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ABSTRACT: The quantitative structure−activity relationship
(QSAR) regression model is a commonly used technique for
predicting the biological activities of compounds using their molecular
descriptors. Besides accurate activity estimation, obtaining a
prediction uncertainty metric like a prediction interval is highly
desirable. Quantifying prediction uncertainty is an active research area
in statistical and machine learning (ML), but the implementation for
QSAR remains challenging. However, most ML algorithms with high
predictive performance require add-on companions for estimating the
uncertainty of their prediction. Conformal prediction (CP) is a
promising approach as its main components are agnostic to the
prediction modes, and it produces valid prediction intervals under
weak assumptions on the data distribution. We proposed computa-
tionally efficient CP algorithms tailored to the most widely used ML models, including random forests, deep neural networks, and
gradient boosting. The algorithms use a novel approach to the derivation of nonconformity scores from the estimates of prediction
uncertainty generated by the ensembles of point predictions. The validity and efficiency of proposed algorithms are demonstrated on
a diverse collection of QSAR data sets as well as simulation studies. The provided software implementing our algorithms can be used
as stand-alone or easily incorporated into other ML software packages for QSAR modeling.

■ INTRODUCTION
Quantitative structure−activity relationship (QSAR) regression
models are routinely applied in the drug discovery process for
predicting the biological activities of molecules from the
molecular structure-based features. The predictions are used
to prioritize candidate molecules for future experiments and
help chemists gain better understanding of how structural
changes affect activities.1−3 While most of the previous efforts
focus on improving the accuracy of point predictions,
quantifying the uncertainty in the prediction will add valuable
insights.4−8 For regression tasks, prediction intervals (PIs) are
often used as quantitative measures of the reliability or
confidence in the point prediction at a given probability. A
well-calibrated PI contains future observations with a
prespecified probability, which is called nominal coverage. The
width of a calibrated PI gives users an intuitive estimate of the
precision of the prediction, with a wider interval indicating less
precision (more uncertainty) than a narrower interval. For
example, an interval of 2.0 to 3.0 at 95% probability for
compound A means that the true value of the activity has a 95%
chance of falling within 2.0 and 3.0. In comparison, a wider
interval of 1.0 to 4.0 at 95% for compound B would indicate that
B is less reliably predicted than A.
There are various methods for estimating prediction

uncertainties. Some methods directly estimate the quantile or
variance of prediction errors, while others provide relative

uncertainty scores between different molecules, which requires
further calibration for obtaining valid PIs.6 Quantile regression
methods9−11 have been explored with various machine learning
(ML) algorithms, including neural networks,12 random forests
(RFs),13 and light gradient boosting (GB) machine;14 however,
the PIs constructed from the quantile estimates often lead to an
under-coverage, i.e., the fraction of true activities falling within
the intervals is smaller than the specified nominal coverage.
Bayesian methods estimate the posterior distribution of
molecular activity given a molecular structure. Thus, the PIs
could be computed using the variance of the prediction errors
under certain assumption of their distribution. An example of
this approach is studied in Feng et al.,13 the Bayesian additive
regression trees that simultaneously estimate molecular activity
and the error variance as a measure of prediction uncertainty,
under the assumption that the errors are normally distributed.
This assumption, however, is often violated in many QSAR
applications.15−17 A practical concern with some methods is the
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high computational cost, which is especially high for Bayesian
methods. Hirschfeld et al.6 benchmarked several uncertainty
quantification methods that are applicable to neural networks,
including ensemble-based methods,18,19 distance-based meth-
ods, mean-variance estimation,20 and union-based methods.21

This work recommended several top-performing methods that
produced an estimate of the predicted error variances with the
lowest negative log likelihood under the Gaussian distribution
assumption for prediction errors. The likelihood-based evalua-
tion metric, however, is highly sensitive to the distributional
assumption. As was mentioned above, prediction errors in many
QSAR applications are non-Gaussian.15−17 The top recom-
mended methods in Hirschfeld et al.6 are union-based methods
involving training a neural network for point prediction, and a
second model, for example, the Gaussian Process or RF
regression to estimate the variance of errors in prediction
produced by the first model. Training of two models typically
requires substantially more data. Comprehensive reviews on
uncertainty quantification methods and/or applications could
be found in Mervin et al.,7 Abdar et al.,22 Tian et al.,23 and Yu et
al.8 And some additional recent work in this field could be found
in Alvarsson et al.,24 Bostrom et al.,25,26 and McShane et al.27

We are seeking practical methods to provide PIs accompany-
ing the point predictions for large QSAR data sets in an
industrial-scale pharmaceutical drug discovery environment. A
good algorithm should meet the following requirements:

(1) Marginal validity: The empirical marginal coverage for a
test set is the proportion of PIs that contains these
molecules’ true activity measurements. Validity means
that the empirical coverage must match the user-specified
(nominal) coverage. Marginal, in this context, is under-
stood as averaged over all molecules not used in model
development.

