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Abstract

Midazolam is a widely used short-acting benzodiazepine. However, midazolam is also criti-

cized for its deliriogenic potential. Since delirium is associated with a malfunction of the neu-

rotransmitter acetylcholine, midazolam appears to interfere with its proper metabolism,

which can be triggered by epigenetic modifications. Consequently, we tested the hypothesis

that midazolam indeed changes the expression and activity of cholinergic genes by acetyl-

cholinesterase assay and qPCR. Furthermore, we investigated the occurrence of changes

in the epigenetic landscape by methylation specific PCR, ChiP-Assay and histone ELISA. In

an in-vitro model containing SH-SY5Y neuroblastoma cells, U343 glioblastoma cells, and

human peripheral blood mononuclear cells, we found that midazolam altered the activity of

acetylcholinesterase /buturylcholinesterase (AChE / BChE). Interestingly, the increased

expression of the buturylcholinesterase evoked by midazolam was accompanied by a

reduced methylation of the BCHE gene and the di-methylation of histone 3 lysine 4 and

came along with an increased expression of the lysine specific demethylase KDM1A. Last,

inflammatory cytokines were not induced by midazolam. In conclusion, we found a promis-

ing mechanistic link between midazolam treatment and delirium, due to a significant disrup-

tion in cholinesterase homeostasis. In addition, midazolam seems to provoke profound

changes in the epigenetic landscape. Therefore, our results can contribute to a better under-

standing of the hitherto poorly understood interactions and risk factors of midazolam on

delirium.

1. Introduction

Midazolam is the most abundantly used benzodiazepine in anesthesia and emergency medi-

cine [1]. Due to its amnestic and anxiolytic effects, midazolam is considered as a favorable

choice for premedication [2, 3]. However, the use of benzodiazepines especially midazolam is

associated with postoperative complications such as cognitive impairment and delirium [4].
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Currently, it is discussed whether anesthetics cause an alteration of the epigenetic landscape

of the cell, which might induce a long-lasting cognitive impairment [5]. One common postop-

erative complication in elderly critically ill patients is the postoperative delirium (POD) that is

also associated with a worse outcome, longer stay on the intensive care unit and higher health-

care related costs [6]. In addition, delirium is also linked to an increased risk of long term cog-

nitive impairments that recover with high inter-individual differences from days to months

[7]. Especially the use of benzodiazepine is, in addition to blood transfusion, one of the only

modifiable factors with strong evidence for an association with delirium after surgery [8].

Within the group of benzodiazepines midazolam shows highest incidence of POD [9].

Although there are some theories that could explain the positive correlation between mida-

zolam administration and the high incidence of POD, such as the degree of sedation [8] and

the function of midazolam as a GABAergic agent [10], the underlying molecular mechanisms

and the pathogenesis of POD still remain elusive.

Currently, a pathogenesis is discussed involving a reduced concentration of the neurotrans-

mitter acetylcholine [11], neuroinflammation [12, 13] or decreased antiinflammation [14].

The hydrolysis of acetylcholine is mainly mediated by acetylcholinesterase (AChE) and butyr-

ylcholinesterase (BChE) that can be found in the brain, red blood cells, and central nervous

system [15]. Especially an altered activity and concentration of BChE seems to impact patho-

genesis of POD [16–18] and BChE activity also shows high prognostic capability for POD [19].

Recently, we could demonstrate that the GABAergic agent propofol changes the epigenome

[20]. In context with POD and anesthesia, the expression of lysine-specific demethylase

(KDM1A) seems of special interest as it is associated with cognitive function [21] and demeth-

ylates histone 3 lysine 4 [22]. Hence long-lasting effects on the central nervous system and cog-

nitive abilities caused by the GABAergic midazolam could be caused by changing the

epigenetic landscape of the cells [23–25]. Since it is currently unknown whether and how mid-

azolam influences the activity of the ACHE or BCHE gene. However, we speculate that one

possible mechanism is the alteration of the expression of cholinergic genes by changing the

epigenetic profile of the cells.

