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Over the past decade, liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS)
has evolved into the main proteome discovery technology. Up to several thousand proteins can now
be reliably identified from a sample and the relative abundance of the identified proteins can be
determined across samples. However, the remeasurement of substantially similar proteomes, for
example those generated by perturbation experiments in systems biology, at high reproducibility
and throughput remains challenging. Here, we apply a directed MS strategy to detect and quantify
sets of pre-determined peptides in tryptic digests of cells of the human pathogen Leptospira
interrogans at 25 different states. We show that in a single LC–MS/MS experiment around 5000
peptides, covering 1680 L. interrogans proteins, can be consistently detected and their absolute
expression levels estimated, revealing new insights about the proteome changes involved in
pathogenic progression and antibiotic defense of L. interrogans. This is the first study that describes
the absolute quantitative behavior of any proteome over multiple states, and represents the most
comprehensive proteome abundance pattern comparison for any organism to date.
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Introduction

System-wide investigation of gene expression at the mRNA
transcript level has become routine and is widely used in
systems biology and clinical studies to identify sets of genes
that show distinct transcript profiles for a specific cellular state
and to classify samples according to their respective molecular
patterns (van ’t Veer et al, 2002; Gilchrist et al, 2006; Ishii et al,
2007). It has also been shown that neither the concentration of
transcripts (Gygi et al, 1999; Griffin et al, 2002) nor their
quantitative change in response to perturbations (MacKay
et al, 2004; Kislinger et al, 2006; de Godoy et al, 2008) strongly
correlate with the quantitative change of their corresponding
proteins, the main functional products of gene expression.
Therefore, quantitative proteomics holds great promise to
enhance or complement the picture of gene expression in cells,
and thus to contribute to the understanding of most molecular
mechanisms in a cell. However, owing to the large hetero-
geneity in the amount and the physico-chemical properties of
proteins, along with the lack of protein amplification methods,

system-wide quantitative proteome analysis has been more
technically challenging than transcriptome analysis.

Recent advances in liquid chromatography–tandem mass
spectrometry (LC–MS/MS), currently the method of choice for
large-scale protein studies, have made the reliable identifica-
tion and quantification of thousands of proteins in a single
study a reality (Brunner et al, 2007; de Godoy et al, 2008;
Ahrens et al, 2010). However, particularly due to the selection
of precursor ions using a simple intensity driven heuristics
(data-dependent analysis, DDA), results from such studies still
show a bias against the detection of low abundant protein
species and a decreasing level of reproducibility of identified
peptides with decreasing abundance. Comprehensive and
more highly reproducible proteome coverage can be achieved
by extensive sample pre-fractionation and the mass spectro-
metric analysis of each fraction, albeit at a cost that multiplies
analysis time and limits throughput. Additionally, the detec-
tion of different proteome subsets in repetitive LC–MS
analyses of similar samples impairs the generation of
consistent, reproducible quantitative data sets across multiple
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samples, a crucial prerequisite in systems biology studies
(Ideker et al, 2001; Rifai et al, 2006; Schiess et al, 2009).

Therefore, several alternative or complementary MS strate-
gies have been developed to overcome some of the limitations
of current LC–MS/MS workflows (Schmidt et al, 2008; Picotti
et al, 2009; Domon and Aebersold, 2010). They make use of
a priori information gathered from previous MS studies to
increase the reliability, reproducibility and/or throughput of
subsequent measurements. Specifically, in each of these
strategies, MS analysis is focused on a few proteotypic
peptides (PTPs) per protein, thereby minimizing instrument
time without compromising analytical sensitivity. Two specific
implementations of such strategies have been proposed (Pan
et al, 2009; Schmidt et al, 2009; Domon and Aebersold, 2010),
which we have termed targeted and directed MS, respectively.
Targeted MS is based on selected reaction monitoring (SRM
also known as multiple reaction monitoring) and is typically
carried out on triple quadrupole mass spectrometers. Because
of very high selectivity and sensitivity, it is capable of
covering the full dynamic range of proteomes in moderately
complex organisms such as yeast (Picotti et al, 2009).
However, since each LC–MS/MS run is limited to a few
hundred targeted peptides (Stahl-Zeng et al, 2007), the
throughput required for proteome-wide measurements is
currently difficult to achieve. Directed MS makes use of
inclusion mass lists in order to guide the MS sequencing to a
desired, pre-determined subset of peptides (Jaffe et al, 2008;
Schmidt et al, 2008, 2009). Directed sequencing is carried out
on the same types of instruments as discovery measurements
by DDA. In contrast to the SRM methodology, directed MS
monitors far larger sets of peptides per analysis. However,
because the precursor ion signal of the peptide of interest has
to be explicitly detected to trigger its identification, the overall
dynamic range and sensitivity of directed sequencing is lower
than that of SRM and more dependent on the sample matrix
(Domon and Aebersold, 2010).

Here, we have studied global and time-resolved changes in
the proteome of cells of the human pathogen Leptospira
interrogans that were perturbed by antibiotic stress and serum
stimulation. Overall, in 31 samples, representing 25 cellular
states, 1669 proteins, representing 75% of the Leptospira
proteome discovered by saturation sequencing using DDA MS,
were consistently detected and their cellular concentrations
determined (Supplementary Table SV). This unique data set
was generated via an integrated inclusion list driven MS
strategy that maximizes protein coverage in individual
samples by focusing precious MS-sequencing time on the best
flying, PTPs of each protein (Mallick and Kuster, 2010). The
cellular concentrations of the detected proteins were estimated
in each sample by correlating the average of the signal
intensities of the three most highly responding peptides
per protein with a calibration curve generated with a set
of isotopically labeled reference (Malmström et al, 2009).
We show that the protein components of entire pathways can
be quantified across several time points and, for the first time,
large-scale, consistent proteome data sets can be subjected to
cluster analysis, a tool that was previously limited to the
transcript level due to incomplete sampling on protein level.
We show that the proteomic changes measured differ from
the available transcriptomics data. We demonstrate that

Leptospira cells adjust the cellular abundance of a certain
subset of proteins as a general response to stress while other
parts of the proteome respond highly specific. They further-
more react to individual treatments by ‘fine tuning’ the
abundance of certain proteins and pathways in order to cope
with the specific cause of stress. Using serum treatment we
simulated the host environment and elucidate which proteo-
mic adjustments underlie virulence. The method can be
implemented with standard high-resolution mass spectro-
meters and software tools that are readily available in the
majority of proteomics laboratories. It is scalable to any
proteome of low-to-medium complexity and can be extended
to post-translational modifications or peptide-labeling strate-
gies for quantification. We therefore expect the approach
outlined here to become a cornerstone for microbial systems
biology.

Results

To consistently detect and absolutely quantify the same,
extensive subset of the L. interrogans proteome in multiple
samples, we developed and deployed the general workflow
displayed in Figure 1. It consists of two main phases, proteome
discovery and scoring. During the initial discovery phase, a
comprehensive atlas of peptides and proteins identified by
LC–MS/MS was generated by saturation sequencing of the
L. interrogans proteome. To maximize proteome coverage, a
pooled sample was generated and analyzed that consisted of
aliquots from cells at different states. Subsequently, during the
scoring phase, selected PTPs were detected in individual
samples via inclusion list driven sequencing and quantified
based on the ion current of the selected peptides, to generate
quantitative proteome maps for each cellular state. Using this
technique, comprehensive LC–MS/MS maps could be gener-
ated without the need for sample and time-consuming pre-
fractionation steps, which significantly increases sample
throughput.

