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Viral Infections During Pr
egnancy: The Big
Challenge Threatening Maternal and Fetal Health
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Abstract
Viral infections during pregnancy are associated with adverse pregnancy outcomes, includingmaternal and fetal mortality, pregnancy
loss, premature labor, and congenital anomalies. Mammalian gestation encounters an immunological paradox wherein the placenta
balances the tolerance of an allogeneic fetus with protection against pathogens. Viruses cannot easily transmit from mother to fetus
due to physical and immunological barriers at the maternal-fetal interface posing a restricted threat to the fetus and newborns.
Despite this, the unknown strategies utilized by certain viruses could weaken the placental barrier to trigger severe maternal and fetal
health issues especially through vertical transmission, which was not fully understood until now. In this review, we summarize diverse
aspects of the major viral infections relevant to pregnancy, including the characteristics of pathogenesis, related maternal-fetal
complications, and the underlying molecular and cellular mechanisms of vertical transmission. We highlight the fundamental
signatures of complex placental defense mechanisms, which will prepare us to fight the next emerging and re-emerging infectious
disease in the pregnancy population.
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Introduction

The recent outbreaks of emerging viruses, like Zika virus
(ZIKV) and severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2), repeatedly raise concerns about the
impacts of viral infections during pregnancy on maternal
and fetal health.1,2 In general, a series of physiological
adaptations to pregnancy, especially immunological and
endocrinological changes, make themother and fetus more
susceptible to certain viral and bacterial infections, which
is associated with greater risk for severe complications
caused by infectious diseases.3 The poor outcomes
triggered by viral infections during pregnancy include
maternal morbidity, pregnancy loss, stillbirth, intrauterine
growth restriction (IUGR), preterm birth, neonatal death,
and congenital abnormalities.3,4 However, given the
potential safety and toxicity issues regarding the usage
of antiviral treatments and vaccines during pregnancy,
pregnant women are believed to be even more vulnerable
to devastating consequences induced by viral infections.5
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The human placenta, a specialized and complex organ that
is formed exclusively during pregnancy, is indispensable for
sustaining fetal growth and development normally.6 The
placenta presents an immunological paradox since it
simultaneously bears the responsibility of immunologic
tolerance to the fetus and retaining immunity against
potential infections. Without complicated pathogen defense
strategies at the maternal-fetal surface, fetal survival and
development cannot be preserved due to the constant
onslaught of microorganisms in our environment. However,
several underappreciated mechanisms could be utilized by
selective pathogens to escape from themonitoringofplacenta
resulting in maternal-fetal transmission. The pathogenesis of
typical TORCH pathogens (refers to Toxoplasma, Others,
Rubella, Cytomegalovirus, and Herpes simplex virus)
causing vertical transmission has been reviewed in detail
elsewhere.3,7,8 In this review, we mainly focus on the classic
and emerging virus causing desperate maternal-fetal out-
comes, including the hepatitis B virus (HBV), human
immunodeficiency virus (HIV), influenza A virus (IAV),
ZIKV, and SARS-CoV-2. We discuss the basic biology of
viral infections during pregnancy, their pathogenesis char-
acteristics, maternal-fetal complications they cause (Fig. 1),
and the underlying molecular and cellular mechanisms of
vertical transmission from the evidence available to date.
Moreover, we elaborate a concise description of placental
defense mechanisms in response to viral insults for a better
understanding of strategies utilized to restrict the maternal-
fetal transmission of pathogens, which could be also targeted
as potential antiviral therapies.

Viral infections during pregnancy

HBV

HBV, a member of theHepadnaviridae family, is the most
common blood-borne pathogen globally, which could lead
to acute and chronic hepatitis in humans. The transmission
routes of HBV are predominantly through blood and
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Figure 1. Viral infections during pregnancy and the corresponding
maternal-fetal outcomes. Viral infections throughout the entire course of
pregnancy can lead to diverse pregnancy complications such as maternal
death, pregnancy loss, and preterm birth. Fetal and neonatal anomalies
relevant to viral infections during pregnancy, especially the ones causing
vertical transmission, can cause IUGR, stillbirth, microcephaly, motor
disorders, and other neurodevelopmental disorders. Additionally, the
offspring with prenatal exposure to maternal infectious diseases also
encounter lifelong health issues.
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bodily fluids, vertical transmission, as well as sexual and
parenteral contacts.9 Perinatal transmission from the
mother to fetus or newborns is still responsible for the
most chronic HBV infections in adults who are more prone
to severe liver diseases and poor responses to antiviral
therapies.10,11 The risk of perinatal transmission in case of
mothers with positive HBV e antigen or high viral loads
has been estimated to be as high as 90% if the newborns
accept no immunoprophylaxis treatment (includes HBV
vaccine and immune globulin).12 Therefore, to prevent the
vertical transmission of HBV in advance, universal
maternal screenings for the HBV surface antigen, HBV e
antigen, viral load, and alanine aminotransferase level
during pregnancy are priorities to be adopted.12 Although
immunoprophylaxis at birth together with antiviral
treatments for mothers in endemic areas currently are
the common and effective strategies for global elimination
and preventive interventions of HBV, vertical transmission
of HBV occurs with high prevalence and should be taken
seriously due to uneven coverage of vaccine globally and/
or prophylaxis failure.13–15

