noise [10,47–50]. Tkac
^
ik and

colleagues have shown that in the presence of noise, a maximum

entropy model of the retina increases redundancy for higher noise

levels. A side effect of their model is that stimulus representations

become highly separate, which increases the tolerance margin of

noise and enhances information transmission [51]. Our model was

able, through local plasticity mechanisms, to capture both of these

properties, achieved in [51] through optimality principles, and to

lead to a noise-robust population code (Figure 8B). Namely,

synaptic plasticity enhances the separability of representations

through the pulling force of the input-insensitive attractor, while

intrinsic plasticity perturbs the network states and increases

redundancy when interacting with synaptic plasticity, which allows

for alternative representations of similar input sequences. Another

point of similarity with the model of Tkac
^
ik and colleagues [51]

and with empirical findings [52,53] is the remnant fingerprint of

the most common stimulus in the network’s spontaneous activity,

which manifests in our model neural network in the stimulus-

insensitive dynamics (Figure 5B–C).

In addition to combating noise, our model explores a potential

benefit from its presence. We pointed out the necessity of the

stimulus-insensitive dynamics for the emergence of computation in

the model neural network. The stimulus-insensitive attractor

provides the baseline dynamics for the appearance of highly

separate representations, and thus, the excitable dynamics

necessary for computations. Getting from the input-insensitive

regime to the excitable one depended, however, on the ad hoc

reinitialization of the network activity at the end of the plasticity

phase. Noise provides an alternative. During the plasticity phase,

noise shallows the boundaries between the two basins of attraction,

which reduces the dominance of the stimulus-insensitive attractor.

After the plasticity phase, noise supplies the small perturbations

needed to get the network activity to the sensitive dynamics where

computations are possible. This solution, in comparison to

reinitializing the network activity, is more inferior, specifically

because noise also delays the learning of representations. We

postulate that another homeostatic plasticity mechanism, synaptic

scaling, might contribute to the shallowing of the attractor

boundary by constraining the strength of synapse bundles between

neural subpopulations (e.g., between RFA and RFC ). For instance,

synaptic scaling was necessary for implementing spatiotemporal

computations in self-organizing recurrent networks (SORN) [28], but no

analysis of the dynamics of these networks was done. Testing this

hypothesis is, however, beyond the scope of this work.

It is also tempting to connect the topology of the attractor

landscape of SIP-RNs to neuropathology and to a model by Pfister

and Tass [54]. They suggest that two stable regimes of recurrent

network activity, a synchronous pathological regime and an

asynchronous healthy regime, coexist, and that their coexistence is

a necessary condition for the functioning of a model of deep brain

stimulation. In their model, the stimulation of the recurrent

network destabilizes the synchronous dynamics through inducing

STDP. The destabilization drives the network activity towards the

healthy asynchronous basin of attraction. By eliminating the

stimulation, the energy hill between the two dynamic regimes rises

again and the network remains in the healthy dynamics. Our study

has shown how these two coexisting dynamic regimes and their

associated forms of activity might come into being through

neuronal plasticity. We also suggested noise as a possible

mechanism for avoiding the unhealthy dynamics. Further analysis

is necessary to investigate how the interaction between noise and

different plasticity mechanisms might contribute to our under-

standing of neurological disorders.

Our analysis of spatiotemporal computations was restricted to

Markovian dependencies in the temporal structure of the stimulus

or to no dependencies at all. This is often not the case in natural

stimuli faced by animals and humans, where the Markov property

does not always hold. Lazar et al. have shown that SIP-RNs are

capable, to a certain degree, of performing predictions on second-

order Markov chains [27]. However, optimal encoding of non-

Markovian stimuli and performing computations over them

require forms of spike-timing-dependent plasticity that are less

myopic to the temporal dependencies than what we considered in

this work (Figure 1B). For instance, Brea and colleagues have

shown that storing and reproducing a non-Markovian sequence in

a recurrent neural network require a nonlocal form of STDP with

more complex temporal dependencies between pre- and post-

synaptic spikes [55]. While their model was not concerned with

carrying through spatiotemporal computations of the kind we

presented here, it successfully reproduced the stored non-

Markovian input in the spontaneous activity of the neural

network. This refers to a point of similarity to the simpler case

we presented here, where Markovian input was stored and

recalled in the spontaneous activity of the input-insensitive

dynamics. In any case, while spatiotemporal computations over

non-Markovian stimuli and the necessarily more complex

plasticity mechanisms that lead to their emergence, are not

considered here, we view the concepts and methodology

developed above as a general framework for future studies.