Generation of a L. interrogans PeptideAtlas

To build a PeptideAtlas (Desiere et al, 2006; Deutsch et al,
2008) with maximal coverage of the L. interrogans proteome,
we generated a pooled sample in which aliquots of extracts
from different cell states were combined. Specifically, one
aliquot of an untreated control sample and four aliquots of the
individual perturbated cells (24 h treatments only, see Figure 3)
were pooled. We used a single dimension high-performance
LC–MS/MS platform in combination with the recently
introduced directed MS technique (Schmidt et al, 2008) to
maximize proteome coverage. In such measurements, pre-
cursor ion chromatograms are first extracted from two initial
data-dependent (DDA) LC–MS/MS runs and the precursor ion
maps (retention time versus mass over charge) that are also
generated by these measurements are subjected to a peak
extraction algorithm (Mueller et al, 2007) to detect precursor
ions not identified by DDA MS. In subsequent injections of the
same sample, the mass spectrometer was then directed to
acquire product ion spectra of previously non-selected
precursor ions, to incrementally increase proteome coverage
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to saturation. We have shown earlier that this procedure
maximizes the coverage of moderately complex proteomes at
the peptide level while minimizing measurement and compu-
tational time (Schmidt et al, 2008).

Specifically, the following sequence of analyses was carried
out to collect the data for the L. interrogans PeptideAtlas.
LC–MS/MS runs #1 and #2 were conventional DDA runs
where precursor ions of different charge states (2 and 42,
respectively) were selected. In subsequent LC–MS/MS runs
#3–#20, precursor ions selected by the following criteria were
added to inclusion lists and identified by directed precursor ion
selection: (i) all features detected by a feature detection
algorithm (Mueller et al, 2007) in the initial DDA runs; (ii)
precursor ions corresponding to all PTPs extracted from a
recently published large-scale proteome analysis on the same
species (Beck et al, 2009); and (iii) predicted precursor ion
signals for all PTPs that were computed but not observed from

the L. interrogans genomic sequence. PTP predictions were
carried out by the algorithm PeptideSieve (Mallick et al, 2007).
The L. interrogans proteome is highly accessible for the LC–MS
analysis employed here since for the majority of gene products
(3402/3658) five or more PTPs could be predicted (Supple-
mentary Figure S1). The fragment ion spectra generated from
each of these analyses were database searched and the
resulting data were filtered to a peptide and protein level false
discovery rate (FDR) of 1% (Reiter et al, 2009). At each stage,
already identified features as well as proteins identified with
more than five PTPs were excluded from further analysis in the
subsequent stages.

In the two initial DDA LC–MS/MS runs, we detected 37 833
unique features of which 7776 could be assigned to a peptide
sequence, resulting in 6861 peptide identifications correspond-
ing to 1223 proteins (Table I). The remaining features (27 968)
for which no MS/MS spectra were acquired were split into four

Directed LC–MS/MS of all features
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Figure 1 Global protein profiling workflow. In the first phase of the study (discovery phase), the peptide samples representing different cell states were mixed and
analyzed by data-dependent acquisition (DDA) followed by directed 1D-LC–MS/MS. To achieve comprehensive proteome coverage, all detectable precursor ions,
referred to as features, were extracted, sequenced in sequential directed LC–MS/MS analyses and identified by database searching. All identified peptide sequences
were stored in a 1D-PeptideAtlas together with their precursor ion signal intensity, elution times and mass-to-charge ratio. For each protein, mass and time coordinates
from the five most suitable peptides (PTPs) for quantification were extracted from the PeptideAtlas and stored in an inclusion list. Additionally, a spectral library was
generated from the identified spectra to improve both, the sensitivity and speed of spectral matching in the quantification phase. In this phase (scoring phase), LC–MS/
MS analysis was focused on the pre-selected PTPs as well as a set of heavy labeled reference peptides that were added to each sample. This determined the
concentrations of the corresponding proteins in the sample, which could be used as anchor points to translate the MS response of each identified protein into its
concentration (Malmström et al, 2009). After spectral matching, label-free quantification was employed to extract and align identified features and monitor their
corresponding protein abundances redundantly over all samples.
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inclusion lists, each comprising around 7000 features. These
were then specifically sequenced by directed LC–MS/MS
analyses. Thereby, the PeptideAtlas could be extended by
2356 (228) additional peptides (proteins). Finally, 12 and 10
additional directed LC–MS/MS-sequencing runs for the
identification of missing proteins using PTPs from a recently
published PeptideAtlas or predicted PTPs, respectively, in-
creased the overall number of identifications to a total of 13113
features, corresponding to 11 611 peptides and 1680 proteins.
To reach this coverage, 28 LC–MS/MS runs were required
(Table I). As is evident from Figure 2A, the number of protein
identifications reaches saturation toward completion of each
experimental phase, after rising at the beginning of the phase,
indicating that different peptide subsets are identified at each
of the analytical stages. The final feature map generated in
this discovery phase contains the exact mass and time
coordinates of each identified feature and represents a rich
resource for the directed sequencing of all detected proteins in
the scoring phase. Importantly, the identified features are well
distributed by time and mass (Figure 2C), which allowed their
specific sequencing in a high number of samples by directed
LC–MS/MS.

We next evaluated the extent of proteome coverage achieved
by this iterative directed sequencing strategy with that
achieved by more conventional proteome analyses via
extensive sample fractionation and DDA analysis of each
fraction. For the latter strategy, the same peptide sample used
for inclusion list sequencing was fractionated by isoelectric
focusing using off-gel electrophoresis (OGE) (Heller et al,
2005) and each of the 24 fractions was analyzed once by DDA
LC–MS/MS analysis. Intriguingly, this data set contained 60%
more peptide identifications, but only 19% additional protein
hits (number versus number, Figure 2A), indicating a higher
peptide per protein ratio of 12 (OGE) over 7 (LC only). We thus
conclude that 81% of the proteins detected by the OGE–LC–
MS/MS approach were also detected by the directed LC–MS/
MS method, most of them with a sufficient number of peptides
for accurate quantification in the scoring phase. Notably,
only a slight increase in protein identifications is expected
by additional LC–MS/MS analyses (Claassen et al, 2009),
demonstrating that we have detected most of the proteins
identifiable by the two LC–MS/MS strategies employed

(Figure 2A, dashed lines). As expected, the majority of proteins
(67.9%) were identified with both approaches. However, 23.3/
8.9% of identified peptides were exclusively detected by the
OGE–LC/LC-only approach, respectively (Figure 2B). Func-
tional annotation revealed that many of the 194 protein hits
exclusively identified by the directed (LC only) LC–MS/MS
approach and missed by the OGE–LC–MS/MS approach are
membrane proteins (Supplementary Figure S2), suggesting a
decreased recovery of hydrophobic peptides after OGE.
Conversely, the OGE–LC–MS/MS strategy showed an increased
coverage, particularly of low abundant proteins, like transcrip-
tion factors and regulators, confirming the higher protein
concentration range accessible after extensive sample fractio-
nation. In general, extensive proteome coverage was achieved
with both strategies, which is supported by the lack of biases
against any functional groups (Supplementary Figure S2).