(2) Conditional validity (also called informativeness or
adaptivity): The conditional coverage, i.e., PI coverage
for each molecule, should be close to the nominal
coverage. In other words, the width of the PI should
closely follow the uncertainty in the prediction of any
specific molecule. Under the homoscedastic conditions
where the variance of prediction errors does not depend
on the molecular descriptors, PIs for all molecules will
have the same width. In contrast, under heteroscedastic
conditions, where the variance depends on the
descriptors, the width of the PI should increase or
decrease in accordance with the variance. Compared to
marginal validity, conditional validity is a much more
stringent requirement usually very difficult to fully
achieve. However, we still aim to have PIs with widths
adaptive to the prediction errors, in order to approximate
this property.

(3) Efficiency or tightness of PIs: The width of the PIs should
be as narrow as possible.

(4) Low computational cost: The computation of PIs should
not involve a significant computational effort over
generating the original point prediction model. In real
application, it is crucial to ensure the computational
efficiency, since the QSAR models need to be rebuilt
regularly with accumulated experimental data.

(5) Independence of model or data distribution: The
properties of the PIs, such as validity, efficiency, and
adaptivity, do not depend on the choice of ML methods

or any assumption about the distribution of prediction
errors.

Many evaluation metrics of PIs have been explored in
previous benchmark studies, and several recommendations have
been proposed.6,23,28,29 Although it is difficult to find a single
method that is superior to others under all criteria, the conformal
prediction (CP) framework could satisfy most of these practical
considerations and has attracted increased attention in recent
QSAR applications.18,19,30−35 The PIs generated by CPmethods
are guaranteed to achieve valid marginal coverage, i.e., on
average, the test set PIs to contain the measured molecular
activities with a user-specified probability, under the assumption
of data exchangeability, i.e., that the training set molecules and
molecules being predicted are random selections from the same
pool of molecules.36,37 This marginal validity property does not
depend on any distributional assumptions ormodel assumptions
and holds for any sample size.36 The CP is applied as a
companion to any pretrained model for a QSAR regression task,
and many conformal algorithms require little extra computa-
tional costs besides the training of the original prediction model.
Construction of conformal PIs is based on a “nonconformity”
score that quantifies how unusual a data point is relative to the
training data.38 We prefer to use nonconformity scores that do
not require additional modeling efforts. The adaptivity property
of PIs depends on the choice of a nonconformity score. A theory
for selecting the nonconformity score is yet to be developed, and
the choice needs to be evaluated with empirical studies. Several
computationally efficient CP algorithms have been developed
for QSAR regression;18,19,34 however, a comprehensive
evaluation of their properties, especially their adaptivity, i.e.,
ability to handle heteroscedasticity of prediction errors, remains
to be done.

In this work, our first contribution is to develop a
computationally efficient CP algorithm, named adaptive
calibrated ensemble (ACE) that is based on a specifically
designed nonconformity score. The ACE algorithm can be used
with any model that provides both point prediction and an
uncertainty estimate for each molecule. For any ensemble-based
model, the mean prediction over the ensemble is the
“prediction” (i.e., the point estimate) and the standard deviation
of predictions can be used as the prediction uncertainty estimate.
The point estimate and prediction uncertainty estimate are
inputs for ACE. The ACE nonconformity score is computed
from the point prediction and the data-driven transformation of
the prediction uncertainty score. If the uncertainty scores
effectively represent the relative uncertainty between molecules,
the ACE PIs would achieve not only a prespecified marginal
coverage but also an approximate conditional coverage.

Deep neural networks (DNNs) andGBmodels are among the
most predictive descriptor-basedMLmethods.39−41 Our second
contribution is proposing novel approaches for generating
uncertainty estimates for these methods, named DNN-multitask
and GB-tail, respectively. DNN-multitask is compared to the
state-of-the-art DNN-dropout method for generating uncer-
tainty estimates from ensembles.8,42

Our third contribution is a comprehensive analysis of a diverse
collection of real QSAR data sets, with special attention to the
analysis of conditional validity and efficiency.

Conditional validity and adaptivity of PIs in the hetero-
scedastic case is one of our work’s primary objectives and that of
other researchers. The proposed methods include modifying the
nonconformity scores by normalizing them to the conditional
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measures of prediction uncertainty. These methods and relevant
references are discussed later. The method proposed in our
paper also uses conformity score modification in a novel way,
efficiently handling heteroscedasticity that is demonstrated with
a large volume of diverse QSAR data. Different approaches to
handling heteroscedasticity or, in general, obtaining PIs
satisfying conditional validity have been proposed recently and
are based on quantile regression,43 conditional histograms,44

and CP distributions.45,46 To our knowledge, these approaches
have yet to be used in the QSAR literature and are currently
being investigated by the authors of this paper.
The paper is organized as follows. The Data Sets and

Molecular Descriptors section describes QSAR data sets and
their molecular descriptors. In the Methods section, we briefly
review the CP framework and applications to QSAR, introduce
the proposed ACE CP algorithm, define evaluation metrics, and
explain in detail how to obtain ensemble predictions or raw
prediction uncertainty scores for several ML algorithms. The
Results section presents the results of applying ACE jointly with
several popular QSAR predictive algorithms and shows the
validity, efficiency, and adaptivity of proposed methods on
diverse QSAR data sets.