In this article, we provided a first analysis of the combined role

of synaptic and intrinsic plasticity on the emergent dynamics of
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recurrent neural networks subject to input. We redefined

computations in relation to these emergent dynamics and related

that to properties of the neural code. We also considered how the

neural dynamics interact with noise, both as a nuisance to combat,

and as a driving force towards healthy neural activity. The model

we used is simplified, however, both in network architecture and

plasticity mechanisms. While this simplification is necessary for

mathematical convenience, biology never cares for formal

abstractions, for the brain is a complex information processing

system that is rich with a variety of neuronal morphologies and

functions. The plastic changes the brain undergoes are neither

confined to the two mechanisms we dealt with here, nor are they

uniform across different regions. On the other hand, mathematical

formalization of computation and adaptability allows the identi-

fication of unifying principles in computational biology, in general,

and neural computations, in particular. We intended the current

article as a step in that direction.

Methods

The setup on which we assessed spatiotemporal computations

in recurrent neural networks is partially inspired by the theory of

reservoir computing (RC) [3,29,30]. However, as shown in the

Results section, our analysis is independent of the RC paradigm,

as it is concerned with the effects of plasticity on the recurrent

network, and optimal linear classifiers are only used as one

possible probe to quantify these effects. We present in this section

the recurrent network (RN) architecture and the plasticity mecha-

nisms active in shaping the neural response. We follow by

introducing the computational tasks and justifying their selection.

We then specify the simulation conditions and the training of

optimal linear classifiers, followed by demonstrating how

information-theoretical quantities are estimated. We finally lay

down the mathematical formalization of the autonomous, input-

driven, and input-insensitive dynamics of the recurrent network:

We adapt Definitions 2, 4, 6–8 from [31] to the special case of

discrete-time dynamics [32], which is the case that concerns the

current article. We contribute the new concepts of volumes of

represen\r notation and purposes.

Network Architecture
In this paper, the model recurrent network is of the k-Winner-Take-

All (kWTA) type [27] that consists of n memoryless binary neurons

from which only k neurons are active. The discrete-time dynamics

of the recurrent network at each time step t[Zz is given by

x(tz1)~f ðw:x(t){hzd(t)Þ, ð1Þ

where x[Rn is the network state. The nonlinear function f sets the k
units with the highest activities to 1 (spiking), and the rest to 0 (silent).

As such, the population firing rate is held constant at k, and there is

no need to introduce inhibitory neurons to balance excitation and

inhibition. Recurrent synaptic efficacy is defined by the weight

matrix w[½0,1�n|n
with wij being the efficacy of the synapse

connecting neuron j to neuron i. Self-coupling is avoided by setting

diagonal elements wii to 0. h[Rn defines neuronal firing thresholds

that modulate the neurons’ resistance to firing, and hence, their

excitability. d[Rn is the external drive whose dynamics depends on

the task performed.

More formally, the set of possible network states is a metric

space:

Definition 1. Given the set Y~Bn~f0,1gn
of all binary

vectors of size n, we define the Hamming metric by the function:

d : Y|Y?Zz\½0,n� : d(y1,y2)~
Xn

i~1

Dy(i)
1 {y

(i)
2 D

According to this metric, the distance between two vectors of Y
is the number of bits at which these two vectors differ. The

Hamming metric is a proper metric on strings of fixed length

which is the case for Y . The pair (Y ,d) then forms a metric space. It

is also equivalent to the L1 norm on the set Y, which allows us to

define the Hamming length of a vector y[Y as the Hamming

distance between y and the 0-vector, i.e. DyDd~d(y,0).
Given the kWTA dynamics (see Equation 1), the network activity

is restricted to the set:

X~Bn
k~fx[Y : DxDd~kg ð2Þ

Since X5Y , the pair (X ,d) forms a metric space as well.

Distances between subsets of X can be measured using the

Hausdorff metric, which we also denote d.

Plasticity Mechanisms
We are concerned with the interplay of two forms of plasticity in

enhancing the computational capability of the model recurrent

network.

Spike-timing-dependent synaptic plasticity (STDP) is a set of Hebbian/

anti-Hebbian learning rules, where synaptic efficacy is modified

according to the relative firing time between pre- and post-

synaptic neurons [56]. We adapted a simple causal STDP learning

rule by which a synapse is potentiated whenever the pre-synaptic

neuron fires one time step before the post-synaptic neuron, and is

depressed when a post-synaptic spike precedes a pre-synaptic spike

by one time step:

Dwij(tz1)~gsp xj(t):xi(tz1){xi(t):xj(tz1)
� �

, ð3Þ

where gsp is the synaptic plasticity learning rate set to 0.001. To

prevent weights from switching signs or growing uncontrollably,

we enforce hard bounds such that the weights remain within the

interval [0, 1].

Competition between synapses due to STDP leads to neurons

with synapses that won the competition to fire consistently and

those who lost the competition to be constantly silent [57]. To

counteract this pathological state, the time-averaged firing rate for

a neuron is modulated through homeostatic modification of its

excitability threshold using intrinsic plasticity (IP) [6,7]:

Dhi(tz1)~gipðxi(tz1){k=nÞ, ð4Þ

where gip is the intrinsic plasticity learning rate set to 0.001. This

rule uses subtractive normalization to pull the time-averaged firing

rate of each neuron closer to the population firing rate k.

