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ABSTRACT

Our ability to rewire cellular metabolism for the sustainable production of chemicals, fuels and therapeutics based on
microbial cell factories has advanced rapidly during the last two decades. Especially the speed and precision by which
microbial genomes can be engineered now allow for more advanced designs to be implemented and tested. However,
compared to the methods developed for engineering cell factories, the methods developed for testing the performance

of newly engineered cell factories in high throughput are lagging far behind, which consequently impacts the overall
biomanufacturing process. For this purpose, there is a need to develop new techniques for screening and selection of
best-performing cell factory designs in multiplex. Here we review the current status of the sourcing, design and engineering
of biosensors derived from allosterically regulated transcription factors applied to the biotechnology work-horse budding
yeast Saccharomyces cerevisiae. We conclude by providing a perspective on the most important challenges and opportunities
lying ahead in order to harness the full potential of biosensor development for increasing both the throughput of cell
factory development and robustness of overall bioprocesses.
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INTRODUCTION model-guided efforts derived from genome-scale models have
enabled the engineering of these chassis for the industrial
production of fuels, platform chemicals and pharmaceuticals
(Zhang, Jensen and Keasling 2015). Additionally, therapeutic
products like opioids and penicillin have been refactored in
microbial chassis (Galanie et al. 2015; Awan et al. 2017). These
achievements highlight the versatility and importance of micro-
bial biobased production.

Irrespective of host organisms, in order to replace current
petrochemical pipelines for production of commodity and fine
chemicals with biobased production using renewable carbon
sources, it is critical that cell factories can be constructed in
a cost-effective manner and that the cell factories perform at

Biotechnology has flourished in the last two decades as a
manufacturing discipline for the future by engineering living
cells to convert renewable carbon sources into products related
to health, food and transportation (Peralta-Yahya et al. 2012;
Galanie et al. 2015; Zhou et al. 2016). Notwithstanding, there is
enormous interest to further expand both the production port-
folio and the productivity of the organismal hosts used for pro-
duction, collectively referred to as cell factories (Van Dien 2013).
The most commonly used organisms that have been estab-
lished as cell factories include the gram-negative bacteria Es-
cherichia coli and the budding yeast Saccharomyces cerevisiae. For
both of these chassis, the accumulation of the genetic tools and
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scale in relation to titres, rates and yields (Van Dien 2013).
To support this, the ongoing sampling and parsing of biochemi-
cal and omics data continuously improve the ability of metabolic
engineers to rationally perturb endogenous metabolism for
the overproduction of metabolites, as well as the introduction
of heterologous biosynthetic pathways for production of non-
native compounds (Borodina and Nielsen 2014). Likewise, the
decrease in cost of DNA sequencing and synthesis as well as
the emergence of synthetic biology tools aims to support the
rational engineering of cell factories by focusing on parts char-
acterisation and standardized methods which are host-agnostic
and can be used broadly to speed the engineering and selection
of cell factory designs (Canton, Labno and Endy 2008). This in-
cludes advances in diversity generation of cell factory designs
accommodated by genome engineering tools, such as the recent
advances in CRISPR-derived genome engineering technologies,
which allows unprecedented speed and targeted multiplexing of
strain building procedures for an expanding number of chassis
(Wang et al. 2009; Garst et al. 2016).

Despite these scientific advancements, there are still signifi-
cant challenges to overcome in order to develop viable cell fac-
tories that enable economically feasible bioprocesses. Given the
size ranges of genomes, numbers of metabolites and enzymatic
reactions annotated for most commonly used production hosts,
even targeting relatively narrow solution spaces in order to im-
prove cell factory productivity, remains a daunting challenge by
the sheer number of individual cell lines and microbial strains
that must be screened in order to identify the best performing
cell factory (Rogers and Church 2016). While in some cases visi-
ble phenotypes or growth-coupled production can support high-
throughput screening of cell factory designs, testing cell fac-
tory performance often relies on analytical methods like mass
spectrometry and chromatographic techniques for the identifi-
cation and quantification of products of interest. Even for well-
equipped research laboratories these methods have a maxi-
mum throughput in the range of thousands of samples per day,
thus creating a costly, laborious and ineffective route to iden-
tify best-producing cells. As such there is a need to develop
methods, which can enable testing of single cell factory designs
in multiplex.

In recent years, the development, characterisation and appli-
cation of metabolite biosensors from prokaryotes have spurred
significant interest. Often used classes of biosensors rely on
fluorescence resonance energy transfer, RNA-based aptamers
or simple reporter assays (Dahl et al. 2013; Ravasio et al.
2014; Strachan et al. 2014). Another class of biosensors ap-
plied for metabolic engineering includes allosterically regulated
transcription factors (aTFs) which are abundantly present in
prokaryotes (Fernandez-Lopez et al. 2015). In prokaryotes, these
one-component protein-based biosensors are able to bind a
target metabolite, and upon binding provide a conformational
change allowing a change in the expression from a target pro-
moter. In native hosts, this results in the actuation of a cellular
response in relation to changing environmental cues (i.e. car-
bon source availability). Such a sensing-actuation mechanism is
naturally abundant in prokaryotic signalling pathways as bac-
teria continuously exchange, receive and respond to both intra-
and extracellular cues in order to coordinate cellular decision
making. One particularly well-studied aTF is the tetracyclin-
responsive transcriptional repressor TetR (Gossen and Bujard
1992). TetR has been widely adopted for controlling inducible ex-
pression perturbations for almost three decades (Gossen et al.
1995; Guet et al. 2002; Stanton et al. 2013). Other more re-
cent examples of the successful development and application
of TF-based biosensors from prokaryotes include the in situ

diagnosis of human gut microbiota, evolution-guided optimisa-
tion of biosynthetic pathways in E. coli and synthetic cell-cell
communication devices (Kotula et al. 2014; Raman et al. 2014;
Chen et al. 2015).