Therefore, in this study we investigated whether the expression, activity and methylation

profile of cholinesterases are changed by midazolam. Furthermore, we study whether midazo-

lam changes the epigenetic landscape of the cell by altering KDM1A expression.

2. Materials and methods

2.1. Cell culture

Human neuroblastoma cells SH-SY5Y and the glioblastoma cell line U343 (origin: Cell Lines

Service, CLS, Eppelheim Germany, SH-SY5Y item number: 300154 and U343 item number:

300365) were cultured in Dulbecco’s modified Eagle medium (DMEM; Gibco, Darmstadt,

Germany) at 37˚C and 5% CO2 with 10% fetal calf serum (FCS; Gibco, Darmstadt, Germany)

and 1% penicillin/streptomycin (Penstrep; Gibco, Darmstadt, Germany). Cells were main-

tained every three to four days by adding 5 ml of Trypsin-EDTA 0.25% (Gibco, Darmstadt,

Germany) after medium removal to dissolve adhesive cells. Furthermore, peripheral blood

mononuclear cells (PBMCs) were examined, after the Ethics Committee’s approval (Ethics

Committee of the Ruhr-University Bochum, Bochum, Germany; ref: 17-5964-BR), registration

at the German Clinical Trials Register (ref: DRKS00012961, https://www.drks.de/drks_web/

navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00012961) and written informed

consent. 80 ml EDTA blood was taken from eight healthy donors (5 female and 3 male) and

PBMCs were isolated, using density gradient centrifugation with Ficoll-Paque (GE Healthcare,

Chalfont, UK).

PLOS ONE Midazolam and epigenetic changes in BCHE

PLOS ONE | https://doi.org/10.1371/journal.pone.0271119 July 8, 2022 2 / 12

Competing interests: The authors have declared

that no competing interests exist.

https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00012961
https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00012961
https://doi.org/10.1371/journal.pone.0271119


2.2. Quantitative reverse transcription PCR

q-RT-PCR on SH-SY5Y cells, U343 and PBMCs was performed as described previously [26].

Briefly, cells were cultured in 6-well culture plates and incubated with 250 ng/ml, 1 μg/ml or

50 μg/ml midazolam (midazolam hydrochloride injection solution, B. Braun Melsungen) for

2, 4 and 24 h, 10 μg/ml and 50 μg/ml flumazenil or were left untreated (control). Flumazenil

incubation was performed two hours after starting midazolam incubation. For incubation, the

highest concentration of midazolam (SH-SY5Y 50 μg/ml; U343 250 ng/ml; BV-2 10 μg/ml)

and flumazenil was used, which did not reduce cell viability in different cell lines in previous

experiments. Cells were incubated at 37˚C and 5% CO2. After RNA isolation and cDNA syn-

thesis of 1 μg RNA using the QuantiTect Reverse Transcription kit (Qiagen, Hilden, Ger-

many), we utilized 2.5 μl of cDNA together with specific primers (Table 1) and GoTaq qPCR

master mix (Promega, Madison, WI, USA) for a standard qPCR reaction protocol.

2.3. Cholinesterase activity after incubation with midazolam

Cholinesterase activity in SH-SY5Y cells was measured after stimulation with midazolam.

For this purpose, 5 x 105 SH-SY5Y cells were seeded in 4 ml of growth medium containing

10% FBS. Cells were incubated for 24 h at 37˚C and incubated for 2, 4 and 24 h with 50 μg/ml

midazolam or were left untreated.

The proteins were isolated as previously described [20] after washing the cells with PBS.

After the lysates were collected from all experiments, protein quantification was performed

using the Rotiquant universal kit (Roth, Karlsruhe, Germany). The lysates were used for detec-

tion of cholinesterase activity using an acetylcholinesterase assay kit (fluorometric red)

(Abcam, Cambridge, UK) according to the manufacturer’s instructions.