Computational Tasks
Neural circuits in different brain regions adapt to best serve the

region’s functional purpose. To that end, we constructed three tasks,

each of which resembles in spirit the demands of one such canonical

function. We then, under the stimulation conditions of each task,

compared the performance, information content, and dynamical

response of networks optimized by combining both STDP and IP

with networks that are optimized by STDP alone or IP alone.
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In all tasks, the network is subject to perturbation by a set of

inputs P. The receptive fields of non-overlapping subsets of

neurons x(p) are tuned exclusively to each input p[P. As such,

each input p has its corresponding receptive field x(p)~RFp in the

recurrent neural network. When an input p drives the network, all

neurons x(p) receive a positive drive d~0:25, while the rest x\x(p)

receive none. Readouts are trained on the current network

state x(t) to compute a function over input sequences

ut1t2
(t)~Sp(tzt1),:::,p(tzt2)T, t1 and t2 being time-lags at

which target inputs are applied where positive lags corresponds to

future inputs and negative lags to past ones. We restrict time-lags t
to the range Z\½{8,8�.

In a first task, RAND x 4, we assessed the capacity of the network

to retain memory of past stimuli within its activity. The recurrent

network is driven by four randomly drawn inputs P~fA,B,C,Dg.
The receptive field of each input consists of 15 neurons, and one

optimal linear classifier O(p,t) is trained for each input/time-lag

pair, i.e. O(p,t) fires when p(tzt)~p and is silent otherwise.

The second task, Markov-85, explores the ability of the

recurrent network to discover temporal regularities in its input.

The recurrent network receives one of four possible inputs

P~fA,B,C,Dg generated from a Markov chain with 85%

probability for A to be followed by B, B followed by C, C
followed by D, and D followed by A: All other transitions occur

with a 5% probability. Again, the receptive field of each input

consists of 15 neurons, and one optimal linear classifier O(p,t) is

trained for each input/time-lag pair.

With the third task, Parity-3, we exploit the nonlinear

expansion provided by the recurrent neural network. Here, the

network is subject to binary input P~f0,1g, where each symbol

has a receptive field of 40 neurons. The task is to identify the parity

of a sequence of three successive inputs. This means that given

an input sequence u(t{2)t(t)~Sp(tzt{2),p(tzt{1),p(tzt)T,

an optimal linear classifier O(1,t) fires when g u(t{2)t(t)
� �

~

p(tzt{2)+p(tzt{1)+p(tzt)~1, and is silent otherwise. +

is the nonlinear exclusive or binary operation.

Even though every task used here is very much simplified

compared to stimuli usually processed by neural systems, we

would still like to link the basic properties of every task presented

here to a realistic case processed by a human or an animal. The

property of the memory task RAND x 4 that we want to emphasize

is that a neural system must be able to process rapidly changing

stimuli that are only shortly presented. That property is partly

reminiscent of retinal input, which is rather stationary during

moments of fixation, and rapidly changing due to saccadic eye

movements. However, it needs to be noted that saccadic eye

movements might be difficult to predict and may appear rather

random, but are very likely structured and stimulus-dependent.

This motivated the prediction task Markov-85 that models

temporally structured and rapidly changing sensory input that is

shortly presented. Such input could either be generated by retinal

input and saccadic eye movements, or by the whisking behavior

and the produced neural activity in the barrel cortex of a mouse.

In addition, nonlinearities are prevailing in natural stimuli, and to

highlight the necessity of processing these stimuli, we used the

nonlinear task Parity-3. Such computational demands can be

easily motivated by occlusion in vision, where pixel intensities do

not sum up linearly at points where one object occludes another

in the visual field. Again, we stress that none of these tasks is a

good model of real processing in neural systems in nature.

However, each is sharing individual aspects that are motivated by

real life examples.

Simulation Conditions
In order to isolate the role of STDP and IP in shaping the

computational and information processing properties of the

recurrent network, we compared networks trained by both STDP

and IP, with networks that are trained by STDP alone or IP

alone.

Throughout all experiments, we trained networks of n~100
neurons on either the STDP+IP condition, the STDP condition, or

the IP condition for a plasticity phase of tpl time steps. For

convenience, we call a recurrent network trained with both synaptic

and intrinsic plasticity SIP-RN. In contrast, we name a recurrent

network that learned with a single plasticity mechanism either SP-

RN or IP-RN. k is set to 12, the initial weights are chosen uniformly

on the interval [0, 0.1] with 10% connectivity probability, and

thresholds are drown from a Gaussian distribution with 0 mean

and 0.1 standard deviation. Under the IP condition, to assure that

weights’ distribution is not different from conditions where STDP

modifies the synaptic efficacies w, a pre-plasticity phase of similar

length to the plasticity phase precedes the latter, where both STDP

and IP are active. Afterwards, the weights structure is destroyed by

random shuffling and the plasticity phase starts where IP is turned

on.