Although most of the recently reported characterisations
and applications using these naturally occurring biosensors
based on aTFs have focused on their transplantation into other
prokaryotic hosts, examples of on-boarding aTFs as biosensors
for monitoring, selection and therapy in eukaryotic cells are ex-
panding. In this review, we provide an overview of the aTFs,
which have been successfully used in yeast. We put special at-
tention to sourcing of aTFs, their molecular design and their ap-
plications in yeast. This review also highlights the various en-
gineering efforts, which have been performed to optimize the
performance of biosensors in order to make them applicable as
small-molecule biosensors. Finally, we provide a perspective on
future directions for further proof of principles and industrial
applications using biosensors.

BIOSENSOR CHARACTERISATION AND
IDENTIFICATION

Characteristics of aTF-based biosensors

Before introducing the design and engineering of aTF-based
biosensors, it is important first to introduce the main struc-
tural components and the functional characteristics associated
with aTF biosensor performance. The most frequent structural
characteristics of aTFs remain the DNA-binding domain (DBD)
and the effector-binding domain (EBD), linked by a flexible loop-
region, allowing for complex interdomain allostery in relation to
binding of either ligand and/or DNA (Werten et al. 2016). Also, it
is important to highlight that monomeric aTFs exert a high de-
gree of di- or oligomerisation (Fernandez-Lépez et al. 2015). The
structure and propensity for oligomerisation together determine
the two main characteristics of aTF functionality, namely (i) the
ligand specificity and (ii) the transfer function describing the cor-
relation between ligand concentration (input) and the biosensor
output signal (Fig. 1a)(De Paepe et al. 2017). The specificity of a
biosensor describes the strength of the binding between ligand
and aTF or the difference in biosensor output in relation to a tar-
get ligand compared to the output observed when introducing
other potential ligands of interest. Inevitably, defining the speci-
ficity of a biosensor is of primary importance when the biosensor
is expected to provide high signal-to-noise ratios within a com-
plex cellular environment in which the aTF is exposed to several
potential ligands (De Paepe et al. 2017). The transfer function of
abiosensor describes its quantitative performance (Fig. 1a). This
includes the operational range, in which a significant change in
biosensor output can be measured in relation to ligand concen-
tration. Likewise, the dynamic output range refers to the maxi-
mum output, which can be obtained compared to the output ob-
served in the absence of ligand binding. This is also referred to as
the ON and OFF states, respectively, of the biosensor (Moser et al.
2013). From these parameters, the sensitivity of the biosensor
can be inferred as the difference in output of ON and OFF states
divided by the difference in inducer concentration at the de-
tection threshold and the maximum output, also referred to as
the Hill’s coefficient (Dietrich, McKee and Keasling 2010; Moser
et al. 2013). Sensitivity is largely dependent on the cooperativ-
ity between aTF monomer oligomerisation and ligand binding
(Stefan and Le Novere 2013). It should also be mentioned that
transfer functions can have qualitative differences depending
on the mode of action of the biosensor, i.e. negative vs positive
correlations between biosensor output and ligand concentration
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Figure 1. The biosensor transfer function and design. (a) The transfer function of a biosensor enables the quantitative characterisation of biosensors showing the
correlation between input effector concentration and the biosensor output. Transfer functions thereby provide information on product sensitivity, the operational
range of detection and the dynamic output range as defined by the difference between minimum (OFF) and maximum (ON) biosensor outputs. (b) Expression of
the allosterically regulated transcriptional repressor TrpRgep controls the expression of a gene of interest (GOI) by tryptophan-dependent binding to the promoter
harbouring four TrpR binding sites (4xtrpO). To the right a schematic transfer function of TrpR output in relation to tryptophan concentration is illustrated. (c) Expression
of the allosterically regulated transcriptional activator BenMa: controls the expression of a GOI by cis,cis-muconic acid-dependent binding to the promoter harbouring
three BenM binding sites (3xbenO). To the right a schematic transfer function of BenM output in relation to cis,cis-muconic concentration is illustrated. AU; arbitrary

units.

(Fig. 1b and c) (see also section ‘Classes of aTF-based biosensors:
repressors vs activators’ and ‘Engineering new specificities and
improving performances in existing aTFs’).

Knowledge about specificity and the transfer function is cru-
cial in order to rationally engineer biosensors. In the remainder
of the section ‘Biosensor characterisation and identification’, we
review the basic components of aTF-based biosensors sourced
from prokaryotes and the engineering strategies adopted for on-
boarding these in yeast.

Classes of aTF-based biosensors: repressors vs
activators

Allosterically regulated TF-based biosensors can be divided
in two groups: transcriptional activators and transcrip-
tional repressors. The aTF regulates the transcription of
the reporter gene in a ligand-dependent manner by lo-
calising on the operator site and sterically preventing the
transcription, or by supporting the accessibility of the
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transcriptional machinery to the transcription start site
(Fig. 1b and c).