Table 1. Primer pairs for PCR.

Primer name Sequence (5’ to 3’) Product size (bp)

BCHE_M1_SE ATTTAGGTTAAAACGGTGAAATTTC 172

BCHE_M1_AS AAACTAAAATACCGTAACGCGAT

BCHE_U1_SE TTAGGTTAAAATGGTGAAATTTTGG 173

BCHE_U1_AS CTCAAACTAAAATACCATAACACAAT

ACHE_M_SE1 AAT TTT ATT AGT TTC GAG CGA GAT C 189

ACHE_M_AS1 GAC CCA AAA ACC TAC AAC GAC

ACHE_U_SE1 TTT TAT TAG TTT TGA GTG AGA TTG A 188

ACHE_U_AS1 CAA CCC AAA AAC CTA CAA CAA C

ACTB_SE CTGGAACGGTGAAGGTGACA 140

ACTB_AS AAGGGACTTCCTGTAACAATGCA

KDM1A_RT_SE GCCCACTTTATGAAGCCAACG 161

KDM1A_RT_AS GCCAAGGGACACAGGCTTAT

ACHE_mRNA_SE GCT TCA GCA AAG ACA ACG AG 115

ACHE_mRNA_AS GTG TAA TGC AGG ACC ACA GC

BCHE_mRNA_SE ATCCTGCATTTCCCCGAAGT 239

BCHE_mRNA_AS CCGTGCCACCAAAAACTGTC

BCHE_Prom_SE GCATGTGCACTGCAAGTTGA 90

AACTCTCGCGAGCTTTGTCA

BCHE_Prom_AS CCCTGCAGGCAGTCATACAT

CTGCTGCTCCAGCCTGTAAA

https://doi.org/10.1371/journal.pone.0271119.t001
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2.4. Methylation and expression of BCHE gene after incubation with

midazolam

The DNA methylation of BCHE gene was quantified using methylation-specific PCR after bisul-

phite conversion in SH-SY5Y cells, before and after incubation. For this purpose, 5 x 105 SH-SY5Y

cells per 4 ml were seeded in 6-well culture plates and incubated for 24 h at 37˚ C and 5% CO2.

The cells were incubated with 50 μg/ml or 250 ng/ml midazolam depending on cell type for 2, 4

and 24h. Subsequently, the DNA was isolated using the QIAamp DNA blood mini kit (Qiagen, Hil-

den, Germany), following the manufacturer’s instructions. Bisulphite conversion was performed

with the EZ DNA methylation-gold kit (Zymo Research, Irvine, CA, USA). All DNA samples were

diluted to 10 ng /μl qPCR was performed to detect methylation, as previously described [27], with

the GoTaq qPCR master mix (Promega, Madison, WI, USA) and specific primers (Table 1).

The percentage of methylation was analyzed as previously described [27, 28].

2.5. Analysis of histone modifications

Furthermore, histone modifications of histone 3 after incubation were analyzed. SH-SY5Y

cells and U343 were seeded, as previously described, and incubated with 250 ng / ml of mida-

zolam or left untreated (control) for 24 h exactly as previously described [20].

Histone concentration was quantified by the Rotiquant universal kit (Roth, Karlsruhe, Ger-

many) and histone modification was quantified by ELISA using 50 ng protein for the PathS-

can1Di-Methyl-Histone H3 (Lys4) Sandwich ELISA kit (Cell Signaling Technology,

Cambridge, UK).