■ DATA SETS AND MOLECULAR DESCRIPTORS
Two collections of QSAR data sets are used in this study:

• ChEMBL: IC50 data sets for 23 diverse protein targets and
receptors from the ChEMBL database. The data sets were
obtained from Cortes-Ciriano et al.,18 excluding the
smallest data set “A2a” with only 203 molecules. We
generated molecular descriptors according to the
procedures described in Cortes-Ciriano et al.19 The
circular Morgan fingerprints47 were computed using
RDkit48 (version 2021.03.2) with the radius set to 2,
and the output fingerprint length was 2048.

• Kaggle: The 15 QSAR data sets used in the 2012 “Merck
Molecular Activity Challenge” Kaggle competition and
released in Ma et al.39 These data sets are of various sizes
for either on-target potency, off-target activity, or
absorption, distribution, metabolism, and excretion
(ADME) properties. The molecular descriptor is the
union of the “atom pair” (AP) descriptors fromCarhart et
al.49 and “donor−acceptor pair” (DP) descriptors.50 Each
data set was provided in two parts: the time-split training
set and test set. In this work, we only use the training set in
each data set, since investigating the covariate-shift
problem for time-split test set is out of scope for this study.

Compared to the ChEMBL collection with all IC50 data sets,
the Kaggle collection contains a mixture of tasks (including on-
target potency or off-target absorption, distribution, metabo-
lism, and excretion activities), larger data sets with higher
dimension of molecular features, and examples of activity
distributions far from Gaussian.
Due to the complex nature of QSAR data sets, the distribution

of prediction errors is often unknown. Some data sets may have
near-constant prediction error variance that is unrelated to
molecular features. In this case, applying constant width PIs for
all molecules (i.e., homoscedastic) is preferred. Other data sets
may have varying prediction error variance for different
molecules, for example, variability of experimental measure-
ments increases with their magnitude. In this case, PIs with
varying widths correlated with prediction errors (i.e., hetero-
scedastic) are desirable. A good algorithm should provide

adaptive PIs suitable for both cases. The data sets we use here are
likely to contain both situations.

■ METHODS
Conformal Prediction. CP is a model-agnostic framework

for measuring prediction uncertainty.36,38 In regression tasks,
the PIs constructed by CP achieve valid marginal coverage with
the general i.i.d. (independent and identically distributed) data
assumption.37,51 The original CP algorithm, which is called
transductive CP, is computationally expensive since it requires
training a new predictive model for every additional molecule.
For large data sets in QSAR problems, a modified version of the
CP algorithm called inductive CP (ICP) or split CP has been
used.18,19,33,34,52 The steps involved in ICP are as follows:
(1) Specify an ML method to generate a model that provides

point predictions.
(2) Define a nonconformity measure to quantify how unusual

the prediction error of a molecule is compared to the
others. The nonconformity measure may depend on the
prediction ŷ or the descriptor vector X of a molecule.

• For constructing homoscedastic PIs, which have a
constant width for all molecules, the nonconform-
ity measure is defined as the absolute value of
residuals

y y= | |

• For constructing heteroscedastic PIs that apply to
individual molecules, the nonconformity measure
can be defined as the normalized absolute value of
residuals

X
y y

( )
= | |

(1)

where σ(X) is an estimate of the precision of the
point predictor.53 The homoscedastic noncon-
formity measure is corresponding to a special case
when σ(X) ≡ 1.

(3) Divide the available training data randomly into a “proper
training set” and a “calibration set”. For QSAR tasks, the
relationship between molecular structure descriptors and
activities is usually highly complex. It is preferable to use a
large fraction of data, e.g., around 80%, as the “proper
training set”, in order to train an accurate point predictor
model.

(4) Use the proper training set to construct a model, and use
the model to predict the activity of molecules in the
calibration set. Calculate the nonconformity score αj for
each calibration set molecule xj (1 ≤ j ≤ n).

(5) Specify a desired nominal coverage probability θ, and
calculate the θth percentile of nonconformity scores in the
calibration set as αθ.

(6) The PI for a new molecule xnew in the test set would be

x xy( ) ( )new new±

The choice of the scaling factor σ(X) in nonconformity
measure affects the efficiency of CP (i.e., the width of PIs).38

There are two typical approaches to define the scaling factor
used in previous studies: model-based33,43,52,53 and ensemble-
based approach.18,19,34 In this paper, we will use the ensemble-
based approach. Here, σ(X) is a function of the ensemble
prediction uncertainty s(X), which is the standard deviation of
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predictions from an ensemble of predictions. Below, we
abbreviate σ(X) and s(X) as σ and s , respectively, when they
are clearly dependent on molecular descriptors X. Ensemble-
based scaling factors performed slightly better than the model-
based scaling factors in the previous work on QSAR data sets.34

Some ML methods like RFs natively produce an ensemble of
predictions. Other popular ML methods such as DNN or
boosting need modification to produce an ensemble of
predictions, preferably without being too computationally
expensive. This is discussed in the ML Algorithms section.