The most prominent example of the repressing mechanism
is the TetR repressor from E. coli which blocks the transcription of
the tetA gene, encoding the tetracycline efflux pump (Hillen and
Berens 1994; Mgller et al. 2016). By binding directly to TetR, tetra-
cycline is able to induce a conformational switch, which pre-
vents DNA binding and therefore allows the transcription of tetA.
Subsequently, tetracycline is secreted from the cell and TetR is
once again able to bind to the operator site and block the tran-
scription of tetA (Hillen and Berens 1994). This system has been
successfully transferred to mammalian and yeast cells in order
to control gene expression by tetracycline and analogs thereof
(Gossen and Bujard 1992; Gari et al. 1997). Another mode of action
for repressors is illustrated by tryptophan-binding TrpR from
E. coli (Arvidson, Bruce and Gunsalus 1986; Jeeves et al. 1999).
Here, TrpR binds the co-repressing ligand Trp before binding
its cognate DNA operator site, and thereby regulates aromatic
amino acid metabolism (Fig. 1b)(Zhao et al. 2015). However, co-
repressors have so far not been adopted as biosensors in yeast.

In addition to repressors, recent studies have also high-
lighted successful transfer of aTF-based transcriptional activa-
tors into yeast. This was recently illustrated by Skjoedt et al.
(2016), who employed BenM from Acinetobacter sp. ADP1, which
is able to induce the transcription synergistically upon the de-
tection of benzoate and cis,cis-muconic acid (CCM) (Craven et al.
2009). In addition to BenM, Skjoedt et al. were able to show
that several other activators from diverse bacterial species were
able to function as aTF-based biosensors in yeast, allowing in
vivo sensing of malonate, L-arginine and naringenin, in addi-
tion to CCM (Fig. 1c, Table 1). Interestingly, none of the biosensor
designs required the expression of auxiliary transcription ma-
chineries (e.g. sigma factors). As such, it is now possible to engi-
neer both prokaryotic transcriptional activators and repressors
in eukaryotes, and the choice of aTF type ideally only relies on
the biosensor design and the availability of biosensors for the
effector of interest.

Biosensor prospecting

In the last three decades, a great number of interactions between
TFs and genes have been discovered, especially from studies of
adaptation of microorganisms to different environmental con-
ditions by sensing the presence/absence of metabolites, toxic
compounds or other chemicals (Junker, Kiewitz and Cook 1997;
Brzostowicz et al. 2003). Such studies have allowed for the devel-
opment of different predictive tools and databases, which can be
used for identifying an aTF suitable for user-defined purposes.

In order to mine publicly available literature for new aTFs to
be tested and characterized for use as biosensors in yeast, a min-
imum amount of information should be considered as a starting
point, including if the gene sequence and the operator of the aTF
are known. Also, the chemistry of the effector needs to be taken
into account: (i) is the effector toxic; (ii) can it be internalised at a
pH that is compatible with yeast growth during biosensor char-
acterisation; (iii) does it need any complementary genes, such as
transporters (Skjoedt et al. 2016).

In addition to literature mining for known aTFs, public
databases are available for browsing the genomes of a vast num-
ber of prokaryotes (e.g. www.pseudomonas.com). Here the ap-
proach to identify new aTFs can harness the fact that in prokary-
otes, aTFs are often encoded divergently and in close genomic
proximity of the genes, which they are regulating (Collier et al.
1998). Additionally, as DBDs from major aTF families are often

conserved, this enables searching genome sequence databases
for conserved regions of annotated genes (Maddocks and
Oyston 2008; Jain 2015). Ideally, in accordance with the divergent
expression of genes encoding the aTF and their target operon,
the operator site can be inferred from mining the genomic se-
quence upstream of the aTF expression cassette. Such a method
can enable the search for any sequence that is homologous to
known aTF domains (DBD or EBD), which are encoded in prox-
imity of the genes connected to the metabolic reactions of the
candidate ligand. Hence, by way of such in silico approach, new
biosensor candidates can be prospected.

Complementary to the in silico approach, expression
databases  (e.g.  https://www.ebi.ac.uk/arrayexpress/help/
GEO_data.html) can be used to search for differentially ex-
pressed genes in relation to environmental cues or chemical
stimuli of interest, as both genes encoding aTFs and the genes
of divergently expressed operons can enable the shortlisting of
both candidate aTFs and potentially their operators (Strachan
et al. 2014).

Alternatively, it is also possible to use different predic-
tive tools and databases for transcriptional regulation in or-
der to identify aTFs of interest. One example is RegulonDB
(http://regulondb.ccg.unam.mx), which contains a list of TFs in
E. coli with information on operator sequences, and the genes
regulated by the TF (Gama-Castro et al. 2016). RegulonDB also al-
lows querying for a known metabolite, gene or TF, and visualise
the connected regulatory systems. Another data mining tool,
named SensiPath, allows searching sensing-enabling metabolic
pathways (http://sensipath.micalis.fr/)(Delépine et al. 2016). This
tool enables the linking of a specific metabolite, which otherwise
has no known target aTF, to a chemical that is a maximum of two
enzymatic steps away from the candidate compound which can
be detected by an annotated aTF. Beyond the identification of a
proxy for high-throughput screening of your metabolite of inter-
est, this method is also useful as a mean to relieve potential toxi-
city of your metabolite of interest, by identification of enzymatic
steps enabling the conversion of it to a non-toxic chemical.

In general, querying any of these databases can be very use-
ful, but in order to identify robust starting points for biosensor
design based on aTF and operator sequences it is advisable to
perform a combination of approaches, and search through sev-
eral of the mentioned databases.

BIOSENSOR DESIGN ENGINEERING

Once an aTF has been selected, the next step is the design of
a functional transcriptional unit with an optimal transfer func-
tion. To accomplish this, several factors must be considered. In
this section, we review the basic principles of engineering aTFs
with focus on designs in eukaryotes, especially yeasts.

aTF selection and aTF expression tuning

Selection of the aTF is a natural first step in the design of a
biosensor. This can include the need for discriminating between
seemingly close homologues and tuning the strength of the pro-
moter controlling the expression of the aTF (Teo, Hee and Chang
2013; Teo and Chang 2015; Wang, Li and Zhao 2016).