2.6. Chromatin immunoprecipitation assay (ChIP assay)

A ChIP assay was used to analyze if the promoter of the cholinergic gene BCHE binds to his-

tone H3 lysine K4., 1 x 106 SH-SY5Y were used for the Pierce agarose Chip kit (Thermo Fisher

Scientific, Waltham, MA, USA). The H3K4me2 polyclonal antibody (EpiGentek, Farmingdale,

NY, USA) was used as a specific antibody. As a positive control, an antibody against RNA

polymerase II in combination with specific primers against GAPDH was used, while Rabbit

IgG in combination with our primers against BCHE gene regions was used as a negative con-

trol. After DNA isolation, PCR (One Taq Master Mix, New England Biolabs, Frankfurt am

Main, Germany) was carried out with, BCHE_prom primers (Table 1), and the PCR products

were analyzed on agarose gel (Peqlab, Erlangen, Germany).

2.7. LegendPlex assay for the quantification of cytokines (TNFα and IL6)

To measure cytokine release from glial cells, BV2 cells (kind gift from Veselin Grozdanov

Department of Neurology, Ulm University, Ulm, Germany) were used. Cell culture superna-

tant was utilized after midazolam and LPS treatment for quantification of TNFα, IL6 with the

Legend Plex InflammationPanel (BioLegend, San Diego, CA), according to manufacturer’s

recommendations. Briefly, cells were treated with 1 μg/mL midazolam 100 ng/ml LPS or left

untreated and incubated for 2, 4 and 24 h in complete growth medium. Cell supernatant was

collected and stored at -80˚C until use for cytokine quantification. Measurement was per-

formed using FACS Canto II (Becton Dickinson GmbH, Heidelberg, Germany) according to

the manufacturer’s instructions and analysis was performed using LEGENDplex v8.0 software.

2.8. Statistics

All experiments were performed in duplicate and repeated at least three times. Results are pre-

sented as mean ± standard deviation. If not otherwise stated, all datasets were analyzed using
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an unpaired t-Test or one-way ANOVA for multiple comparisons with a Dunnett’s multiple

comparisons test for specific comparisons. A p-value� 0.05 was considered statistically signif-

icant. For multiple comparisons, specific comparisons were only analyzed if the one-way

ANOVA showed a statistically significant difference between the groups. All statistical analyses

were performed using GraphPad Prism 8 (San Diego, CA, USA).

3. Results

3.1. The activity and expression of AChE and BChE are altered after

incubation with midazolam

Cholinesterase activity in SH-SY5Y cells was gradually reduced after incubation with midazo-

lam, without reaching statistical significance (control: mean + SD 90.7 +5.5; 2 hours mean

+ SD 42.51 + 28.7; p = n.s.; Fig 1A) but the intracellular AChE and BChE activity (p = 0.01; Fig

1A) and ACHE (p< 0.01) and BCHE (p = 0.03) mRNA expression increased after 24 h by

about 80% (Fig 1B and 1C).

3.2. Application of the midazolam antagonist flumazenil reverses

midazolam induced effects on BCHE expression

In order to elucidate if midazolam antagonist flumazenil is capable to reduce midazolam

induced effects on ACHE and BCHE expression, SH-SY5Y cells were incubated with flumaze-

nil two hours after midazolam exposure. Here, we show a gradual increasing abolition of the

midazolam effect (increased BCHE expression) under increasing doses of the antagonist flu-

mazenil (Fig 2B). After the addition of 10μg/mL flumazenil the increased expression associated

with midazolam of BCHE was reduced (p<0.05; Fig 2B). Interestingly, this effect was not

observed on ACHE expression (Fig 2A).

3.3. Midazolam induces epigenetic changes in the BCHE gene of neuronal

cells

Midazolam induced a decrease in BCHE intron 2 DNA methylation (p = 0.01; Fig 3A) and in

the di-methylation of H3K4 (p = 0.02; Fig 3B), where BCHE promoter binds (Fig 3C). ACHE
DNA methylation was not altered by incubation with 50 μg/ml midazolam (Fig 3D).