In all experiments where the performance of optimal linear

classifiers is estimated, the plasticity phase was tpl~20000 time

steps long. Afterwards, weights and thresholds are held fixed, the

network state is reset to a random initial state, and the training phase

starts where linear classifiers are trained using linear regression on

ttr~5000 time steps, followed by a testing phase of performance for

another tts~5000 time steps.

Post-Plasticity Perturbation
At the beginning of the training phase, the network state is reset

to a random initial state. If the network dynamics is multistable,

this resetting could bring it to a different regime than where the

network was at the end of the plasticity phase. To test this

possibility systematically, we perform the following post-plasticity

perturbation.

Given some perturbation parameter p[Z\½0,k�. We assume

the network state at the end of the plasticity phase is x(tps). Instead

of randomly choosing the initial network state for the training

phase, we choose a network state xp such that the condition

d xp,x(tps)
� �

~2p holds. To satisfy this condition, xp is chosen as

follows. In the network state x(tps), p firing neurons and p silent

neurons are randomly selected. The p firing neurons are then

silenced and the p silent neurons are set to firing.

Output Weights and Performance
According to the RC paradigm, an input signal undergoes a

nonlinear feature expansion by projecting into a recurrent neural

network of nonlinear units. The network recurrency also provides

a sustained but damped trace of past inputs (echo state [29] or

fading memory [30]) to propagate through the network. The

network state is then read out by simple linear units through linear

regression.

Following the plasticity phase, the network activity during the

training phase

Xtr~ xT(t)
� �

tplvtƒtplzttr
[f0,1gttr|n ð5Þ

provides the training data for all optimal linear classifiers, where

(:)T denotes matrix transpose. The target signal of output neurons

for a particular time-lag t is clamped in a supervised fashion to
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O(t)
tr ~ O(p,t)(tzt)

� �
tplvtƒtplzttr

[f0,1gttr|DgD, ð6Þ

where DgD depends on the task and is the cardinality of the set of

possible values which the target signal can take. DgD equals DPD for

the tasks RAND x 4 and Markov-85. Output weights wo for each

time-lag are then computed using linear regression through

ordinary least squares

w(t)~X
{
tr
:O(t)

tr ~(XT
tr Xtr)

{1XT
tr
:O(t)

tr [Rn|DgD, ð7Þ

where (:){ is the Moore-Penrose pseudoinverse of a matrix, and (:){1 is

the regular inverse of square matrices.

These optimal linear classifiers are then validated on the

network activity

Xts~ xT(t)
� �

tplzttrvtƒtplzttrztts
[f0,1gtts|n ð8Þ

during the testing phase. First, a pre-estimate of the target signal is

computed for each time-lag:

~OO(t)~Xts
:w(t)[Rtts|DgD ð9Þ

Only one output neuron fires each time step for each time-lag,

and this is specified through winner-take-all on the rows of ~OO(t).

This leads to the final estimate O(t)
ts [f0,1gtts|DgD

. The classification

performance for each time-lag is finally computed as the percentage

of correct classifications:

P(t)~
100

tts

:
Xtts
t~1

XDgD

i~1

1{
O(t)

ts (t,i){ ~OO(t)
ts (t,i)

�� ��
2

 !
ð10Þ

Computing Entropy and Mutual Information
On multiple occasions, both the self-information capacity of the

network state and its dependence on input was measured. Entropy

measures self-information capacity which is the expected value of

information carried by the network activity X and is given by

H(X )~{
X
x[X

p(x):log p(x), ð11Þ

where log(:) is the base-2 logarithm, so that entropy (and mutual

information) are measured in bits. Mutual information measures

the dependence of the network activity X on a corresponding

input sequence U and is given by

I (U ,X )~
X
u[U

X
x[X

p(u,x):log
p(u,x)

p(u):p(x)
ð12Þ

In computing entropy and mutual information, we used the

algorithm and code developed in [58] that computes entropy from

an adaptive k-nearest-neighbor estimate of probability density

functions. This allows for reliable estimates of these quantities with

far fewer samples in comparison to other algorithms. Nevertheless,

due to the high number of channels we have (100 neurons), and to

truncate unnecessary computation time, samples from the network

activity are first transfered to the principal components space, and

only components that carry 95% of the information are passed to

the mutual information estimator.

We always considered inputs from the task RAND x 4 and we

computed the mutual information between samples of the

network state x(t) and the three most recent inputs

u(t)~Sp(t{2),p(t{1),p(t)T. We encoded each of the four input

symbols P~fA,B,C,Dg by a 3-bits code ~PP~f000,011,101,110g
to ensure equal pairwise Hamming distances between symbols.