ACE Conformal Predictor. We need to transform s, the
ensemble prediction uncertainty, to the scaling factor σ in eq 1.
The exponential transformation of s, i.e., σ = es, has been a
popular choice of the scaling factor in previous studies.18,19,34,54

We call this scaling method “expSD”. Svensson et al.34 explored
different transformations σ = eγ × s with various weight γ ranging
from 0.05 to 1.25 and concluded that the best average
performance was obtained when γ = 1. However, in our
experience, this scaling method is not always optimal for
different data sets or ensemble approaches. The range of scaling
factor σ affects the range of PI widths in a data set. For ensemble
methods that produce smaller s, the exponential transformation
will lead to near-constant scaling factor σ and thus almost
constant-width PIs, which may not be desirable if the data set is
intrinsically heteroscedastic. On the other hand, it may also lead
to excessively wide and noninformative PIs for some molecules.
Therefore, we proposed a flexible calibration algorithm, ACE,

which will generate transformation of any raw prediction
uncertainty score s as a scaling factor for nonconformity scores
adaptive to different data sets and/or ensemble models. The
score s can represent the variability of predictions in an ensemble
of models, or any relative uncertainty scores that correlate with
the prediction errors. The ACE algorithm finds the optimal
transformation by minimizing the coverage error conditional on
the PI width via repeated cross-validation on the calibration set.
The major steps in ACE are as follows:

(1) Calculate the mean μs and standard deviation sds of the s
values on the calibration set, and calculate the normalized
s as s

s

sd
s

s
= .

(2) Define b as the average of the absolute error in the
calibration set. And define the scaling factor σ as a
function of the parameter a

a s a s b( ; ): tanh( )= * +
where 0 ≤ a ≤ b to ensure that σ(a) is always a positive
and nondecreasing function of s.̃

(3) Perform repeated twofold cross-validation on the
calibration set, and use grid-search to find the optimum
value of a to achieve the lowest average coverage error
over four equal size subgroups defined by PI widths.

More details are provided in the ML Algorithms section
below.

ML Algorithms. In this section, we describe the supervised
learning algorithms commonly used in QSAR applications and
how to generate computationally efficient prediction uncertainty
score s, as illustrated in Figure 1. Additional details of
implementation and hyperparameter settings of each algorithm
are provided in the Supporting Information.

Figure 1. Illustration of generating point predictions and prediction uncertainty scores using various ML algorithms.
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Random Forests. RF has been a very popular QSAR method
due to its high prediction accuracy and robustness to the choice
of hyperparameters.55 RF is an ensemble of independent
decision trees. The average of individual tree predictions is the
final prediction for a molecule; and s(X) is the standard
deviation of tree predictions of the molecule represented by X.
This has been an effective measure of prediction uncertainty in
previous conformal applications.18,19,34

Compared to other supervised learning methods, RF has a
unique appealing feature: the out-of-bag (OOB) data already
represents a random split, and one does not need to make an
explicit “proper training set/calibration set” split.53 This
prediction uncertainty estimation strategy is referred to as
“RF-OOB” in the later sections.
Deep Neural Networks. DNN is a practical QSAR method

for large data sets that usually achieve superior predictive
performance,39 although it is somewhat computationally
expensive, sometimes requiring GPU computing hardware.
Here, we consider only fully connected descriptor-based DNNs.
We considered two approaches for generating ensemble

predictions that require training only one DNN prediction
model: the “DNN-dropout” as it is called in previous reports19,42

and a novel “DNN-multitask” method.
DNN-dropout: Cortes-Ciriano and Bender19 built conformal

predictors for the ChEMBL data sets using test-time dropout42

ensembles, where the ensemble prediction was created by
allowing random dropout of DNN hidden layer nodes and
repeating the prediction process 100 times. The average and
standard deviation across the 100 repeated predictions for a
molecule were used as its predicted value and a measurement of
the prediction uncertainty, respectively. We adopted the same
DNN structure and optimization algorithm described by
Cortes-Ciriano and Bender19 for the ChEMBL data sets. In
the study by Cortes-Ciriano and Bender,19 multiple dropout
rates, 0.1, 0.25, and 0.5, were explored, and the results
demonstrated that the performance for different dropout rates
was comparable. We adopted the median value of the dropout
rate, i.e., using a constant dropout rate of 0.25 in all hidden
layers. For Kaggle data sets, we used the recommended
parameter setting from Ma et al.39

DNN-multitask: We created an artificial sparse multitask
DNNmodel from a single-task QSAR data set, by replicating the
molecular activitiesK times with random omissions of molecules
(with the probability of omission p), for example

y y y y i( , , NA, , NA, ...),i i i i=

where the artificial vector outcome yi for each molecule i is a K-
dimensional vector with elements y j K, 1ij

y y p y pPr( ) 1 , Pr( NA)ij i ij= = = =

“NA” represents an omitted molecular activity. The average of
multitask outputs is taken as the point prediction. The standard
deviation of multitask predictions for each molecule is used as
the prediction uncertainty metric s(X). The intuition is that
molecules that are “easier” to predict would get more consistent
predictions across this pseudoensemble model. To explore
whether the multitask standard deviation is sensitive to the
choice of hyperparameters K and p, we evaluated multiple
combinations of (K, p) pairs via simulations (see the Supporting
Information) and recommend using a higher omission
probability (p = 0.6) and a moderate number of the output
nodes (K = 20 or 50).