Fig 1. Activity and mRNA expression of AChE and BChE after incubation with midazolam A) the intracellular cholinesterase activity increased

24 h after midazolam exposure (n = 4; p = 0.01) and was measured by fluorometric assay B) ACHE mRNA quantified by qPCR expression was

increased 24 hours after midazolam exposure in SH-SY5Y cells (n = 3; p<0.01) C) BCHE mRNA quantified by qPCR expression was increased

24 hours after midazolam exposure in SH-SY5Y cells (n = 3; p = 0.03). Data are presented as mean ± standard deviation. The reported p-value

refers to the Dunnett’s post-hoc test, comparing the underlying columns at the ends of each bar.

https://doi.org/10.1371/journal.pone.0271119.g001
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Fig 3. Methylation of BCHE in neuronal SH-SY5Y and U343 cells after midazolam incubation A) BCHE intron 2

methylation reduced after midazolam (50 μg/ml) exposure of SH-SY5Y cells (n = 3; p = 0.01) analyzed by methylation

specific PCR. B) ELISA showed that histone H3 lysine 4 di-methylation (H3K4me2) decreased in U343 cells after

incubation with 250 ng/ml midazolam (n = 3; p = 0.02) C) Chip-Assay confirmed binding of BCHE promoter region

(90 bp) to H3K4me2; a 100 bp DNA Ladder was utilized; lanes 1, 7 show incubation with H3K27 antibody; lanes 2 and

6 show incubation with H3K4 antibody; lane 4 shows negative control without antibody and lane 5 shows positive

control with RNA-polymerase II antibody (two experiments out of three are shown; n = 3). D) ACHE -571-/-670

promoter methylation was not affected by midazolam (50 μg/ml) exposure of SH-SY5Y cells (n = 3; p = n.s.) analyzed

by methylation specific PCR. Data are presented as mean ± standard deviation.

https://doi.org/10.1371/journal.pone.0271119.g003

Fig 2. SH-SY5Y cells were incubated with midazolam for 24 h and with flumazenil (starting 2 h after midazolam

exposure) for 22 hours. ACHE and BCHE mRNA expression relative to β-Actin mRNA expression were quantified by

qPCR. Incubation with flumazenil A) did not alter ACHE expression (n = 6; p = n.s.) and reduced B) BCHE (n = 6;

p = 0.046) expression. Data are presented as mean ± standard deviation. The reported p-value refers to the Dunnett’s

post-hoc test, comparing the underlying columns at the ends of each bar.

https://doi.org/10.1371/journal.pone.0271119.g002
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3.4. Midazolam increases the expression of lysine specific demethylase

KDM1A

To explore the underlying mechanisms for the decrease in H3K4me2, we analyzed the expres-

sion of lysine specific demethylase KDM1A after exposure to midazolam. KDM1A mRNA

expression was increased in, in U343 by about 50% (p<0.01; Fig 4A), in PBMCs by more than

100% (p<0.01; Fig 4B) and in SH-SY5Y by about 50% (p = 0.0038; Fig 4C). Incubation with

flumazenil reduced midazolam induced effects in a visible dose dependent manner in

SH-SY5Y cells, while incubation with midazolam alone led to increased expression of KDM1A

(p< 0.001; Fig 4D) expression.

3.5. Midazolam does not induce the release of cytokines from BV-2 glial cells

Since postoperative delirium is strongly associated with neuroinflammation, we finally investi-

gated whether midazolam itself evoked cytokine secretion in neural glial cells (BV-2, RRID:

CVCL_0182). Midazolam did not induce any change in cytokine secretion in BV-2 cells

(p = ns), compared to untreated cells. Cells incubated with lipopolysaccharide (LPS) as positive

control had higher TNF-α cytokine levels (p = 0.01; Fig 5A) and higher IL-6 levels (p = 0.02;

Fig 5B) compared to cells incubated with midazolam for 24 hours.