For all cases but one, as few as 5000 samples of the network state

x(t) and input sequence u were enough to reliably estimate

entropy and mutual information. The exception was computing

mutual information between input and IP-RN activity, which

demanded a higher number of samples (500000 time steps) and

very long computation time, as covering 95% of the information

required no less than 60 principal components.

Autonomous Dynamics
For a full understanding of the emerging information processing

properties of the interaction of synaptic and intrinsic plasticity, it

was necessary to rely on and develop concepts from the newly

emerging mathematical theory of nonautonomous dynamical systems

[31,32]. Throughout what follows, the correspondence of the

introduced concepts to our model is clarified. First, autonomous

dynamics are defined, since they form a special instance of the

nonautonomous case.

Definition 2. Let (X ,d) be a metric space with a metric d: A

discrete-time semi-dynamical system is a function w : Zz|X?X that

satisfies

1. w(0,x)~x Vx[X .

2. w(t1zt2,x)~w t2,w(t1,x)Þ Vx[X and Vt1,t2[Zz
�

.

3. w is continuous.

Equation 1 defines the driven or nonautonomous kWTA

dynamics. The autonomous alternative is given by the discrete-

time difference equation

x(tz1)~f (0) x(t)ð Þ~f w:x(t){hð Þ, ð13Þ

where f is the kWTA nonlinearity defined as above. To relate

Equation 13 to Definition 2, the function w (the solution mapping) is

chosen such that

w(t,x)~ f 0f 0 � � � 0f|fflfflfflfflfflffl{zfflfflfflfflfflffl}
t times

(w:x{h), ð14Þ

where 0 is function composition. For w to be an autonomous semi-

dynamical system, it has to satisfy the three conditions of

Definition 2. The first two conditions are trivial, as they result

from the definition of function composition. We turn to prove the

third condition, namely, the continuity of w. We first observe that

w is merely the t-fold composition of the function f , and since the

composition of continuous functions is continuous, it is sufficient to

prove the continuity of f :

Proposition 3. The kWTA function f (0) from Equation 13

defined on the metric space (X ,d) is continuous, i.e.
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Vx1[X and V w0; Adw0 such that

Vx2[X with d(x1,x2)vd, d f (0)(x1),f (0)(x2)
� �

v holds:

Proof. For all x1[X and all w0, we choose d( )~1. For all

x2[X , if the Hamming distance d(x1,x2)v1, x1 and x2 have to be

equal, since the kWTA dynamics restricts the distances between any

two states to the set ½0,n�\f0,2, � � � ,2kg. As such, since d is a

metric, d(f (x1),f (x2))~0, which is always smaller than w0.

Ergo, f is continuous.

We note that the proof to Proposition 3 becomes trivial if we

consider a result from topology which states that any function from

a discrete topological space to another is continuous. However, the

proof is interesting in that it shows that f (0) has a stronger form of

continuity, that is, f (0) is uniformly continuous, since the proof shows

that there exists a packing radius r~d~1w0 such that either

x1~x2 or d(x1,x2)wr for all x1 and x2[X .

With the proof of Proposition 3, we conclude that the kWTA

autonomous dynamics in Equation 13 generates a discrete-time

semi-dynamical system. A dynamical system is a semi-dynamical

system with invertible dynamics, which is not the case for kWTA

networks. However, for all intents and purposes, being a semi-

dynamical system is sufficient for formalizing the nonautonomous

dynamics of the model network.

Autonomous Attractors
Characterizing the computational properties of the model

neural network requires defining invariant sets and attractors.

Definition 4. Let w : Zz|X?X be a discrete-time semi-

dynamical system generated by an autonomous difference

equation f on a metric space (X ,d). A subset A(X is invariant

under w and f if f (A)~A, and is positively invariant if f (A)5A. A
is an attractor of w if the following conditions hold:

1. A is invariant under w and f :

2. A is compact.

3. There exists a neighborhood N r of radius rw0 of A such that

limt?? d w(t,N r(A)),AÞ~0
�

For the kWTA dynamics, the second condition is assured, since X
is discrete and finite, which makes all subsets compact. The third

condition assures that no subset of A satisfies the invariance and

compactness conditions. Another important concept is that of a

basin of attraction which associates each attractor with the region of

the state space that converges to that attractor:

Definition 5. Let w : Zz|X?X be a discrete-time semi-

dynamical system generated by an autonomous difference

equation f on a metric space (X ,d). The basin of attraction of an

attractor A of w is defined by

BA~fx[X : limt??d w(t,x),Að Þ~0g

Nonautonomous Dynamics
Unlike autonomous (semi-)dynamical systems, the elapsed time

is not sufficient to find the solution for nonautonomous dynamics:

both the start and end times must be specified. Accordingly, we

now define a discrete-time nonautonomous dynamical system as a process. In

what follows, we will make use of the set Z2
§

~f(t,t0)[Z2 : t§t0g.