Overall, of the 13113 different features identified by directed
LC–MS/MS (Supplementary Table SII), 6889 represented
suitable PTPs for protein quantification (Supplementary Table
SIII). For each protein, the five most suitable PTPs for protein
quantification, referred to as top five PTPs, were extracted
from the feature list considering the following attributes;
(i) specificity to a single database entry, (ii) true tryptic
cleavage termini, (iii) lack of modifications and (iv) high MS-
signal response determined by the SuperHirn algorithm
(Mueller et al, 2007). The selected 4953 PTPs (Table I) covered
the whole feature intensity range (Supplementary Figure S3)
and all 1680 identified proteins (Table I). The feature intensity
range for the PTP precursor ions on the inclusion list spanned
more than three orders of magnitude, a dynamic range that is
expected to capture most of the L. interrogans proteome
(Malmström et al, 2009). The benefits of focusing on the most
suitable PTPs for monitoring each protein can be demon-
strated in the case of the chaperone GroEL. For this abundant
protein, 86 different features could be identified (Table I) of
which the five most intense fulfill all PTP selection criteria
(Figure 2C, blue), supporting the observation that unspecifi-
cally proteolyzed or modified peptides constitute a minor but
detectable fraction of the total ion current generated by the
peptides from a protein (Picotti et al, 2007). By focusing on
these PTPs, 490% of the MS-sequencing cycles required to
detect and monitor GroEL levels in the following scoring phase
could be saved and thus used for measuring different proteins
of interest. It is important to note that this effect is more
pronounced for highly abundant and larger proteins for which
high numbers of peptides are identified.

Finally, 38 heavy labeled reference peptides from 19
proteins were added to estimate absolute protein concentra-
tion on a system-wide scale in each sample following a
recently described protocol (Malmström et al, 2009) (Figure 1;
Supplementary Table SI). Thus, the final inclusion mass list
was distributed over two LC–MS/MS runs and the coordinates
of the heavy reference peptides and their endogenous counter-
parts were included in both runs. Therefore, the data generated
in the discovery phase of the project allowed us to establish a
method in which 1680 proteins per sample could be detected
and absolutely quantified in two inclusion list LC–MS/MS runs
with a total analysis time per sample of 4 h.

To increase the speed and identification yield of the selected
PTPs in the scoring phase, we computed a spectral library from

Table I Number of unique features and peptides identified in the discovery
phase

Data filtering Number of entries for
all 1680 proteins
identified in the
discovery phase

Number of
entries for

GroEL

Detected unique featuresa 37 833 Not available
Identified unique featuresb 13113 86
Identified unique peptidesb 11 611 76
Identified unique PTPsb,c 6889 23
Selected unique PTPsd 4953 5

aDetected using the SuperHirn algorithm (Mueller et al, 2007).
bIdentified by database searching. FDR was set to 1%.
cPTPs are defined as features that assigned peptide sequences show full tryptic
cleavage, contain no modification and only match to one protein sequence in the
database used.
dUp to the five most intense PTPs per protein were selected for screening phase.
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the acquired MS-sequencing data in the discovery phase using
SpectraST (Lam et al, 2009). We included additional MS data
from a recent large-scale LC–MS/MS study on the same species
(Beck et al, 2009) to further enhance the quality of the
consensus spectra in the spectral library and applied very
stringent filtering criteria to keep the overall FDR o0.2%.
Overall, 321 498 identified MS2 spectra were merged to 33 766
distinct consensus spectra covering 42300 proteins. The

library was added to the current L. interrogans PeptideAtlas
and can be downloaded from http://www.peptideatlas.org.

Next, we assessed the performance of the described
approach by analyzing a single control sample and comparing
the number of identified peptides/proteins to the conventional
shotgun LC–MS/MS methodology using the same number
of runs. While the non-directed DDA LC–MS/MS analysis
(Supplementary Figure S4A, blue) identified a larger number
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of peptides, 404 (40%) additional proteins could be detected
by the directed strategy (1593) (Supplementary Figure S4A,
red). The coverage was particularly enhanced for proteins of
mid-to-low abundance, indicating an increased identification
efficiency for these proteins by the directed MS approach
compared with DDA LC–MS/MS-based strategies (Supple-
mentary Figure S4B).

Finally, we assessed the utility of the generated inclusion list/
spectral library on a different LC–MS platform in a different
proteomics laboratory. After adjusting the retention times of the
PTPs to the new LC system, the identified proteins could be
detected with the same high consistency (Supplementary Figure
S5A and B) and coverage (Supplementary Figure S5C) as on the
LC–MS platform that was used to build the inclusion list and
spectral library. This demonstrates the value of the generated
data for the application in other laboratories and the usefulness

of the generated, global PeptideAtlas and inclusion mass list for
the proteomics community.

Quantitative time course measurements of
perturbed L. interrogans cells

We next used the method established above to acquire
quantitative proteome profiles of Leptospira cells grown under
different conditions. Specifically, cells were cultured in EMJH
supplement (control samples) and in the presence of fetal
bovine serum (FBS; 10% v/v) and antibiotics (5 mg/ml
ciprofloxacin, 10 mg/ml penicillin G, 15 mg/ml doxycycline,
respectively) in EMJH supplement. The underlying molecular
mechanisms of the individual treatments are displayed in
Figure 3. Samples were taken after 3, 6, 12, 24, 48 and 168 h of
treatment. Thus, overall 31 protein samples were generated,
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including 7 controls. We used label-free quantification to
generate proteome maps of all detected PTPs and employed
them for absolute protein quantification within each sample as
well as relative protein quantification across all samples. Two
technical replicates were acquired and averaged for all
samples, to improve quantification accuracy.

We first evaluated the combined technical and biological
reproducibility of the relative protein quantification by
comparing the proteome maps of three different control
samples (Supplementary Figure S6). The high squared Pearson
correlation R2 (0.945–0.965) and the near straight lines
indicated the nearly optimal linear relationship between the
replicates. Specifically, minimal abundance variations be-
tween the replicate samples were observed by the inclusion
list driven LC–MS/label-free quantification approach even for
proteins of low abundance (Supplementary Figure S6A–C).
Consequently, with the measured coefficient of variances of
the protein ratios being o26% between all controls, 1.5-fold
changes (2�s) with a P-value o0.05 (ANOVA) can be
confidently detected for most proteins by the described
approach (Supplementary Figure S6D–F).