4. Discussion

Midazolam is a widely used benzodiazepine although its application is associated with the

occurrence of POD [9]. A potential mechanism for the development of delirium is impaired

cholinergic transmission based on the deficiency of acetylcholine in the brain [29]. However,

as the causal relationship between midazolam and the cholinergic system is unknown, we sys-

tematically analyzed the expression and epigenetic regulation of cholinergic genes in neuronal

Fig 4. KDM1A mRNA expression was quantified relative to β-Actin mRNA expression by qPCR. Increased

expression of lysine specific demethylase (KDM1A) in different cells after midazolam [50 μg/ml] exposure for 24 hours

analyzed by qPCR. KDM1A expression increased in U343 (n = 3; A, in peripheral blood mononuclear cells (PBMCs)

(n = 8; B) and in SH-SY5Y (n = 3; C). Flumazenil did not reduce KDM1A expression (n = 6, D). Data are presented as

mean ± standard deviation. The reported p-value refers to the Dunnett’s post-hoc test, comparing the underlying

columns at the ends of each bar.

https://doi.org/10.1371/journal.pone.0271119.g004
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cells after midazolam exposure. As a different postoperative activity of the proteins AChE and

BChE in patients is already described [16, 30, 31] it seems of special interest, how their gene

expression is regulated after midazolam exposure.

First, we could detect a visibly early decrease in cholinesterase activity and a slight decrease

in the expression of BCHE mRNA, but a late increase in the activity and the expression of

ACHE and BCHE mRNA. Our results regarding AChE and BChE activity and expression are

in line with other studies analyzing AChE and BChE activities in peripheral blood from preop-

erative and postoperative patients [16, 19, 30]. AChE and BChE concentrations in blood and

cerebrospinal fluid were altered in patients undergoing total hip/knee replacement, and BChE

concentration showed the highest prognostic value for the development of POD [19]. Thus,

increased gene expression, especially BChE, could represent an important mechanism, as it

could be found in the brain of patients with Alzheimer’s disease [32] and several studies

explored the therapeutic implication of cholinesterase inhibitors in alleviating postoperative

delirium [33].

Second, we tested the methylation of a BCHE gene region and a histon, with BCHE binding

affinity. Methylation of the BCHE gene region (Intron 2) and the H3K4 di-methylation

decreased after midazolam incubation. Thus, it seems appropriate to suggest that the region of

the BCHE gene we investigated has activating effects on the transcription of this gene. How-

ever, it must be mentioned that the reduction in methylation was only about 10%. This seems

to be questionable for a more than doubled amount of mRNA expression. In fact, other studies

have already shown that a small change in DNA methylation of approximately 5% can have a

great impact on gene expression [34]. Therefore, it seems possible that this small change in

methylation state may cause this effect on mRNA expression.

Third: Since midazolam changed the di-methylation of H3K4, and we could detect binding

of BCHE to this histone, it seems appropriate that midazolam might change the epigenome of

the cell by influencing histon-modifying enzymes. H3K4me2 has been shown to mark actively

transcribing genes [35]. In our analyzed neuronal cell line di-methylation was nearly 100 per-

cent and midazolam could decrease the methylation slightly. A reduction of the di-methylation

of H3K4 could therefore mean an overall increase in BChE expression. The demethylation of

H3K4 is facilitated by KDM1A and is a well-established mechanism underlying transcriptional

gene repression, but recently its role in gene activation could be shown [36]. The KDM1A

demethylation of H3K4me2 in GR-targeted enhancers was shown to be important for GC-

Fig 5. Cytokine secretion in BV-2 glial cells after midazolam (1μg/ml) for 24 hours and LPS (100 ng/ml) for 4

hours (n = 3). BV-2 cells were incubated with midazolam (1μg/ml) or lipopolysaccharide LPS (100 ng/ml) or left

untreated. Cytokine expression was quantified using a bead-based immunoassay. Data are presented as

mean ± standard deviation. The reported p-value refers to the Dunnett’s post-hoc test, comparing the underlying

columns at the ends of each bar.

https://doi.org/10.1371/journal.pone.0271119.g005
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mediated gene transcription, facilitating a molecular mechanism for the demethylation of