Definition 6. Let (X ,d) be a metric space with a metric d: A

discrete-time process is a function w : Z2
§

|X?X that satisfies

1. 1. w(t0,t0,x)~x Vt0[Z and Vx[X :

2. 2. w(t2,t0,x)~w t2,t1,w(t1,t0,x)ð Þ Vt0ƒt1ƒt2[Z and Vx[X :

3. w is continuous.

We now turn to formulating the driven kWTA difference

equation (see Equation 1) as a discrete-time process. We first note

that for a particular task, a set of possible inputs P|f0g is defined.

For completeness, this set covers the autonomous case by including

the 0-vector. For each member of this set, we define a separate

map f (p) : X?X such that f (p)(x)~f (w:x{hzd(p)). The set of

maps ff (p)g with cardinality DPDz1 defines a family of discrete-

time autonomous semi-dynamical systems. These maps are chosen

either randomly for the tasks RAND|4 and Parity-3, or in a

more structured fashion for the task Markov-85. In either case,

the kWTA discrete-time nonautonomous dynamics in Equation 1

can be rewritten in the form

x(tz1)~f (pt) x(t)ð Þ~f w:x(t){hzd(pt)(t)
� �

, ð15Þ

which generates a solution mapping

w t2,t1,x(t1)ð Þ~f (pt2{1)0 � � � 0f (pt1
) x(t1)ð Þ ð16Þ

The solution mapping w satisfies the three properties of a

process. The first two properties are a product of the definition of

function composition, and the continuity condition is proven

exactly as in Proposition 3. Given the above, the family of discrete-

time autonomous difference equations ff (p)g on the metric space

(X ,d) generates a process w, and thus, it defines a particular kind

of nonautonomous dynamical systems termed an input-driven

dynamical system.

It is important to point out that an input-driven dynamical

system is not defined for a particular input sequence, but for all

input sequences drawn from its input set. This becomes more

explicit if one considers the alternative skew product definition of a

nonautonomous dynamical system, where the input is treated as a

driving autonomous dynamical system [31,32]. We compare the

two definitions of nonautonomous dynamical systems in Text S3.

We now cover a few important concepts that will aid in defining

the dynamic behavior of the model neural network.

Nonautonomous Attractors
Attractors in nonautonomous dynamical systems are defined on

nonautonomous sets, relating strongly to the concepts of invariance and

entire solutions.

Definition 7. Let w : Z2
§

|X?X be a discrete-time input-

driven dynamical system generated by the family of autonomous

difference equations ff (p)(x)g on a metric space (X ,d). A subset

C5Z|X is called a nonautonomous set, and for all t[Z, the set

Ct~fx[X : (t,x)[Cg

is called the t-fiber of C. C is said to be invariant under w if

w(t,t0,Ct0
)~Ct for all (t,t0)[Z2

§
. An entire solution of w is an

invariant set under w whose t-fibers are the singleton sets fj(t)g
that are the images of the function j : Z?X such that
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j(t2)~w t2,t1,j(t1)ð Þ~f (pt2{1)0 � � � 0f (pt1
) j(t1)ð Þ V(t2,t1)[Z2

§

An important property of invariant nonautonomous sets is that

they consist exclusively of entire solutions (for a proof, see Lemma

2.15 in [31]). Nonautonomous attractors are nonautonomous sets.

As such, they consist of entire solutions as well. There are several

types of attractors of nonautonomous dynamical systems. Only of

interest to our model neural network are forward attractors, so we

drop the qualifier ‘forward’ and substitute it with ‘nonautonomous’.

Definition 8. Let w : Z2
§

|X?X be a discrete-time input-

driven dynamical system generated by the family of autonomous

difference equations ff (p)(x)g on a metric space (X ,d). A

nonautonomous set A5Z|X is a nonautonomous attractor of w if

the following conditions hold:

1. A is invariant under w.

2. A is compact.

3. There exists a neighborhood N r of radius rw0 such that

limt?? d w(t,t0,N r(At0
)),Atð Þ~0 for all t0[Z

As in the autonomous dynamics of kWTA networks, all subsets of

X are compact. The third condition assures that no subset of A
satisfies the invariance and compactness conditions. One may

generalize the concept of a basin of attraction in an autonomous

dynamical system to the nonautonomous case. This concept

associates each nonautonomous attractor with the region of the

state space that converges to that attractor:

Definition 9. Let w : Z2
§

|X?X be a discrete-time input-

driven dynamical system generated by the family of autonomous

difference equations ff (p)(x)g on a metric space (X ,d). The

nonautonomous basin of attraction of a nonautonomous attractor A of w
is defined by

BA~fx[X : limt??d w(t,t0,x),Atð Þ~0 for all t0[Zg

Volumes of Representation
Spatiotemporal computations requires encoding different input

sequences in the states of the neural network. The set of network

states accessible from some initial conditions within a basin of

attraction through perturbing the network with a particular input

sequence Sp1, . . . ,psT defines this sequence’s volume of representation.