We next used the proteome maps to estimate the absolute
quantities of the proteins in each perturbed sample and thus,
in conjunction with the number of cells used to generate the
samples, the cellular concentrations of the detected proteins.
This was accomplished by translating the signal intensities of
the high responder peptides from each detected protein into
absolute protein quantities, using a recently published
approach with some modifications (Malmström et al, 2009).
First, the absolute protein quantity of a consistent set of
proteins was accurately determined in each sample by
comparing the signal intensities of the sample intrinsic
peptides with the corresponding signals generated from
known amounts by isotopically labeled reference peptides of
identical sequence that were added to each sample. Since these
peptides were included in the directed LC–MS analysis, no
additional SRM LC–MS analyses were required for their
quantification. In this way, the precise concentrations of 29
peptides corresponding to 19 proteins could be calculated
(Supplementary Table SI). The concentrations of these
proteins spanned almost three orders of magnitude, from
68 copies/cell for the flagellar M-ring protein (YP_001355.1)
to 13 649 copies/cell for the GroEL protein (YP_001299.1,
Supplementary Table SI), confirming the high dynamic
abundance range covered by the method (Supplementary
Figure S3). In general, the protein abundances determined by
multiple heavy reference peptides per protein showed good
agreement, even for low abundance proteins (Supplementary
Table SI). Moreover, the values determined here matched very
well with those published in a recent study and the structural
benchmarks employed therein (Malmström et al, 2009)
(Supplementary Figure S7). In a second step, these abundance
values were aligned with the average intensities of the three
PTPs of each protein with the highest MS response, the same
peptides that were in the focus of the directed LC–MS analysis
for peptide identification. In the same operation, we therefore
consistently estimated the absolute abundances of all identi-
fied proteins in each of the samples. On average, a high
squared Pearson correlation (R2¼0.805) of the absolute
abundances accurately determined by heavy peptide refer-

ences and their average feature intensities could be observed
(Supplementary Figure S8A). As a result, the error model,
calculated using a bootstrapping approach, indicated a mean
error of only 1.84-fold with a maximum of 2.8-fold difference
(Supplementary Figure S8B).

High-level classification of induced proteome
changes

As described above, the quantitative proteomic method used
in this study generated highly reproducible data sets over all
conditions tested, that is, for the most part, the same proteins
were detected and quantified under each condition. To take
advantage of this unique property of the data set, in
combination with the availability of protein concentration
levels, we applied classification methods originally developed
for transcript array data to detect systemic responses of the
proteome under the given perturbations. A total of 4525
significant protein changes (ANOVA, Po0.05, ratio41.5) were
determined across all samples. These changes revealed that
the majority of the detected proteins (944) show a significant
change in at least one of the various treatments and time points
analyzed. The most intense protein expression changes were
observed after long treatments, reaching changes as high as
100-fold. Protein abundance changes detected in the absence
of any external factors or stimuli were negligible (Supplemen-
tary Figure S9).

Using this data set we asked if the absolute concentration of
proteins in the cell correlates with the magnitude of regulation
(Supplementary Figure S10A). Interestingly, highly abundant
proteins turned out to be regulated to a lesser extent than their
lower expressed counterparts. The most highly abundant
proteins were, on average, about 1.5-fold up- or 2-fold down-
regulated while the least abundant were 2.5-fold up-regulated
or 3-fold down-regulated. The observed increase in stability of
highly abundant proteins points to an energy saving strategy
the L. interrogans cells have developed (Akashi and Gojobori,
2002). Conversely, the impact of the low abundance proteins
on the total proteome composition is only marginal and the
combined cost for their synthesis and degradation is low
(Supplementary Figure S10B).

Therefore, we next investigated whether for the measured
proteins, the difference in copies/cell between perturbations
represents a better measure for protein clustering than relative
abundance changes, since they reflect the actual magnitude of
proteome changes in the cell. We first used hierarchical
clustering to group the samples (x axis) and the proteins
(y axis) according to their changes in absolute level of
abundance (in copies/cell) (Figure 3) and relative fold
(Supplementary Figure S10C). We observed an improved
clustering efficiency, that is samples that are expected to
generate the most closely related proteome patterns clustered
most closely, when absolute protein changes were compared
with fold changes. Specifically, all FBS (cluster 2) and
penicillin G (cluster 1) treated samples grouped together and
fewer but more distinct clusters were obtained when applying
the same thresholds. In addition, proteins belonging to the
same complex or sharing similar functions, which are
expected to be co-regulated over the various treatments,
showed more similar patterns when using absolute expression
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changes over protein ratios. Therefore, absolute protein
changes were employed in all subsequent clustering analyses.

It is apparent from Figure 3 that the patterns at the early time
points of doxycycline treatment (cluster 4) strongly resemble
the patterns representing very early and very late treatments
with ciprofloxacin (cluster 3), while the observed proteome
changes in cells treated for 6, 12 and 24 h with ciprofloxacin
(cluster 5) more strongly resembled those of late doxycycline
treatments (cluster 6). To interpret the observed sample
clusters on a functional level, the hierarchically clustered
proteins were associated with eight distinct groups (clusters
a–h) and subjected to functional annotation and overrepre-
sentation analysis using gene ontology (GO)–Functional
groups as the basis of the association (Huang et al, 2007).
We found four such clusters (a, d, e, h) that showed a similar
response to all perturbations. Cluster ‘d’ essentially consisted
of proteins that were unchanged under the applied conditions
and these proteins were functionally associated with the
general metabolic processes of amino acid, glycerol and
carbohydrate metabolism, as well as cell wall synthesis.
Proteins involved in cofactor catabolism, monosaccharide and
dicarboxylic acid metabolism were preferentially contained in
cluster ‘a’. These proteins were commonly down-regulated
under perturbed conditions. Proteins involved in ATP synth-
esis, protein secretion and transport as well as cellular
homeostasis were contained in clusters ‘e’ and ‘h’. These
proteins were generally up-regulated under perturbed condi-
tions. These findings indicate that L. interrogans cells
commonly react to changing environmental conditions by
actively rearranging the proteome on the account of specific
biosynthesis pathways, while the central amino acid and
carbohydrate metabolism remains untouched.

Beyond such ‘default behavior’, response patterns specific
to individual perturbations were detected. Cluster ‘f’ consisted
of proteins that are involved in translation and response to
stress and were down-regulated upon serum and early
doxycycline treatments. This pattern likely reflects a redirec-
tion of energy from the protein translation and folding
systems toward other cellular processes resulting in a reduced
growth rate. The same proteins were mostly up-regulated
in response to all other treatments, particular in cells treated
with antibiotics, indicating induced stress response. The
proteins contained in cluster ‘g’ were mostly associated
with catabolic processes and response to chemical stimuli
and were strongly up-regulated upon serum and penicillin G
treatment but down-regulated after ciprofloxacin and doxycy-
cline treatment. Taken together, these data suggest that
L. interrogans cells react with more active protein synthesis
of stress and elongation factors, like dnaK and tuf, on the
account of other cellular systems when coping with DNA-
gyrase (ciprofloxacin) or ribosomal (doxycycline) inhibition.
In contrast, the inhibition of cell wall synthesis (penicillin G)
and stimulation with serum causes an inverse reaction and
reduced growth. Besides these clusters that overlap between
treatments, highly specific proteome pattern could be detected
for serum (cluster ‘c’) and ciprofloxacin (cluster ‘b’) stimula-
tion. In conjunction with the individual clustering of most
treatments, this suggests that the proteome regulation follows
characteristic patterns corresponding to the different treat-
ments, indicating that specific regulatory mechanisms are

activated upon the individual perturbations that are further
investigated below.