For Kaggle data sets, the neural network structure and
optimization algorithm are the same asMa et al.,39 except for the
output layer size. For the ChEMBL data sets, since the
dimensions of input molecular features are smaller and the
molecules are “easier” to predict, we used a smaller neural
network structure, which achieved similar prediction accuracy
with less computational cost compared to the DNN-dropout
setting in the study by Cortes-Ciriano and Bender.19

Gradient Boosting.GB is a widely usedQSARmethod due to
its computational efficiency and accuracy.40,41 A GB model
consists of a series of many (typically 1000 or more) shallow
decision trees. The prediction of the model on a molecule is the
sum of predictions of the decision trees on that molecule. The
trees are added to the model in iterations such that the errors
from the current model are used to grow a new tree, so that the
new tree is forced to learn information that the current model
did not yet learn from the data. Thus, in general, we expect the
trees learned earlier in the sequence to have larger contributions
to the overall prediction than those later in the sequence. For
prediction of a new molecule, if the quality of the prediction is
high, we would expect that the absolute magnitude of the
contribution would diminish for later trees. If the absolute
contribution falls to nearly zero after the first few trees, it
indicates that the prediction for that molecule is reliable. On the
other hand, if the absolute contributions from the last few trees
are still large, then the prediction is less likely to be reliable.
Therefore, we propose the “GB-tail” method: for each molecule,
let s be the mean absolute value of the contributions from the
final w fraction of trees (for instance, for w = 0.2, the last 200 out
of 1000 trees). This approach requires only postprocessing of
tree predictions and has a minimal computational cost.

To check whether the estimate of the prediction uncertainty
by the GB-tail method is sensitive to w, we investigated the
impact of varying the hyperparameter w (Supporting
Information) and recommend w = 0.2.

Evaluation Metrics. We compared three types of conformal
PIs: Homoscedastic PIs (abbreviated as “homo” in the figures),
heteroscedastic PIs with the “expSD” scaling factor (expSD),
and heteroscedastic PIs with the scaling factor computed from
the proposed ACE algorithm (ACE). They are applied in
combination with four supervised learning algorithms/ensemble
schemes introduced in the ML Algorithms section.

We evaluated several important aspects of the prediction
models, including the accuracy of point predictions, computa-
tional costs, and the informativeness of PIs. All the evaluation
metrics are calculated on the test set and averaged across
multiple random repeats and/or data sets.

The prediction accuracy is measured by the squared Pearson
correlation coefficient (R-squared) and the normalized root-
mean-squared error (RMSE). These metrics serve the purpose
of assessing the quality of predictions generated by different ML
methods. It is essential to ensure satisfactory prediction accuracy
before evaluating the performance of conformal PIs.

The performance of a conformal predictor is usually evaluated
in terms of validity and efficiency. A valid PI has a coverage
probability no less than the prespecified nominal coverage level,
i.e., if the probability is 90%, then at least 90% of the true activity
measurements should fall within the intervals. The efficiency is
measured by the widths of the PIs. In regression analysis, a
conformal predictor is considered favorable if it produces
narrow PIs around the point predictions while maintaining the
desired nominal coverage. ICP algorithms provide PIs that
guarantee marginal validity regardless of the underlying data
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distribution. However, the efficiency of these PIs can be
influenced by the choice of nonconformity scores.38,51 The
selection of an appropriate nonconformity score is crucial in
achieving optimal efficiency.
Coverage error: For each nominal coverage probability, we

calculated the coverage error as the difference between the
actual coverage of test set compounds and the nominal coverage.
For example, if the nominal coverage of the interval is 95% and
the actual coverage of the interval is 85%, the difference is 10%.
Although the conformal approach theoretically guarantees that
the coverage is correct, in practice, coverages of finite samples
will fluctuate around the nominal value.36 We also calculated the
mean absolute error (MAE) of the test set coverage across
different data sets and repeats.
Efficiency: To compare the efficiency across algorithms and

data sets, one needs to normalize the raw PIs. One way to do this
is to find the ratio of the width of the raw interval to the width of
the interval in the corresponding “no-model” case. The no-
model case uses the distribution of observed training set
activities rather than predictions. For example, for a nominal
coverage of 90%, the interval is between the fifth-percentile and
95th-percentile values of the observed activities in the training
set. The “no-model” PI should be wider than the PIs obtained by
the ICP analysis where the model-based point predictions are
used. When comparing the efficiency between heteroscedastic
and homoscedastic PIs, we scaled the heteroscedastic PI widths
by the corresponding homoscedastic PI width for the same test
set and the same point prediction model.
Adaptability: The ability to differentiate easy-to-predict and