One example highlighting the importance of aTF selection
has been reported by Teo et al. (2013). In this study, two vari-
ants of FadR from E. coli and Vibrio cholera were tested in yeast
in order to develop a fatty acid biosensor. While both repres-
sors were unable to sufficiently repress the transcription of
the reporter when cloned under the control of the weak CYC1
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Figure 2. Engineering the biosensor transfer function of allosterically regulated transcription factors. (a) The transfer function of a reference biosensor. (b) The opera-

tional range can be engineered by (i) changing the affinity of the interaction between the aTF and DNA, (ii) changing the number of operators bound by the cognate aTF,
(iii) addition of an transcription activation domain and (iv) tuning the expression of the gene encoding the aTF. (c) The dynamic range of a biosensor can be engineered
by (i) mutating the aTF followed by selection, (ii) addition of transcription activation domains, (iii) changing the number of operators bound by the aTF and (iv) tuning
the expression of the gene encoding the aTF. (d) The effector specificity of an aTF towards new ligands can be changed by mutating the aTF followed by selection,
(e) A logic gate with a positive correlation between input and output (YES) can be turned into a NOT gate by addition of an activation domain. In (a-e), all black lines
correspond to the transfer function of the reference biosensor, whereas red lines indicate transfer function of engineered biosensors.

promoter, expressing them under the control of the strong con-
stitutive TEF1 promoter enabled repression of the reporter gene
controlled by each of the two FadR variant, albeit with significant
difference in the level of repression. While strong expression of
the E. coli FadR enabled repression of the reporter fluorescence
by almost 90%, FadR from V. cholerae was only able to reduce ex-
pression by 50% compared to a reference strain without FapR.
As such, the promoter driving the expression of the aTF can
impact the OFF state of the biosensor. Additionally, the opera-
tional range can be influenced by the choice of promoter driving
the expression of the gene encoding the aTF. In fact, a weaker
promoter controlling the aTF was shown to enable a change in
the operational range, with lower expression driving the oper-
ational range towards lower concentrations of the effector and
stronger promoter driving the operational range towards higher
effector concentrations (Teo, Hee and Chang 2013) (Fig. 2a and
b). Still, strong expression is generally the first choice for con-
trolling the expression of genes encoding repressor-based aTFs
in order to support lower OFF states (Teo, Hee and Chang 2013; Li
et al. 2015; David, Nielsen and Siewers 2016; Hector and Mertens
2017) Complementary to this, when transcriptional activators
are employed, a weaker promoter driving the expression of the
aTF may be preferred since a strong promoter can lead to a high
OFF state expression of the reporter gene or prolonged lag phase
during growth (Teo and Chang 2015; Skjoedt et al. 2016). As such,
the promoter controlling the aTF should be chosen carefully in
order to ensure control of both OFF state, operational range and
potential growth effects.

Engineering the reporter promoter

The architecture of the promoter controlling the output of the
biosensor is another essential engineering target. While native
promoters are often well characterised and therefore can be ad-
vantageous to use for control over biosensor output over non-
native ones, it is important to take into consideration the na-

tive regulation of the promoter. Several groups have engineered
native yeast promoters for the design of biosensors. A com-
mon strategy has been to insert aTF operator sites (see sec-
tion ‘Operator sequence’) into a native yeast promoter chassis
in which upstream activation sequences or upstream repression
sequences have been deleted whenever present, in order to min-
imise the complexity of native regulation (Ikushima, Zhao and
Boeke 2015; Li et al. 2015; Skjoedt et al. 2016; Wang, Li and Zhao
2016; Ikushima and Boeke 2017). In the example by Skjoedt et al.
(2016) engineering of the promoter driving the reporter gene in-
cluded testing of four different ‘crippled’ variants of the CYC1
promoter and identified the shortest variant (209 bp) to be the
one allowing for the lowest OFF state, while still maintaining
approximately 4-fold dynamic output range in the presence of
CCM. In general, the reporter promoter should be strong enough
to allow for a detectable output but, overexpressing the reporter
gene can cause ‘leaky’ expression, which is of particular im-
portance when the biosensor is to be coupled to selection. In
addition to controlling ON and OFF states, when carefully en-
gineered, the reporter promoter design can also tune both the
dynamic output range and the operational range (Fig. 2b and
c)(Mclsaac et al. 2014; Skjoedt et al. 2016).

Operator sequence

The operator is a DNA sequence that is recognised by the DBD of
the aTF. Its presence is essential for aTF binding to DNA, and it
impacts both the dynamic and operational range. Adding opera-
tor sequences to a native or truncated promoter intended to con-
trol the biosensor output has generally proved to have a negative
impact on the basal expression (Li et al. 2015; David, Nielsen and
Siewers 2016; Skjoedt et al. 2016; Hector and Mertens 2017). Like-
wise, the position of the operator is important, and due to the
difficulty predicting the effect operator positioning will have on
the reporter gene, several groups have mined different designs
in order to find the best positions. In one example, Hector and