Pathway classification of individual treatments

To further analyze the detected treatment-specific proteome
response patterns, time-resolved protein expression profiles
of the individual treatments were grouped according
to their changes in copies/cell using K-means clustering
(Figure 4A–D). The generated cluster profiles were subjected
to an enrichment analysis of pathways (as present in the KEGG
database; Kanehisa et al, 2010) using the DAVID algorithm
(Huang et al, 2007) to generate a detailed picture of the
pathways significantly (Po0.05) enriched in response to the
individual treatments (Figure 4E). To better visualize the
general regulation of the individual protein clusters, protein
profiles showing up- (down-) regulation after 24 h of treatment
are indicated in red (blue). Compared with the detection of
global changes described above, this analysis reveals the
details of response patterns specific to individual stimuli. On
average, 4 to 5 meaningful clusters could be identified for each
treatment. Intriguingly, the protein profiles obtained clearly
indicated a compensatory behavior. An increase in the
abundance of some proteins is always compensated by an
equivalent down-regulation of other proteins, giving further
support to the notion that the total protein mass in a cell stays
constant, even under the various and harsh stress conditions
applied (Figure 4A–D). This was already observed recently for
a limited number of perturbations (Beck et al, 2009) and is now
confirmed here with a much larger set of conditions.

The treatment with serum is of particular interest because it
can, to some extent, replicate conditions under which
Leptospira cells adapt to a host environment and become
virulent. For this treatment, we obtained five meaningful
protein clusters (Figure 4D). Three of them showed an
immediate and strong regulation of protein abundance after
3 h of treatment, whereby clusters ‘S-4’ and ‘S-5’ showed a
further slight increase upon longer treatments and cluster ‘S-3’
showed a rapid down-regulation after 7 days of treatment.
Proteins involved in motility, tissue penetration and virulence
(Lux et al, 2000; Ren et al, 2003) showed the highest increase in
expression (cluster ‘S-5’) and were also found to be
significantly enriched in cluster ‘c’ from our global analysis
(Figure 3). Most proteins of the chemotaxis pathway and
the two-component system were up-regulated in cluster ‘S-5’
(Supplementary Figure S11), demonstrating a strong
co-regulation of the members within this protein group.

Further, strongly enriched pathways after serum treatment
include the citrate cycle (TCA cycle, Supplementary Figure S12)
and oxidative phosphorylation (Supplementary Figure S13),
suggesting that aerobic respiration is the preferred energy
source for Leptospira in FBS-containing media. The pathway
analysis also confirmed the reduced abundance of ribosomal
proteins after serum treatment (cluster S-4). These findings are
in agreement with recent transcriptomics (Patarakul et al, 2010)
and proteomics (Eshghi et al, 2009) studies that found that
several ribosomal and heat shock proteins were regulated after
incubation of L. interrogans with serum. However, for most
proteins, the correlation between mRNA and protein levels was
found to be very poor. For instance, the confirmed virulence
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surface protein Loa22 (Ristow et al, 2007) and the potential
virulence factor OmpL1 (Barnett et al, 1999) with confirmed
expression in vivo were clearly up-regulated on the protein
level (both in cluster ‘S-5’), but not differentially expressed on
the mRNA level (Patarakul et al, 2010), underlining the
importance of quantitative proteome studies. In fact, we found
the concentration of these proteins Loa22 and OmpL1 to be
increased by 14 754 and 11 985 molecules per cell, respectively,
after 7 days of serum treatment. This represents the second and

third highest increase in abundance of any cellular protein
induced by this treatment (Supplementary Table SV), indicat-
ing the relevance of these proteins for adaptation of the cell to a
host-like environment (Becker et al, 2006). Notably, the list of
proteins with a high increase in expression further contains
potential virulence factors like catalase (Lo et al, 2010) and
chemotaxis proteins, but also several hypothetical and
membrane proteins that have not yet been associated with
Leptospira virulence or any other function.
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In contrast to the perturbation by serum exposure, the
ribosomal proteins were found to be strongly up-regulated
after 6, 12 and 24 h of antibiotic ciprofloxacin treatment
(cluster C-4). This increase was compensated by an equivalent
down-regulation of proteins involved in glyoxylate metabo-
lism (cluster ‘C-2’). The regulation of these proteins is inverted
after 48 h of treatment, suggesting that the cells have adapted
to the treatment or reduced the antibiotic concentration to
tolerable levels. Interestingly, immediately after ciprofloxacin
exposure, the cells activate a highly specific cascade of
pathways to cope with the DNA-topo-isomeric stress (cluster
‘C-3’). The group of proteins that was exclusively up-regulated
after 6, 12 and 24 h ciprofloxacin treatment (see also Figure 3
cluster ‘b’), contains mainly proteins involved in transcrip-
tional and translational processes, like DNA mismatch, RNA
polymerization, aminoacyl-tRNA synthesis, purine and pyr-
imidine metabolism, as well as the secretion system and the
SOS response (Fonville et al, 2010), like recombinase A and J.
These data indicate that the cells are trying to compensate the
DNA-topo-isomeric stress induced by the ciprofloxacin treat-
ment (Michel, 2005; Cirz et al, 2007; López et al, 2007; Vlasić
et al, 2008). Intriguingly, we also found the protein TetR in this
cluster, which was recently found to be specifically mutated in
ciprofloxacin-resistant strains of Bacillus anthracis (Serizawa
et al, 2010), underlining the relevance of the specific protein
changes detected. In parallel, the proteome abundance of the
chemotaxis and two-component systems, the TCA cycle and
the lysine and fatty acid biosynthesis are reduced (cluster
‘C-5’). These proteins apparently represent pathways that are
lesser important for ciprofloxacin defense. Interestingly, with
an average increase of 415 000 copies/cell, the chaperone
GroEL was the most heavily induced protein across all
antibiotic treatments, whereas no significant regulation of this
protein could be detected upon serum stimulation (Supple-
mentary Table SV). Apparently, GroEL is a key protein for
Leptospira cells to maintain proper assembly of unfolded
polypeptides generated under antibiotic stress.

Upon treatment with doxycycline, a tetracycline-class
inhibitor of the ribosomal protein biosynthesis, Leptospira
cells show, as with ciprofloxacin stimulation, a converse
regulation of a specific proteome subset after 48 h of treatment
(cluster ‘D-1’). Proteins involved in translation, like ribosomal
proteins and aminoacyl-tRNA biosynthesis, are first reduced
in concentration. After 48 h of treatment their abundance
increases, a regulation pattern that was also observed by
transcriptome analysis of Tropheryma whipplei (Van La et al,
2007). An inverted behavior was detected for the chemotaxis,
the two-component and several metabolic pathways (cluster
‘D-2’). As with the ciprofloxacin treatment, the proteome
levels of the bacterial secretion system are promptly increased
(cluster ‘D-3’) to reduce the doxycycline concentration in the
cell. These observations indicate that although Leptospira cells
are affected by doxycycline, the drug cannot inhibit protein
synthesis entirely because large-scale proteomic changes are
apparent. Upon treatment with the drug penicillin G a large-
scale proteomic adjustment, namely an instantaneous and
strong up-regulation (cluster ‘P-4’) or down-regulation (clus-
ter ‘P-3’) regulation of several pathways comprising a large
number of proteins is apparent and remains constant
throughout all time points.