difficult-to-predict molecules, i.e., “adaptability”, is another top
consideration for constructing informative PIs.56−60 The
expectation is that molecules that can be more accurately
predicted have narrower PIs. Ideally, one would like the PI to
cover the true activity with the prespecified nominal coverage
probability for every molecule, i.e., to achieve conditional
validity. However, this cannot be achieved without imposing
assumptions on the data distribution.58 Although there is no
theoretical guarantee for ICP algorithms to satisfy the
conditional validity, one may approximate this property with
heteroscedastic PIs constructed from well-designed non-
conformity scores. We used a size-stratified coverage metric to
evaluate the adaptivity of PIs in the following way. First, we
sorted the test set molecules by their PI widths, and divided
them into five equal-size subgroups. We then calculated the
coverage error within each subgroup, as well as the average
absolute error of coverages across five subgroups for each data
set. If the coverage in these subgroups significantly deviates from
the nominal coverage, it indicates a lower quality of the
conditional coverage.36,56,57,61

In the Supporting Information section, we use simulated data
with Gaussian-distributed noise that have either constant

variance or changing variance to demonstrate how the state-
of-the art expSD and the proposed ACE CP algorithms
performed in these cases. Based on the simulation study, the
expSD method cannot provide PIs adaptive to the magnitude of
errors and does not perform well for all ML algorithms. When
applying expSD with the DNN-multitask and GB-tail ML
method, the PIs have near-constant widths and are not adaptive
to the errors from different molecules. The reason is that the raw
prediction uncertainty scores from DNN-multitask and GB-tail
span a much narrower range and it leads to close to constant
scaling factor σ in the expSD method. And the results from
expSD with RF-OOB or DNN-dropout methods are also
unsatisfactory: For data simulated with constant variance, they
have larger coverage errors in size-stratified subgroups than
those from either homo or ACE and are very likely to produce
some PIs that are too wide to be useful. Thus, we decided to
exclude the expSD CP algorithm from any further comparisons
in the application section.

■ RESULTS: APPLICATION TO CHEMBL AND KAGGLE
DATA SETS

In all the following numerical experiments, each data set is
randomly split into a proper training set (70% of the data) for
training a predictionmodel for molecular activity and generating
raw uncertainty scores; a calibration set (15%) for CP; and a test
set (15%) for evaluation. The data split is repeated 20 times, and
the same splits are used for all algorithms. For RF models, since
we use the OOB data for CP instead of a separate calibration set,
the union of the proper training set and calibration (85% of the
data) is used for RF model training, and the same 15% test set is
used for evaluation.

The average predictive performance and computational time
over repeats for two groups of data sets are listed in Table 1. All
models achieved satisfactory prediction accuracy. The twoDNN
models and the GB model perform slightly better than RF,
which is usually used as the baseline method in QSARmodeling,
despite that the RF model uses more training data (85% of an
entire data set) compared to others (70% of an entire data set).
Also, the DNN-multitask and GB models took less time
compared to DNN-dropout and RF. While the accuracy and
run-time of point predictors may not directly affect the
performance of conformal predictors, these comparisons
demonstrated the necessity of developing suitable uncertainty
quantification methods tailored for various practical QSAR
models, in addition to the widely used RF-based conformal
predictors.

We created conformal predictors using two CP algorithms
(homo and ACE) and four ML methods (RF-OOB, DNN-
dropout, DNN-multitask, and GB) under eight nominal
coverage levels ranging from 60 to 95% with increments of
5%. Figure 2 shows the boxplots of the marginal coverage error

Table 1. Summary of Test Set Predictive Performance and Run Time (in Seconds) of Each ML Method for ChEMBL and Kaggle
Data Setsa

ChEMBL Kaggle

ML prediction algorithm R-squared RMSE runtime (s) R-squared RMSE runtime (s)

RF 0.633 (0.115) 0.710 (0.086) 41.0 0.683 (0.084) 0.565 (0.073) 1314.3
DNN-dropout 0.652 (0.112) 0.688 (0.085) 127.8 0.703 (0.106) 0.541 (0.098) 893.4
DNN-multitask 0.645 (0.113) 0.697 (0.088) 36.2 0.700 (0.108) 0.547 (0.102) 781.3
GB 0.644 (0.114) 0.694 (0.087) 8.4 0.706 (0.098) 0.536 (0.089) 143.8

aThese numbers represent an average over the data sets and repeats. The standard deviation for the R-squared and RMSE is provided in brackets.
The RMSE of Kaggle data sets is scaled by the standard deviation of molecular activities.
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on test sets under different nominal coverage levels for each
method and CP algorithm. In all cases, the coverage errors are

centered around zero, which indicates that they all achieved
marginal validity. Since the Kaggle data sets are larger than

Figure 2. Boxplots of marginal coverage errors in two groups of data sets for eight nominal coverages ranging from 60 to 95%. Top row: ChEMBL data
sets; bottom row: Kaggle data sets. In all the boxplots, the horizontal line drawn in the middle of each box denotes the median, and the range of box is
from 25th percentile (Q1) to 75th percentile (Q3). The dots represent data beyond 1.5 times the interquartile range (Q3 − Q1) above Q3 or belowQ1.