Mertens (2017) tested three different operator designs: (i) one op-
erator sequence immediately downstream of the TATA element,
(ii) two operators after the TATA element and (iii) two opera-
tors flanking the TATA sequence. The addition of the first oper-
ator immediately downstream of the TATA sequence decreased
the promoter basal activity by almost 50%, and allowed for a 4-
fold de-repression when the effector was added. The addition
of a second operator downstream of the TATA sequence caused
an even further decrease in the promoter activity by stronger
repression. Finally, the best performing design, two operators
flanking the TATA element, had a basal expression comparable
to the promoter with only one operator, but allowed for approx-
imately 8-fold de-repression. This is a clear example of how the
same number of operators can have significantly different out-
puts when positioned differently. However, the position of op-
erator(s) is not the only design parameter impacting reporter
promoter output. Wang et al. (2016) showed that different opera-
tor sequences can also perturb the operational range of biosen-
sors. This was particularly exemplified by exchanging the op-
erator site of XylR from Staphylococcus xylosus with the operator
sequence of the homologous from Bacillus subtilis. Swapping be-
tween these two operators changed the operational range from
0to 20 gLt of xylose, to be saturated at <5 g L~! (Table 1)(Wang,
Liand Zhao 2016). By designing a degenerate operator sequence,
the authors identified several operational ranges, and were also
able to achieve an increase in dynamic range. This behaviour
brings new importance to the interaction between the aTF DBD
and the operator of choice, and provides additional means to
developing biosensors with sought-for transfer function charac-
teristics.

Nuclear localisation signal

The transport of molecules between the nucleus and cytoplasm
is made possible by the nuclear pore complex (NPC). NPCs func-
tion as canals and allow free diffusion of molecules and small
proteins in and out of the nucleus. Even though the NPCs are
large enough to allow free diffusion of macromolecules smaller
than 50 kDa, they function as a barrier by preventing the diffu-
sion of larger proteins to the nucleus, unless a nuclear locali-
sation signal (NLS) is encoded in their primary structure (Hahn
et al. 2008). A common choice of NLS to support nuclear local-
isation of aTFs is the simian virus 40 (SV40) NLS (Feng et al.
2015; Ikushima, Zhao and Boeke 2015; Li et al. 2015; Garst et al.
2016; Hector and Mertens 2017; Ikushima and Boeke 2017), and
it has been shown that the absence of the NLS can lead to a
non-functional biosensor (Li et al. 2015). Specifically, Li and co-
workers compared the ability of FapR from B. subtilis to repress
the transcription of the reporter gene when expressed in pres-
ence or absence of the NLS and showed that the strain harbour-
ing FapR with NLS showed 30% of the fluorescence intensity of
the control strain not expressing FapR, while the strain harbour-
ing the repressor without the NLS showed fluorescence compa-
rable to the strain without the repressor. Yet, the presence of
the NLS does not seem strictly necessary when employing aTFs,
which have a molecular mass lower or comparable to the nu-
clear pore diffusion limit (Teo, Hee and Chang 2013; Ikushima,
Zhao and Boeke 2015; Skjoedt et al. 2016), but NLS should indeed
be considered a design parameter when engineering aTF-based
biosensors in yeast.

Module transferability

The simple road-block of RNA polymerase progression pro-
vided by DNA-bound aTF repressors in the absence of effectors
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allows engineering of transcriptional activation by addition of
one or several activator domains. Here, the strategy is to add
single or multiple VP16 activation domain(s) from herpes sim-
plex virus to the repressor (Gion et al. 2009; Ottoz, Rudolf and
Stelling 2014; Feng et al. 2015; Ikushima, Zhao and Boeke 2015;
Ikushima and Boeke 2017) (Table 1). In the seminal study on TetR,
a TetR-dependent expression system was developed in mam-
malian cells in which the aTF was converted from a repressor to
an activator by fusing a VP16 activator domain on the C-terminal
of TetR (Gossen and Bujard 1992) (Fig. 2e). This system, referred
to as Tet-Off, relies on the ability of the TF to bind a synthetic
promoter, where seven operator sequences were linked to a min-
imal promoter fragment derived from the CMV promoter, and
thereby induce the transcription of the reporter gene in the ab-
sence of effectors. The activity of the aTF can then be relieved
by tetracyclin or doxycycline administration (Loew et al. 2010).
Another variant, referred to as Tet-On, where transcription of
the reporter by TetR fused to VP16 is only achieved in the pres-
ence of tetracycline or doxycycline, was later developed through
random mutagenesis (Gossen et al. 1995) (Fig. 2e). Both these sys-
tems were employed in yeast in order to control gene expression
without perturbing the cellular metabolism, as in the case of
galactose or methionine addition (Belli et al. 1998; Urlinger et al.
2000; Giuraniuc, MacPherson and Saka 2013; Roney et al. 2016).

The activator domain is not the only module that can be
added to aTFs. As shown by several groups, both DBDs and
whole proteins can be added (Chou and Keasling 2013; Moser
et al. 2013). Moser et al. (2013), while developing a sensor for
strong methylating compounds, exploited the characteristic of
the Ada protein from E. coli to detect methyl groups on DNA and
to transfer them to a cysteine residue on its amino acidic se-
quence, which then leads to its activation as an aTF in yeast. To
accomplish this, they fused the N-terminal domain of the Ada
protein, which is the region that allows for both DNA binding
and methyltransferase activity, to the Gal4 transactivation do-
main (Gal4-AD) in order to induce transcriptional activation in
yeast upon detection of methyl groups (Moser et al. 2013).

In another study, Feng et al. (2015) fused the DBD of Gal4
to a synthetic EBD and to a VP16 module to create sensors for
digoxin, which they later rationally engineered to induce a speci-
ficity switch towards progesterone (Fig. 2d). Both sensors could
induce the transcription of the reporter gene by 60-fold upon the
detection of the ligand (Table 1).