To conclude, by using a novel proteomic technology for
generating consistent quantitative proteome profiles measur-
ing absolute cellular protein concentrations we could, for the
first time, survey the behavior of significant fractions of the
proteome over time in multiple samples, allocate the generated
protein clusters to most biochemical pathways present in
L. interrogans and detect biologically informative patterns.
This revealed that the cells have successfully generated
systematic and highly specific defense and adaption processes
over time for survival in rapidly changing environments.

Protein dynamics within operons

Transcriptomics using expression arrays or RNA sequencing
can reveal mRNA abundances on a genome-wide scale. The
present study contains, to our knowledge for the first time,
absolute abundance values on the protein level for an
extensive fraction of the proteome. We therefore asked
whether the absolute protein quantities could reveal novel
properties of the Leptospira proteome. First, we asked if
proteins that localize to the same (in silico predicted) operon
in the genome (Dehal et al, 2010) have similar absolute
abundances, which would be expected because they are being
synthesized from the same pool of mRNA species. Indeed, the
variance of copy numbers per cell of all proteins was more than
three times larger than the variance of copy numbers per cell of
proteins within an operon (Figure 5A). Transcriptomics also
predicts a higher abundance of proteins at the 50 end of
operons, since the transcription of mRNA is often incomplete,
a phenomenon that is also referred to as staircase behavior
and has been observed for around half of all operons
in other bacteria (Benders et al, 2005; Güell et al, 2009).
We investigated this phenomenon on the protein level but
could confirm it only for a minority of operons (B5%). We
next asked if proteins organized within operons would
respond to the cellular treatments with a similar rate of up-
or down-regulation. We observed a general trend that the
proteins within an operon responded synchronously, but that
the regulation was more pronounced the closer the proteins
localized to the 50 end of an operon (Figure 5B). There were,
however, obvious exceptions. To illustrate regulation patterns
observed upon serum exposure, doxycycline and ciprofloxacin
treatment, we chose a genome region that encodes high
abundant ribosomal proteins, translational elongation and
initiation factors as well as SecY as an example, specifically
position 3 455 000–3 470700 on chromosome I (Figure 5C). We
tracked the abundance of all 32 proteins within this region
throughout all time points and stimuli except for the very small
protein coded by gene rpmJ that did not generate a sufficient
number of MS compatible tryptic peptides to allow conclusive
measurement. Upon stimulation with serum, most ribosomal
proteins were down-regulated, a few remained constant and
two were strongly up-regulated (rpsM and rplX). Almost the
same pattern was observed after 3–12 h of treatment with
doxycycline, however, in that case after 48 h most ribosomal
proteins were strongly up-regulated, indicating that the cell
compensates for ribosomal inhibition by synthesizing a higher
number of ribosomes. The translocon protein SecY and
translational initiation factor infA were down-regulated at
the same time. They are likely needed in smaller amounts due
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to the reduced number of active ribosomes. The regulation
pattern observed upon treatment with ciprofloxacin is very
different. Most ribosomal proteins go through a maximum and
are up-regulated after 12 h but down-regulated after 48 h.
There are again a number of proteins that do not follow the
general trend but stick out of the overall pattern. RpsK, rplR
rpsS and rplD are up-regulated even after 48 h. RpsM, rpsJ,
initiation factor infA and SecYare already down-regulated after
12 h. This suggests that although most proteins within an
operon respond to regulation synchronously, bacterial cells
seem to have subtle means to adjust the levels of individual
proteins or protein groups outside of the general trend, a
phenomena that was recently also observed on the transcript
level of other bacteria (Güell et al, 2009).

Discussion

The two-step quantitative proteomic technique described here
comprehensively and reproducibly determines absolute abun-
dance protein abundance patterns at high throughput. As a
first step, an atlas of peptides is generated. This 1D-peptide
catalog is not a static entity but evolves as data are
accumulated and the directed LC–MS/MS workflow and the
instrumentation used advance. The subsequent measure-
ments are then focused to a limited number of ‘high-flying’
peptides per protein that are derived from the initially
generated atlas. Thereby, thorough coverage of the proteome
or selected protein sets in single MS runs is achieved and the
peptides are identified quickly and reliably using the pre-
viously acquired information. Compared with classical shot-
gun methods, the throughput is accelerated, efficiency and
sensitivity are increased and measurement time and sample
amount are minimized. Since the MS data generated by
classical and directed LC–MS/MS are very similar, the same
well-established and validated data processing tool for protein
identification (Yates et al, 1995; Perkins et al, 1999; Keller et al,
2002; Nesvizhskii et al, 2003) and quantification (Mueller et al,
2007) can be employed to mine the large acquired data sets.
Because of the low number of MS/MS scans generated, the
database searching is accelerated and data storage as well as
post-processing is simplified. Additionally, the consistent
identification of features across runs improves the alignment
of extracted precursor ion chromatograms and enables more
reliable label-free protein quantification. Moreover, the meth-
od described here could be combined with isotope-labeling
approaches (de Godoy et al, 2008) or screenings for post-
translational modifications (Huber et al, 2009). Additionally,
the determined ‘high-flying’ PTPs in combination with the
spectral library serve as an excellent resource for designing
SRM assays for the fast analysis of small protein subsets (Jaffe
et al, 2008; Picotti et al, 2009). Current bottlenecks include the
necessity of cost-intense heavy labeled reference peptides and
the dynamic range on the MS1 level that limits the approach
to organisms of low-to-intermediate genomic complexity.
Nevertheless, new high-throughput methods to generate
reference peptides, the combination with sample pre-fractio-
nation strategies (Heller et al, 2005) and further instrumental
developments (Makarov et al, 2009) are likely to increase the
scope of the approach in the near future.

We applied this method to study the global proteome
changes of the human pathogen L. interrogans and could
achieve system-wide proteome coverage across 25 differential
treated samples that enabled us to perform a detailed
investigation of protein subset expression changes of most
pathways in this bacterium. Additionally, the determined
absolute proteome changes improved the clustering efficiency
over usually employed relative fold changes and allowed us to
detect common and specific proteome patterns for antibiotic
defense and pathogenic adaptation of L. interrogans.
In particular, the coherent grouping of all 25 perturbations
facilitated the detection of highly specific and information-rich
protein clusters for some treatments. These generated finger-
prints of cellular states might be compared and deployed to
determine these cellular states in future studies. With the
possibility to deploy the generated PTP mass lists together
with the heavy reference peptides across different high-
resolution LC–MS platforms and laboratories, we believe that
the method described here will become a corner stone for
systems biology of microbes.