Figure 3. Absolute marginal coverage errors averaged across data sets and repeats, for eight nominal coverages ranging from 60 to 95% and two groups
of data sets. Lower values indicate better marginal validity. Top row: ChEMBL data sets; bottom row: Kaggle data sets.
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ChEMBL data sets, the distributions of errors have less
variability. The comparison of variability in marginal coverage

errors between the ML method and CP algorithm is shown in
Figure 3. For each ML method and CP algorithm, we averaged

Figure 4. Boxplots of the scaled average PI widths for eight nominal coverages ranging from 60 to 95%. For each ML algorithm, CP method, and each
of the 20 repeats, the PIs for each nominal coverage are averaged across the test set. In order to facilitate the comparison of average prediction widths
across different data sets in the boxplots, it is necessary to scale the PIs. The two subfigures below illustrate two different scaling approaches. (a) The PIs
are scaled by the “no-model” interval width, which is calculated from the training set activities rather thanmodel predictions. For a nominal coverage of
(1 − α), the “no-model” interval is between the α/2 quantile and (1 − α/2) quantile values of the observed activities in the training set. Top row:
ChEMBL data sets; bottom row: Kaggle data sets. Each column of subplots corresponds to one nominal coverage level. (b) The PIs are scaled by the
corresponding homoscedastic PI width for the same test set and the same point prediction model. Top row: ChEMBL data sets; bottom row: Kaggle
data sets. The x-axis is the nominal coverage level.
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the absolute value of coverage errors across data sets and repeats
at multiple nominal coverages. The RF-OOB method has lower
MAEs of marginal coverage at all nominal levels. The RF model

is trained on all available data without splitting into proper
training sets and calibration sets, and it used the out-of-bag data
for calibration, which is effectively larger than the stand-alone

Figure 5. Test set coverage of subgroups defined by PI widths, at a nominal level of 80%. For each ML algorithm, data set, and repeat, the test set
molecules are sorted by the PI widths in increasing order and split into five equal-size subgroups numbered 1 to 5. And the test set coverage for each
subgroup using different CPmethods is calculated as the proportion of true activity that falls within the PI at a nominal level of 80% (horizontal dashed
line).

Figure 6. Comparison of the conditional coverage of ACE PIs generated by different methods. For eachML algorithm, data set, and repeat, the test set
molecules are sorted by the PI widths in increasing order and split into five equal-size subgroups. The test set coverage for each subgroup using the ACE
CP method is calculated as the proportion of true activity that falls within the PI at various nominal levels. The y-axis is the MAE of test set coverage
across subgroups, i.e., the absolute errors of test set coverage averaged across five subgroups in each test set, with lower values indicating better
conditional coverage.
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calibration sets in other methods. Due to this unique feature of
RF, it achieved more robust performance in the marginal
coverage. There was no difference between ACE and
homoscedastic, which is expected.
Figure 4 compares the efficiency of conformal predictors. In

Figure 4a, the DNN-dropout, DNN-multitask, and GB-tail
methods have slightly narrower average PI widths than the RF-
OOB method in the lower nominal range (60 to 85%), but the
distributions of their average PI widths have a wider spread.
Also, there are a few outliers at the higher nominal level of 95%.
Figure 4b compares the efficiency between ACE and
homoscedastic conformal algorithms. For each ML method,
the average PI width of the ACE algorithm of each test set is
scaled by the corresponding homoscedastic PI width. As the
nominal level increases, the ACE algorithm is more likely to
produce narrower PIs, on average, compared to homoscedastic.
Figure 5 demonstrates the conditional coverage property of

ACE in contrast to homoscedastic using the nominal level of
80% as an example. Again, each test set was sorted by the PI
widths for each method in increasing order and split into five
equal-size subgroups. Similar to what we observed in the
simulation study, the coverage of the ACE algorithm is closer to
the expected nominal coverage (dashed line) in all subgroups
compared to homoscedastic. In most situations, except the
DNN-dropout model for ChEMBL data sets, there is a clear
decreasing trend of homoscedastic PI coverage from the first
subgroup to the fifth subgroup. It indicates that most of the
molecules with smaller PIs have smaller prediction errors, which
leads to overcoverage of homoscedastic PIs in the first two
subgroups. Also, the molecules in the last two subgroups have
larger prediction errors than the PI width and hence this results
in the under-coverage of homoscedastic PIs. In other words, the
decreasing trend of homoscedastic PI coverage demonstrates
that the PI effectively differentiates between the molecules with
small prediction errors from those with large prediction errors.
Thus, the PIs from DNN-dropout ensembles in some cases are
not as informative as the other methods. Figure 6 compares the
conditional coverage of ACE PIs generated by different
methods. For ChEMBL data sets, the DNN-dropout model
shows a higher MAE of coverage by subgroups at multiple
nominal levels. For some Kaggle data sets, the DNN-dropout

model also produced noticeably higher errors at lower nominal
levels.