H3K4me2 in gene activation [36]. Since changes in the methylation of histone 3 is facilitated

by KDM1A, we analyzed the expression of KDM1A in our cell lines, and because POD is also

associated with an altered cholinesterase activity in blood samples [16], we additionally investi-

gated the expression of these enzymes in PBMCs. Strikingly, KDM1A showed a significant

increased expression after midazolam treatment in all investigated cell lines (including

PBMCs). Thus, our results provide first evidence that midazolam indeed rewrites the epige-

netic landscape of the cell. Interestingly, the application of KDM1A inhibitors is associated

with positive effects on memory. Recently it could be demonstrated that inhibition of KDM1A

corrects memory deficit and behavior alterations in a mouse model of Alzheimer’s Disease

[21]. Another KDM1A inhibitor T-448 improved learning function in mice suffering from

neuronal glutamate receptor hypofunction [37]. Thus, it seems tempting to speculate that

KDM1A inhibitors might represent a therapeutic approach against POD. However, this crude

thesis needs to be evaluated in upcoming studies.

Fourth: As increased expression of BCHE seems to be critical mechanisms after midazolam

exposure. In this context, we analyzed if the midazolam antagonist flumazenil could inhibit

midazolam induced effects. Indeed, we could show that flumazenil application reduced mida-

zolam-induced expression in a dose-dependent manner. Regarding the effects of flumazenil

application after midazolam anesthesia on brain function, we can only speculate. However, it

is known that cognitive abnormalities can significantly be ameliorated after benzodiazepine

use by slow subcutaneous infusion of flumazenil [38] and that flumazenil administration atten-

uates cognitive impairment [38]. Therefore, flumazenil use might be effective in reducing

POD.

Lastly, since POD is related to neuroinflammation [39], we analyzed if there is a link

between midazolam treatment for neuroinflammation. We could demonstrate that in our pos-

itive control, the incubation of glial cells with LPS TNF-alpha and IL-6 were significantly upre-

gulated. However, midazolam treatment had no influence on the expression of these

cytokines. IL-6 seems to be of particular interest as it seems to be a consistent predictor of

delirium in surgical samples [40]. Therefore, we can conclude that midazolam does not

strongly contribute to pro-inflammatory signaling, being discussed as additional factors in the

development of POD [12–14].

We have to discuss the limitations of our study. Direct transfer to the bedside is inappropri-

ate because we worked with cell lines as a model for the human brain. However, for instance

we chose the neuronal cell line SH-SY5Y, because these represent an established cell line used

to study brain disorders such as Alzheimer’s disease or Parkinson [41, 42]. In addition, the

extraction of neuronal cells from healthy volunteers or patients with POD is ethically not feasi-

ble [43]. Despite great efforts made to achieve the highest possible degree of standardization,

variance in effect sizes or observed effects can occur within the individual experiments, which

limits the statistical or mathematical accuracy of our experiments. However, this had no or

only a negligible effect on the interpretation of our data. Therefore, considering the limitations

of immortalized cell lines, we are confident that it is appropriate to perform our investigations

in our selected cell lines. In addition, direct measurement of acetylcholine would be interesting

but is not suitable as it is extremely unstable [44]. Thus, we mainly refer to the central effectors

and regulators of acetylcholine concentration.

5. Conclusions

In summary, we found that midazolam upregulates intracellular BCHE expression. This upre-

gulation in expression might be caused by demethylation of BCHE gene and H3K4 me2
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demethylation and be facilitated by KDM1A. Thus, our results underpin the thesis, that over-

expression of BCHE might aggravate postoperative delirium, due to an increased hydrolysis of

acetyl-choline. Although POD is closely related to neuroinflammation, midazolam appears to

be a separate trigger, independent of inflammation. Further studies should validate our prom-

ising results and mechanistic implications in the clinical context regarding feasibility and

transferability.
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