Materials and methods

Cell culture and treatment

The Leptospira interrogans serovar Copenhageni of the strain Fiocruz
L1–130 were obtained from the American Type Culture Collection
(ATCC No. BAA-1198) and cultivated as previously (Haake et al, 1991).
In brief, cultures of 10 ml volume were grown in EMJH medium at 301C
to a density of 2�107 /ml and then stimulated (or left untreated as a
control). The cells were treated for 3, 6, 12, 24, 48 and 168 h with one
of the following substances, respectively: 5mg/ml Ciprofloxacin,
15mg/ml Penicillin G, 10 mg/ml Doxycycline and 10% FBS in culture
medium. Afterwards, the cells were harvested by centrifugation at
3000 g, washed twice in PBS, counted, pelleted again, resuspended in
200 mg lysis buffer (100 mM ammoniumbicarbonate, 8 M urea, 0.1%
RapiGestt), sonicated for 5 min and stored at �801C. Additionally, a
small aliquot of the supernatant was taken to determine the protein
concentration using a BCA assay (Thermo Fisher Scientific).

Protein cleavage

The proteins obtained from differentially treated cultures were reduced
with 5 mM TCEP for 60 min at 371C and alkylated with 10 mM
iodoacetamide for 30 min in the dark at 251C. After quenching the
reaction with 12 mM N-acetyl-cysteine, the samples were diluted with
100 mM ammoniumbicarbonate buffer to a final urea concentration of
1.5 M. Proteins were digested by incubation with sequencing-grade
modified trypsin (1/50, w/w; Promega, Madison, WI) overnight at
371C. Then, the samples were acidified with 2 M HCl to a final
concentration of 50 mM, incubated for 15 min at 371C and the cleaved
detergent removed by centrifugation at 10 000 g for 5 min. For absolute
quantification, aliquots of a mixture containing 38 heavy labeled
reference peptides (10 pmol each, Supplementary Table SI) were added
to each sample. Subsequently, all peptides were desalted on C18
reversed-phase spin columns according to the manufacturer’s instruc-
tions (Macrospin, Harvard Apparatus), dried under vacuum and
stored at �801C until further use.

Off-gel electrophoresis

Aliquots of all samples were pooled, dried and resolubilized to a final
concentration of 1 mg/ml in OGE buffer containing 6.25% glycerol and
1.25% IPG buffer (GE Healthcare). The peptides were separated on a
24-cm pH 3–10 IPG strip (GE Healthcare), with a 3100 OFFGEL
fractionator (Agilent) as previously described (Heller et al, 2005) using
a protocol of 1 h rehydration at maximum 500 V, 50 mA and 200 mW.

Microbial proteomics by directed mass spectrometry
A Schmidt et al

12 Molecular Systems Biology 2011 & 2011 EMBO and Macmillan Publishers Limited



Peptides were separated at maximum 8000 V, 100 mA and 300 mW until
50 kVh were reached. Subsequently, each of the 24 peptide fractions
was desalted using C18 reversed-phase columns according to the
manufacturer’s instructions (Macrospin, Harvard Apparatus), dried
under vacuum and subjected to data-dependent LC–MS/MS analysis.

Data-dependent acquisition (DDA) MS

The setup of the mRPLC–MS system was as described previously
(Schmidt et al, 2008). The hybrid LTQ-FT-ICR mass spectrometer was
interfaced to a nanoelectrospray ion source (both Thermo Electron,
Bremen, Germany) coupled online to a Tempo 1D-plus nanoLC
(Applied Biosystems/MDS Sciex, Foster City, CA). In all, 1 mg of total
peptide mass was separated on a RPLC column (75 mm� 15 cm)
packed in-house with C18 resin (Magic C18 AQ 3mm; Michrom
BioResources, Auburn, CA) using a linear gradient from 96% solvent A
(98% water, 2% acetonitrile, 0.15% formic acid) and 4% solvent B
(98% acetonitrile, 2% water, 0.15% formic acid) to 30% solvent B over
120 min at a flow rate of 0.3ml/min. Each survey scan acquired in the
ICR cell at 100 000 FWHM was followed by MS/MS scans of the three
most intense precursor ions in the linear ion trap with enabled
dynamic exclusion for 60 s. Charge state screening was employed to
select for ions with at least two charges and rejecting ions with
undetermined charge state. The normalized collision energy was set to
32% and one microscan was acquired for each spectrum.

Directed mass spectrometry

Generally, similar settings as with the DDA LC–MS/MS analysis were
used for directed LC–MS/MS measurements with a few modifications:
the resolution of each survey scan acquired in the ICR cell was reduced
to 50 000 FWHM and the preview mode option was disabled.
Furthermore, the dynamic exclusion was reduced to 15 s to acquire
multiple MS/MS spectra for the parent ions of interest to increase both
their identification rates and consensus spectra quality in the
generated spectral library. Finally, the non-peptide isotopic pattern
filter was disabled to allow more precursor ions to trigger MS-
sequencing attempts and increase the overall sensitivity of the directed
LC–MS/MS approach (Schmidt et al, 2008).

Database searching

After converting the acquired raw files to the centroid mzXML format
using ReAdW (http://tools.proteomecenter.org/wiki/index.php?title-
Software:ReAdW), MS/MS spectra were searched using the SOR-
CERER-SEQUESTt v4.0.3 algorithm (Yates et al, 1995) against a decoy
database (consisting of forward and reverse protein sequences) of the
predicted proteome from Leptospira interrogans serovar Copenhageni
str, complete genome NCBI genome number NC_005823 and
NC_005824 (http://www.ncbi.nlm.nih.gov/entrez). The database
consists of 3658 Leptospira proteins as well as known contaminants
such as porcine trypsin, human keratins and high abundant bovine
serum proteins (Non-Redundant Protein Database, National Cancer
Institute Advanced Biomedical Computing Center, 2004, ftp://
ftp.ncifcrf.gov/pub/nonredundant), resulting in a total of 7480 protein
sequences. The search criteria were set as follows: full tryptic
specificity was required (cleavage after lysine or arginine residues,
unless followed by proline); two missed cleavages were allowed;
carbamidomethylation (C) was set as fixed modification; oxidation
(M), 13C6-15N2 (K) and 13C6-15N4 (R) were applied as variable
modifications; mass tolerance of 15 p.p.m. (precursor) and 0.8 Da
(fragments). The database search results were further processed using
the PeptideProphet (Keller et al, 2002) and ProteinProphet (Nesvizhs-
kii et al, 2003) program and the peptide FDR was set to 1% on the
peptide and 2% on the protein level and validated using the number of
reverse protein sequence hits in the data sets.

Generation of 1D-PeptideAtlas

Three different strategies were employed in the discovery phase to
characterize as many features as possible within the 2-h LC gradient

and establish a comprehensive 1D-LC–MS peptide map of the
L. interrogans proteome with the goal to identify at least five PTPs
for each protein that can be targeted for accurate quantification in the
final scoring phase. PTPs are defined as (i) peptides that sequence is
unique to one protein in the proteome, (ii) have two tryptic termini and
no missed cleavage and (iii) give a high MS response. To achieve
maximal protein expression, one aliquot of each perturbation after
24 h of treatment were pooled and the generated peptide mix was
extensively mapped using four different MS strategies.