Finally, another hybrid biosensor design has been reported by
Chou and Keasling (2013) illustrating the flexibility supported by
the modular transferability of TF protein domains. Here, the au-
thors exploited the ability of an isopentenyl diphosphate (IPP)
isomerase (idi) to dimerise in order to create an IPP sensor in
yeast (Chou and Keasling 2013). To do so, they first created two
chimeric proteins: the first one consisted of the Gal4 DBD fused
to the IPP isomerase, while the second chimeric protein was IPP
isomerase fused to the Gal4 AD. The sensor then relied on the
ability of the IPP isomerase dimer to bring the two Gal4 domains
into close proximity to activate transcription of a reporter gene
controlled by a GAL promoter. After validating the sensor, they
replaced the IPP isomerase module with IPP-binding Erg20 to fur-
ther improve the dynamic range of the IPP biosensor in yeast
(Chou and Keasling 2013).

In summary, the addition of new modules can allow for the
creation of new biosensors when naturally occurring ones for
a specific target are unknown. By adding a DBD to a syntheti-
cally designed EBD, or by adding an AD, it is possible to induce
a stronger response upon the detection of the ligand, since the
de-repression level allowed by repressor-based aTFs is generally
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lower than the induction of aTFs fused with activation domains
(Table 1). Also, by testing different modules, such as different
ADs or EBDs, it is possible to improve the sensor’s response,
leading to an improved dynamic range (Chou and Keasling 2013;
Ottoz, Rudolf and Stelling 2014) (Fig. 2c).

Engineering new specificities and improving
performances in existing aTFs

Many aTFs have been identified based on traditional forward en-
gineering (Shamanna and Sanderson 1979; Neidle, Hartnett and
Ornston 1989). However, it still remains a challenge to infer lig-
and specificity of an aTF from such studies. Even after exhaus-
tive database mining, it may still not be possible to correlate
an aTF to a specific compound of interest (see section ‘Biosen-
sor prospecting’). In such cases, it may be necessary to engineer
a preexisting aTF with new ligand specificity of interest. How-
ever, one of the challenges researchers are facing when aiming
to engineer new specificities into existing aTF-based biosensors
is the need to simultaneously maintain critical properties like
DNA binding, allosteric signal transduction, dimerisation and
general protein structure, as all of these functionalities are cru-
cial for ligand-induced transcriptional regulation (Raman et al.
2014). However, learning from nature’s rich diversity of aTFs,
several studies have shown that both rational and directed evo-
lution approaches can be used to successfully engineer new lig-
and specificities into existing aTF-based biosensors (Fig. 2d).

As for directed evolution, several examples have been re-
ported in bacteria using random mutagenesis based on error-
prone PCR (epPCR) coupled with ligand-specific selection in or-
der to affinity-mature aTFs for new ligand specificities (Cebolla,
Sousa and De Lorenzo 1997; Collins, Arnold and Leadbetter 2005;
Taylor et al. 2015; Xiong et al. 2017). While most of these exam-
ples refer to studies in bacteria, a few studies highlight the power
of directed evolution for improving the biosensor performance
of aTFs when engineer in yeast. In relation to ligand specificity,
Chockalingam et al. (2005) adopted directed evolution to alter
the specificity of the human estrogen receptor alpha (hER-alpha)
from 17-beta estradiol to 4,4'-dihydrobenzyl (DHB) by site sat-
uration mutagenesis on ligand contacting residues, and epPCR
on the whole receptor. Library variants with improved response
to DHB relative to parental hER-alpha were selected based on
growth of the host yeast cells in medium containing an appro-
priate concentration of DHB. Taken together, these studies have
demonstrated that mutating residues involved in the binding
site can change ligand specificity without affecting allosteric
function. However, it should be noted that the specific residues
that give rise to allostery are generally unknown and do not tend
to be localised in certain parts of the protein (Siiel et al. 2003).
Furthermore, mutations in EBD tend to alter allosteric commu-
nication with the DBD and mutations can have far-reaching ef-
fects (Raman et al. 2014; Taylor et al. 2015).

In addition to studies related to changes in specificity, di-
rected evolution can also be used to improve the transfer func-
tion of an existing aTF. By increasing aTFs specificity and sen-
sitivity towards the ligand and altering the binding affinity to
the operator sequence, it is possible to modify most of the
characteristics of the transfer function exemplified in Fig. 2.
For instance, Skjoedt et al. (2016) showed that directed evolu-
tion on BenM’s EBD via epPCR, yeast plasmid gap repair and
fluorescence-activated cell sorting (FACS) enabled the identifi-
cation of aTF variants with >10-fold increase in reporter gene
output upon the presence of CCM, while wild-type BenM was

only able to induce 4-fold (Fig. 2c). In another example, yet per-
formed in bacteria, Richards et al. (2017) recently showed that
by random mutagenesis it is possible to induce a YES/NOT logic
gate inversion in a Lacl variant which was previously made in-
sensitive to the ligand by removing the allosteric communica-
tion between the EBD and the DBD (Fig. 2e). These variants, gen-
erated via epPCR and transformed in E. coli, also show different
responses to increasing concentrations of the effector and dif-
ferent operational ranges.

In addition to random mutagenesis, computational ap-
proaches are also being developed and have been employed to
create sensors with new specificities. An example that clearly
states the potential of this method comes from De Los Santos
et al. (2016), where the authors were able to induce a vanillin
response into QacR from S. aureus by computational design, an
aTF that is induced by a broad range of structurally dissimilar
compounds. Similarly, Taylor et al. (2015) adopted both random
epPCR-based and Rosetta-guided mutagenesis to change ligand
specificity of Lacl.

To summarise, by using a combination of computational,
random and site saturation mutagenesis methods, coupled with
adequate selection, it is possible to create sensors with improved
or novel characteristics, and therefore allow a broadening of the
range of applications where aTFs can be employed.