Figure 7 shows the ACE PIs using the Kaggle 3A4 data set as
an example. The molecular activities in the 3A4 data set have a
truncated distribution causing heteroscedastic prediction errors.
In each subplot, on the horizontal axis, the test set molecules are
ordered by the PI widths from the corresponding ML method.
The orange line shows that the spread of the absolute errors is
increasing with the PI width for all four methods, indicating a
strong association between the magnitude of the true prediction
error and PI width. Thus, with the ACE algorithm, we obtained
well-calibrated heteroscedastic PIs with the widths adaptive to
the true absolute prediction errors. Empirical coverage of the
ACE PIs reflected by the proportion of points below the
regression line (numbers are not shown) is close to the nominal
levels at each interval width. Thus, the ACE method provides
meaningful estimates of the prediction errors.

■ DISCUSSION
In this work, we developed the ACE algorithm, an inductive
conformal predictor whose nonconformity scores are calculated
using estimates of the prediction uncertainty generated by the
ensemble of point prediction models. We evaluated this method
using both simulated and large collections of real QSAR data.
The ACE algorithm produced PIs that are well adapted to the
data: for homoscedastic data, the interval width is nearly
constant; and for heteroscedastic data, the width varies with the
magnitude of prediction errors and achieves close to nominal
coverage for each molecule. This adaptiveness feature of ACE
PIs makes it highly informative in QSAR applications. One can
use the interval size to differentiate the molecules which are
accurately predicted vs those that are not.

The ACE algorithm is applicable to any prediction model, as
long as a raw prediction uncertainty score can be computed, and
that uncertainty correlates with the variance of actual prediction
errors. Since the PI widths produced by the ACE algorithm as
well as other ensemble-based CP algorithms are positively
correlated with the raw prediction uncertainty scores, it is critical
to develop ML methods that produce raw uncertainty scores
that effectively track the errors to achieve adaptivity. Some of the
widely used QSAR methods, such as DNNs, provide highly
accurate point predictions but do not generate raw uncertainty

Figure 7. Association of the ACE PI widths and absolute prediction errors (nominal level of 80% for the Kaggle data set 3A4, and shown results are for
one test set out of 20 repeated runs). The orange line is the PI width from the ACE algorithm. Each dot in the scatter plot is a test set molecule, colored
by whether it is successfully covered by the PI (with the absolute error below the orange line). Both absolute errors and the PI width are scaled by the
corresponding homoscedastic PI width. The horizontal black dash line with y-intercept at 1.0 represents the scaled homoscedastic PI size (unit length).
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scores because they do not naturally produce ensembles. The
GB method, although an ensemble method, also does not
natively generate a prediction uncertainty estimate. To address
this, we proposed the novel ensemble DNN-multitask and GB-
tail methods, to compute the raw prediction uncertainty score
from DNN and GB point prediction models with a small
computational cost. The ACE PIs with raw prediction
uncertainty scores obtained by both these methods showed
competitive performance in a diverse collection of QSAR data
sets. Notably, in the case of neural net models, DNN-multitask
has shown to produce more useful ensembles compared to
DNN-dropout. Additionally, implementing the DNN-multitask
method involves only a simple reformatting of the training
molecular activities without changes in the neural net structure.
This method could be also applied to the convolutional neural
network62−64 or graph convolutional networks.65−68 By tailoring
uncertainty quantification techniques to different ML methods,
we can enhance the applicability of conformal predictors in real-
world scenarios. While a comparison across different ML
methods could provide valuable insights, it falls beyond the
scope of this paper.
The topic of uncertainty quantification has also been explored

in the applicability domain (AD) research, a subfield in
QSAR.69−71 However, there are many definitions of the concept
of AD and there is no consensus on the best approach.2,32 To
improve the value of AD model, Hanser et al.72 clarified,
formalized, and extended the definition of AD. In this work, the
evaluation of AD was split into three well-defined subtopics: the
chemical structure space boundaries of model applicability, the
reliability of predictions, and whether the predictions can help to
make a clear decision. The well-defined mathematical frame-
work of CP produces PIs with straightforward interpretation,
which is a valuable addition to the prediction reliability
assessment methodology in AD.
Although this work focuses on developing conformal PIs for

QSAR regression tasks, there are CP algorithms for classification
modeling and have been applied in QSAR before.24,32,33,73−75 In
classification, the nonconformity score is usually defined based
on the predicted probabilities associated with each class. The
proposed DNN-multitask and GB-tail methods can also be used
to compute the raw prediction uncertainty scores for
classification models, which could be helpful for constructing
novel nonconformity measures. Another interesting direction to
explore in future study is comparing the performance of
uncertainty estimation methods on various tasks, either
regression or classification, categorized by the underlying data
distribution.
In conclusion, the conformal predictors computed by the

proposed ACE algorithm jointly with highly accurate and
commonly used ML models may serve as practical uncertainty
quantification tools for QSARmodeling, producing accurate and
informative PIs without compromising the point prediction
quality or computational efficiency.
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