(i) First, two data-dependent acquisition (DDA) LC–MS/MS runs,
focusing on doubly charged and three or higher charged precursor
ions, were carried out, respectively. (ii) Subsequently, the SuperHirn
peak extraction and alignment algorithm (version 3) was used to
extract all MS1 features and generate a MasterMap that includes the
MS/MS-spectra assignments (Mueller et al, 2007). All features that did
not trigger a MS/MS spectrum were specifically MS sequenced using
scheduled, directed LC–MS/MS analysis as recently specified (Schmidt
et al, 2008). Next, for proteins with less than five PTP identifications,
PTP masses were extracted from peptide identifications obtained in the
pre-fractionation (OGE) LC–MS experiment (iii) or, if not available,
predicted by the PeptideSieve software tool (iv) (Mallick et al, 2007).
Retention time prediction (Spicer et al, 2007) allowed timewise
segmentation of the mass lists into five segments, which reduced the
number of directed LC–MS runs required to sequence all selected
PTPs. All MS/MS spectra were database searched as described and the
identified peptides sequences assigned to the generated MasterMap
(Schmidt et al, 2008). An additional feature was added to the
SuperHirn algorithm (version 3) that employs lower intensity thresh-
olds to all identified precursor ions for which no feature was detected
in the initial peak extraction step. This allowed us to also determine the
MS intensity, charge state and elution time for most peptide ions
identified in phases (iii) and (iv). Up to five PTPs were selected for each
identified protein using the above filtering criteria, resulting in a final
list of 4953 PTPs. All PTPs for which no peak area could be calculated
by the SuperHirn software were ranked according to their number of
identified MS2 spectra instead.

Spectral library searching

A spectral library consisting of all confidently identified MS/MS
spectra obtained above as well as currently present in the
L. interrogans PeptideAtlas (Beck et al, 2009) was prepared. Therefore,
all spectra assigned to the same peptide sequence were combined to
reduce the presence of interfering fragment ions and improve the
overall quality of the spectral library. In total, 321 498 identified MS/
MS spectra were combined to 33 766 consensus spectra covering
26 029 unique peptides and unique 2370 proteins with a FDR of
o0.2%. The library was added to the current L. interrogans
PeptideAtlas and is publicly available (see http://www.peptideatlas.
org/builds/) or can be downloaded using the following link: http://
www.peptideatlas.org/speclib/ISB_Linterrogans_IT_v1.0.tgz.

The software SpectraST was used to match the acquired MS/MS
spectra with the consensus spectra in the spectral library and score
each match (Lam et al, 2008). In order to statistically determine
matching confidence, decoy consensus spectra were added to the
spectral library to calculate FDRs (Lam et al, 2009). Non-matching MS/
MS spectra subjected to a conventional database search using Sequest
as described above and combined with the spectral matching data
while keeping the FDR o1% on the peptide and 2% on the protein
level, respectively. The peptide and protein prophet probabilities as
well as the number of peptide identifications were used as parameters
to set the FDR accordingly.

Global protein profiling

After employing the above filtering criteria, 4953 validated PTPs
representing 1680 identified proteins (Supplementary Table SIV) could
be detected. For directed mass spectrometric analysis, all detected
precursor ion masses of the selected PTPs were equally distributed
over two mass lists. To each list, the detected precursor ion masses and
retention times of 38 heavy labeled reference peptides (Thermo Fisher
Scientific, Supplementary Table SI) and their endogenous counterparts
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were added. These inclusion mass lists were imported as global mass
lists into the mass spectrometer and the PTPs sequenced in each
sample using two single directed LC–MS/MS runs applying the same
parameters as described above. The acquired MS/MS spectra were
searched against the spectral library built and protein database as
described above and pepxml-files covering all LC–MS runs of the
individual time courses, respectively, were generated. These were
imported into the Progenesis LC–MS software (v2.5, Nonlinear
Dynamics Limited), which was used for label-free protein quantifica-
tion applying the default parameters. Only unmodified peptides having
a PeptideProphet score of 0.85, corresponding to an FDR ofo1%, were
considered for quantification. The quantitative data obtained were
further normalized and statistically analyzed according to Brusniak
et al (2008) using the Spotfire Decision Site program (version 9.1.1,
TIBCO) and the guides provided for analyzing large transcriptomics
data sets. In brief, we set a nominal lower bound value (noise level) as
the minimum measured intensity and replaced with it missing values
and values below it. We then calculated fold-change ratios (in log-
scale) between control and perturbated samples. On the protein
level, the ProteinProphet probability were employed to set the FDR to
2% based on the number of reverse protein hits. Only proteins with
a 1.5-fold change in abundance and a P-value o0.05 (ANOVA)
were considered significant (Supplementary Figure S6). The protein
ratios and absolute abundances of all identified proteins across
the individual treatments are displayed in Supplementary Table SV.
The corresponding primary MS/MS data files can be retrieved via
the Tranche website (https://proteomecommons.org/tranche/,
‘Leptospira_Time_Course_MSB-11-2792’, hashcode H4hv0MiRq-
wiPc0gONayV7oou/d4eRD8VviwIh6ORNPþUKþCR72ZZgKuujLsg
CRP6DLRjUOLPZpAIkiFFJRMMRtHg3V8AAAAAAAApWg¼¼).

Absolute protein quantification

The absolute abundances of all identified proteins were determined as
recently specified (Malmström et al, 2009). First, the concentrations of
the 19 anchor proteins were calculated from the ratio of the signal
intensities of the heavy labeled reference peptides (known concentra-
tion of 100 fmol) and their endogenous counterparts (Supplementary
Table SI). Then, the three most intense PTPs of each protein were
selected, their MS-intensity values as determined by the Progenesis
software averaged and aligned with the absolute abundances of the 19
reference proteins (Supplementary Figure S8A). After correlating the
calculated protein concentrations with the number of cells used for
each experiment, the abundance of each protein in copies/cell could be
estimated. Additionally, error estimation was carried out using a
bootstrap analysis (Supplementary Figure S8B) according to Mal-
mström et al (2009). Absolute protein concentrations were determined
for all perturbations (Supplementary Table SV).

Cluster analysis

To cluster temporal or regulatory patterns of protein abundance, we
used the Spotfire Decision Site program (version 9.1.1, TIBCO) and the
guides implemented in the functional genomics suite for microarray
data analysis. We used either protein fold ratios (log-scale) or changes
in protein copies/cell (also log-scale) for Hierarchical and K-means
clustering employing the following default parameters: for hierarchical
clustering, UPGMA was set as clustering methods, Euclidean distance
was set as Similarity measure, Average value was set as Ordering
function and calculate column dendrogram was enabled. For K-means
clustering, data centroid based search was set as cluster initialization
and Euclidean distance was set as similarity measure.

Functional annotation

We used the annotation tools DAVID (Huang et al, 2007) for functional
annotation and GO and pathway enrichment analysis (using the KEGG
database (Kanehisa et al, 2010)) of protein sets. The P-value threshold
was set to 0.05. In case of multiple significant term/pathway
enrichments for a given perturbation across multiple clusters, only

the enrichment for the cluster having the term/pathway with the
lowest P-value is displayed.

Protein changes within Operons

A list comprising all predicted operons of the L. interrogans genome
were downloaded from http://www.microbesonline.org (Dehal et al,
2010). The list was matched with the quantitative data set generated
using the Spotfire Decision Site program (version 9.1.1, TIBCO).
Proteins belonging to the same operons were grouped and clustered
according to their number of neighboring proteins.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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