Definition 10. Let w : Z2
§

|X?X be a discrete-time input-

driven dynamical system generated by the family of autonomous

difference equations ff (p)(x)g on a metric space (X ,d). Given an

input sequence us~Sp1, . . . ,psT[ P|f0gð Þs and a basin of

attraction BA, a subset

Vus
A~fx[BA : Ax0[BA such that x~w(s,0,x0)

~f (ps)0 � � � 0f (p1)(x0)g

is called the volume of representation of the input sequence us within

the basin BA. The sequence length s[Zz
\f0g defines the order of

this volume. The nonautonomous set VA5Z|BA whose t-fibers

are order-1 volumes of representation VA,t~Vp(t{1)
A is called the

perturbation set within BA. Also, given a function g : Ps?V on input

sequences such that g(us)~v[V, the set

Vv:g
A ~

[
g(us)~v

Vus
A

is the volume of representation of v given g.

It is straightforward to show that, within a basin of attraction,

the volume of representation of some sequence us~Sp1, . . . ,psT
is a superset of the volume of a sequence us’zs~

Sq1, . . . ,qs’,p1, . . . ,psT for all us’~Sq1, . . . ,qs’T[ P|f0gð Þs’, and

that the volume of us is equivalent to the union of the volumes of

us’zs for all us’[ P|f0gð Þs’. We term this property the volumes’

inclusion property.

The concept of ‘volumes of representation’ allows us to state the

following theorem on the nature of attractors in discrete-time

input-driven dynamical systems:

Theorem 11. Let w : Z2
§

|X?X be a discrete-time input-

driven dynamical system generated by the family of autonomous

difference equations ff (p)(x)g on a metric space (X ,d), and let BA
be a compact nonautonomous basin of attraction. The following

holds:

1. The perturbation set VA is a superset of A.

2. Within BA, and for all p[P|f0g, there exists one attractor

A(p)5Vp
A of the discrete-time autonomous semi-dynamical

system generated by f (p).

3. BA is the basin of attraction of A(p) for all p[P|f0g.

Proof.

1. Since every attractor, whether autonomous or nonautonomous,

is an invariant set, it is sufficient to prove that all invariant sets

within a basin BA are a subset of its perturbation set VA. Let’s

consider an entire solution j : Z?BA. For all t1[Z, it holds that

j(t1z1)~w t1z1,t1,j(t1)ð Þ~f (pt1
) x(t1)ð Þ[Vp(t1). It follows by

induction that j(t2z1)[Vp(t2) for all t2§t1. This translates to

t-fibers of entire solutions being always a member of order-1

volumes of representation and that all entire solutions within a

basin of attraction BA are subsets of the perturbation set VA.

Since invariant sets consist exclusively of entire solutions, it

follows that all invariant sets are subsets of the perturbation set

VA, including the nonautonomous attractor A.

2. Given some input p, we consider the discrete-time semi-

dynamical system generated by f (p) on (X ,d) with the solution

mapping

Q(t,x)~ f (p)0f (p)0 � � � 0f (p)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
t times

(x)

From Definition 10 of volumes of representation, the order-s

volume generated by p is the set Vps

A~Q(s,BA)(BA. Due to

the compactness of BA and the continuity of f (p),Vps

A is

compact for all s[Zz. Moreover, due to the volumes’ inclusion

property, the family of compact volumes (Vps

A )s[Zz is nested

with Vp0

A ~BA. As such, and according to Theorem 1.28 in

[31], there exists a nonempty set

A(p)~
\
s§0

Vps

A

that is both compact and invariant under f (p) and Q. It also follows
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from the compactness of BA that A(p) attracts BA, i.e. there

exists rw0 such that limt?? d Q(t,N r(BA)),A(p)
� 	

~0, and

since A(p) is a subset of BA, the neighborhood N r(BA) is also a

neighborhood of A(p). Hence, the compact and invariant set

A(p) is an attractor of the discrete-time semi-dynamical system

generated by f (p) and is a subset of Vp
A.

3. Since A(p) attracts BA, it follows that the basin of attraction of

A(p) satisfies BA(p))BA. Given a point x[BA(p) \BA, and since

A(p)5Vp
A, there exists t[Zz such that Q(t,x)[Vp

A(BA, which

is a contradiction, since x[=BA. Ergo, BA(p) \BA is an empty set,

and BA is the basin of attraction of A(p).