APPLICATIONS OF TF-BASED BIOSENSORS IN
YEAST

TF-based biosensors described in section ‘Biosensor design en-
gineering’ have been implemented in yeast for different appli-
cations that range from the detection of pollutants to actuators
on native yeast metabolism to improve overall cell factory per-
formances. In this section, we review applications of aTF biosen-
sors in yeast, while a list of aTF biosensors currently known to
have been employed in yeast is found in Table 1.

aTF biosensor-reporter systems in yeast

Industrially relevant organisms like Sa. cerevisiae are able to
metabolise glucose, which is the most abundant sugar in the
lignocellulosic biomass. However, in order to bring down cost
of biobased production from yeast, it is important to improve its
feedstock utilisation. In addition to glucose, xylose represents an
important fraction of available sugars in lignocellulosic biomass
(Hector and Mertens 2017). In order to create a sensor that could
allow for protein expression or gene circuits development in-
duced by xylose, various groups have developed xylose biosen-
sors based on XylR, a xylose-responsive transcriptional regula-
tor found in bacteria (Table 1) (Teo and Chang 2015; Wang, Li and
Zhao 2016; Hector and Mertens 2017).

Wang et al. (2016) developed a xylose-dependent biosensor
based on S. xylosus XylR, which is characterised by a broad op-
erational range (Table 1). To demonstrate the utility of the sen-
sor, the authors used directed evolution to improve the xylose
transportation capacity of hexose transporter HXT14 from Sa.
cerevisiae. Here, a mutant library of the gene encoding HXT14
was created via epPCR and the library was introduced in the
strain already containing the xylose biosensor. After the addi-
tion of xylose, cells with higher fluorescence were selected by
FACS, thereby allowing the identification of a xylose transporter
with a 6.5-fold higher transportation capacity (Fig. 3a).

Another example of biosensor used as a screening system
comes from Li et al. (2015) where authors used an aTF-based
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Figure 3. Applications of aTF-based biosensors in yeast. (a) Biosensors based on aTFs have allowed the screening of cDNA libraries, protein variants and combinatorial
pathway designs in high throughput, by coupling accumulation of carbon sources and metabolites with expression of reporters, selectors or actuators. Such efforts
have allowed the screening of cell factories with improved carbon source uptake and productivity of various chemicals. (b) Environmental biosensing using aTF-based
biosensors in yeast has been applied for monitoring of hazardous methylating and estrogenic compounds.

biosensor to screen a genome-wide overexpression cDNA library
to identify enzymes that could improve 3-hydroxypropionic acid
(3-HP)(Fig. 3a). The sensor is based on FapR (Table 1) from B. sub-
tilis, a TF that is able to detect malonyl-CoA, a key intermediate
for the biosynthesis of several industrially relevant compounds
such as 3-HP, an attractive value-added chemical. This approach
allowed them to identify two enzymes, PMP1 and TPI1, which
lead to higher GFP de-repression. The first gene encodes for a
plasma membrane that regulates a plasma membrane proton
ATPase, while the latter encodes a triose phosphate isomerase.
The overexpression of these two genes singularly lead to a 116%
and 120% increase in 3-HP production respectively, compared to
the control strain. Interestingly, the overexpression of both en-
zymes simultaneously led to lower titres, comparable to the con-
trol strain (Li et al. 2015).

More recently, BenM from Acinetobacter sp. ADP1 and FdeR
from Herbaspirillum seropedicae (Table 1) were used to screen cell
factories in order to identify best-performing pathway designs
for naringenin and CCM, the latter being an important precur-
sor for bioplastic production (Curran et al. 2013; Skjoedt et al.
2016). Subsequently, the production strains were tested by HPLC
and flow cytometry. Here, the authors observed a strong correla-
tion (r = 0.98) between the fluorescence intensity and biobased
production of CCM and narigenin, demonstrating the ability
of these biosensor as orthogonal screening systems for high-
producing strains (Fig. 3a)(Skjoedt et al. 2016).

Biosensors can be employed outside the field of cell factory
design, and can be used as tools to screen for environmental
contaminants found in water and soil. One of the earliest ex-
amples of applying aTFs as environmental screening tools is
founded on the human estrogen receptor alpha (Sanseverino
et al. 2005). This biosensor allowed the detection of chemicals
with estrogenic activity, which are able to damage the endocrine
system in vertebrates. To detect those chemicals Sanseverino
et al. (2005) developed a biosensor based on hER-alpha and the
bacterial lux cassette (luxCDABE)(Table 1), which allowed for fast
and easy detection of estrogenic compounds within hours of
sampling (Fig. 3b). Apart from the almost real-time monitoring
potential, this system allows for, there are still different limita-
tions, the most important of which is that yeast cells respond
differently when subjected to different estrogenic molecules
and may not be able to detect specific estrogenic compounds
(Sanseverino et al. 2005).

Another class of toxic molecules that are common both in
industry and in agriculture is represented by methylating chem-
icals, and in order to detect the presence of these compounds in
the environment, Moser et al. (2013) developed a system that re-
lies on the E. coli Ada protein to be directly methylated and/or to
detect DNA methylation, and to transduce a quantifiable signal
via a fluorescent output. This sensor is particularly interesting
because it is able to detect methyl iodide (Mel) which is used in
agriculture as a controversial fumigant. To validate the sensor,
the authors added an aqueous solution of Mel to a soil sample
and monitored fluorescence as a proxy for Mel levels over time
using the biosensor (Fig. 3b)(Moser et al. 2013)