This theorem allows us to characterize the properties and

relations between autonomous and nonautonomous attractors of

kWTA networks, where all subsets of X are compact due to X ’s

finiteness and discreteness. Namely, it allows us, within some

compact basin, to allocate the nonautonomous attractor’s t-fibers

as subsets of the t-fibers of the perturbation set, and it shows that

the autonomous attractor of the input at time t is the t-fiber of the

nonautonomous attractor.

Input-Insensitive Dynamics
It is possible for a process to behave locally or globally as an

autonomous (semi-)dynamical system. That is equivalent, in the

case of input-driven dynamical systems, to being input-insensitive.

Definition 12. Let w : Z2
§

|X?X be a discrete-time input-

driven dynamical system generated by the family of autonomous

difference equations ff (p)(x)g on a metric space (X ,d). A state

x[X is said to be input-insensitive if f (p)(x)~f (0)(x) for all p[P. An

input-insensitive basin is a basin of attraction that consists entirely of

input-insensitive states.

This definition implies that the volumes of representation of a

particular order and the t-fibers of each nonautonomous set within

this basin are equivalent, including the perturbation set and the

nonautonomous attractor: they reduce to autonomous sets. The

input-insensitive attractor becomes the autonomous attractor of each

discrete-time semi-dynamical system generated by a difference

equation f (p).

Supporting Information

Figure S1 Approximating volumes of representation
using percentiles. (A) Percentile approximation of the order-1

volumes of representation of a SIP-RN. (B) Percentile approxima-

tion of the order-2 volumes of representation of a SIP-RN. Order-

2 volumes are more exact approximations to the order-1 volumes

according to the volumes’ inclusion property. The correspondence

is clarified by using similar color coding. (A,B) This approximation

is done as follows. After transforming the network states to

the principal components space, the coordinates of the first

three principal components belonging to each volume of

representation are first bootstrapped to 10000 samples, and

the 5th and 95th percentiles are computed. Each volume is

then approximated by an ellipsoid whose semi-axes extend to

these percentiles and is centered at their average. This alternative

approximation is less liberal than the one that uses means and

standard deviations in that it extends the ellipsoids to assure

including more true positives, but at the expense of including

more false positives. One still sees, however, that the observations

from the other approximation still hold, namely, that volumes

of representation are both redundant and separate from one

another.

(TIF)

Figure S2 Volumes of representation of a nonlinear
function over input sequences. Approximation of order-3

volumes of representation of the task Parity-3 binary input to a

SIP-RN. By an appropriate union of these volumes, the volumes of

representation of the outcome 0 (green) and 1 (orange) are

identified. The approximation uses the mean and standard

deviation of the coordinates. While the first three principal

components are sufficient for showing distinct order-3 volumes of

representation, more dimensions are necessary to illustrate

separate volumes of the outcome of the nonlinear function. The

separability of the function’s outcomes explains the ability of

optimal linear classifiers to successfully perform the nonlinear task.

(TIF)

Figure S3 Average classification performance using the
Hamming distance of the network states from the
vertexes of autonomous attractors. 100 networks are trained

by STDP and IP simultaneously on (A) the memory task RAND x 4,

(B) the prediction task Markov-85, and (C) the nonlinear task

Parity-3. Given the input set P, and the family of discrete-time

autonomous semi-dynamical systems generating these networks

ff (p)(x)g, the network states comprising the autonomous attractor

(the attractor’s vertexes) are identified as follows. First, initial

conditions are selected within the input-sensitive basin of

attraction. Second, the input is clamped to one member of P.

Third, the solution of f (p)(x) is generated for a sufficient number of

time steps, so that the dynamics, following a transient period,

converges to the attractor. Training and testing optimal linear

classifiers is carried through as before. The training and testing

data is, however, the Hamming distance between the network

states and the vertexes of the attractors. Error bars indicate

standard error of the mean. The red line marks chance level. The

x-axis shows the input time-lag. Negative time-lags indicate the

past, and positive ones, the future.

(TIF)

Figure S4 Average classification performance of net-
works combining the weights of SP-RNs and thresholds
of IP-RNs. 100 networks are trained by STDP and IP

simultaneously (orange), IP alone (blue), or trained by STDP alone

followed by injecting the thresholds resulting from IP at the end of

the plasticity phase (green) on (A) the memory task RAND x 4, (B)

the prediction task Markov-85, and (C) the nonlinear task

Parity-3. The combined networks (green) lack the contribution

of the interaction between synaptic and intrinsic plasticity during

the plasticity phase. This results in their performance being

inferior to the networks where synaptic and intrinsic plasticity

interact. Error bars indicate standard error of the mean. The

red line marks chance level. The x-axis shows the input time-lag.

Negative time-lags indicate the past, and positive ones, the

future.

(TIF)

Text S1 Comparing nonplastic networks.

(PDF)

Text S2 Long-term behavior of learning.

(PDF)

Text S3 Definitions of nonautonomous dynamical sys-
tems.

(PDF)
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