aTF biosensor selection in yeast

Biosensors as a tool to screen libraries based on fluorescence
have proved very useful. However, screening large libraries
based on their fluorescence levels requires expensive instru-
mentation and, in order to screen for even larger libraries, the
coupling of the biosensor to a selection assay has proved very
useful (Dietrich, McKee and Keasling 2010). Two such examples
come from Umeyama, Okada and Ito (2013) and Fenget al. (2015).
The first example relies on the Met] repressor fused to a B42 ac-
tivation domain to induce the transcription of HIS3 LEU2 and
Venus genes in the presence of S-adenosylmethionine (SAM).
Additionally, the system is repressed by the Dox-responsive re-
pressor TetR to allow for further tuning of the sensor-selector
system (Fig 3a). By this dual-input system, GAL11 was identi-
fied as an enhancer of SAM accumulation. In the second exam-
ple, the authors developed a system where a hybrid synthetic TF
based on the DBD of Gal4, an evolved progesterone-responsive
EBD and a VP16 module was used to control progesterone-
dependent expression of HIS3 (Fig. 3a). This is particularly in-
teresting because yeast-based platforms for the biosynthesis
progesterone have already been developed (Duport et al. 1998).
Progesterone is synthesised by the conversion of pregnenolone
to progesterone by the enzyme 3p-hydroxysteroid dehydroge-
nase (38-HSD). To develop a selection assay, they added a His3-
inhibitor to plates supplemented with pregnenolone, so that the
cells harbouring the wild-type 38-HSD were not able to pro-
duce enough progesterone to complement the histidine aux-
otrophy. Next, they mutagenised the 38-HSD by epPCR and se-
lected clones that could grow on the selective medium. Two of
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the surviving clones, harbouring a single amino acid mutation,
were analysed for progesterone production by gas chromatog-
raphy and mass spectroscopy. Both the clones were able to pro-
duce twice as much progesterone compared to the cells with the
wild-type enzyme (Feng et al. 2015).

aTF biosensor actuation in yeast

Apart from providing a detectable output, such as fluorescence
or auxotrophy complementation, biosensors can be directly
plugged into the metabolism by cloning an enzyme under the
control of the aTF. A clear example of this method comes from
David et al. (2016). Here FapR from B. subtilis was used to dynam-
ically control the flux at the malonyl-CoA node and direct the
precursors towards 3-HP production instead of producing fatty
acids. Since 3-HP can be produced from Malonyl-CoA by one en-
zymatic step via a Malonyl-CoA reductase (MCRga) from Chlo-
roflexus aurantiacus, by putting the expression of this enzyme
under the control of FapR, the authors were able to create a self-
regulatory system that increased the expression of MCR¢, at a
level related to Malonyl-CoA availability (Fig. 3a). The combina-
tion of this approach with the development of a two-stage dy-
namic system where 3-HP is produced under glucose limiting
conditions led ultimately to a 10-fold increase in 3-HP produc-
tivity, reaching a final titre of 1 g L-*(David et al. 2016). The abil-
ity to control the flux at different nodes as shown in this study
can be extremely useful to prevent metabolic imbalances and to
increase productivity, as also evidenced from synthetic sensor-
actuator systems in bacteria (Kobayashi et al. 2004; Xu et al. 2014).
To date, however, the use of FapR is the only example of dynamic
regulation of metabolism reported in yeast.

CONCLUSIONS AND PERSPECTIVES

In order to improve the applicability of biosensors, it is critical
to expand the chemical space that biosensors are able to de-
tect, or can be engineered to detect (Delépine et al. 2016). From
the studies performed on biosensor development, it is clear that
achieving an optimal tuning between the elements composing
the biosensor can indeed be performed by both rational and
randomised approaches, as demonstrated using targeted en-
gineering of modular domains and directed evolution, respec-
tively (Fig. 2). However, forward engineering of aTFs with novel
specificities and enhanced transfer functions is generally not
feasible to date. In terms of transfer function, the goal is to gain
enough understanding to design a functional biosensor by cor-
relating the level of expression of the aTF to the synthetic pro-
moter, containing a specific operator design, and operator vari-
ants that have different strengths, controlling the reporter gene,
allowing for both relevant dynamic and operational ranges. Sim-
ilarly, this also applies to engineering of new specificities at the
aTF level. Here a deeper understanding of the structure to func-
tion knowledge is needed as not only operational and dynamic
ranges depend on the aTF protein structure but also the speci-
ficity. Gathering more data focusing on the structure to func-
tion relationships of allostery is a prominent path towards in-
creasing our understanding of aTF functionality and the under-
lying design principles (Taylor et al. 2015; Richards, Meyer and
Wilson 2017). Emerging and future studies based on labora-
tory evolution coupled with next-generation sequencing are ex-
pected to enable the build-up of data-sets supporting the con-
struction of machine-learning algorithms with predictive power
on aTF biosensor designs in relation to both transfer function
and ligand specificity.

In terms of application, it is not hard to imagine that in the
near future, biosensors will allow for complex gene circuit regu-
lations by aTFs acting as core unit actuators of yeast cell facto-
ries. Here, dynamic shunting of competing pathway fluxes, de-
coupling of growth and production phases, and improved overall
robustness of cell factories performing under industrial biopro-
cesses are but a few examples for which carefully engineered
aTFs can be applied. Indeed, even though dynamic regulation of
metabolic pathways for improved biobased production in E. coli
has been reported by several groups (Dahl et al. 2013; Xiao et al.
2016), the recent study by David, Nielsen and Siewers (2016) on 3-
HP production in yeast is expected to lead further development
of synthetic control over cell metabolism by the use of product-
activated biosensors.

Overall, inspired by nature, it is expected that further devel-
opment in the field of synthetic biology will allow for more com-
plex aTF-controlled regulations in order to improve biobased
production of both monoculture and mixed cultures, ultimately
enabling higher throughput of the iterative design-build-test cy-
cle and overall cost-reduced biomanufacturing processes.
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