Although pregnancy complications related to HBV
infection if any are minimal, clinical evidence has indicated
that chronic HBV infection may be vaguely associated
with gestational diabetes, preterm labor, antepartum
hemorrhage, and preeclampsia.16–18 For preterm birth,
several meta-analyses have confirmed that seropositivity
for HBV surface antigen in pregnant women could increase
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the risk of preterm labor, while another study involving
6781 prematurity cases inconsistently revealed no associa-
tion with HBV infection in the preterm birth group.17,19–22

Worthy of note, in the above-mentioned studies, half of the
enrolled pregnant women exhibited abnormal liver func-
tions such as non-alcoholic fatty liver disease, whichmay be
an independent risk factor for preterm labor rather than the
virus per se. Interestingly, women with HBV infection were
observed to develop 2.18-fold higher antepartum hemor-
rhage, probably due to placenta previa and placental
abruption, which is attributed to coinfection of HBV with
other viruses.21 Unexpectedly, a negative association or
protective effect of HBV infection on preeclampsia was
demonstrated in a meta-analysis involving 11,566 cases.23

Nonetheless, the explicit causes underlying the above
adverse pregnancy outcomes have not been extensively
evaluated until now, placental inflammation, insulin
resistance, increased immunotolerance, or impaired im-
mune response upon HBV infection were proposed as
suspected mechanisms.18,24

Furthermore, the hint of fetal and neonatal anomalies
was also observed in pregnant women with chronic
infection. It was noticed that 60% increased non-
reassuring fetal heart rate patterns and 80% increase in
asphyxia referring to 7600 pregnant HBV carriers from 18
studies by meta-analysis suggested fetal distress conditions
related to HBV infection.25,26 Additionally, 25.8%
increased low birth weight and small infants were reported
to be associated with HBV infection, while abnormally
enhanced fetal growth and macrosomia were also found in
a series of researches.26–28 Viral genotypes, co-existing
hepatic disorders, coinfections with other pathogenic
organisms, synergism with pregnancy complications,
and the phase of chronic HBV infection probably led to
contradictory phenotypes of fetal growth.29,30

The path of HBV vertical transmission includes
intrauterine transmission, labor, and delivery, as well as
breastfeeding. The primary risk period for infant HBV
infection is the peripartum period. Most cases of infection
occur during delivery when the mucosa of newborns is
easily contaminated by maternal blood and secretions that
contain high viral loads. Alternatively, some researchers
suggested that different placental compartments from the
maternal side to the fetal side, such as trophoblasts and
endothelial cells of villous vessels, can be infected by HBV,
indicating a potential mechanism of HBV transplacental
infection.31,32 Moreover, clinical studies have shown that
mother-to-child transmission of HBV can be almost
completely blocked by maternal antiviral therapy during
pregnancy, supporting the plausibility of intrauterine
infection.33,34 However, the presence of intrauterine
HBV transmission is still debatable as shown by some
controversial evidence.35 Therefore, the possibility and
mechanisms underpinning HBV intrauterine transmission
require more comprehensive in-depth clinical and basic
research, which would help clinicians to improve prophy-
lactic measures preventingmother-to-child transmission of
HBV.36 At present, exploring the reasons of prophylaxis
failure will be one of the big challenges in clinical practice
to successfully eliminate HBV vertical transmission.
Meanwhile, a comprehensive long-term safety profile of
antiviral prophylaxis also needs to be assessed in the
future.37,38
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HIV

HIV (including two types HIV-1 and HIV-2) destroys the
immune system and eventually causes acquired immuno-
deficiency syndrome.39 HIV-1 has stronger transmission
capabilities and pathogenicity than HIV-2, herein we
discuss HIV-1 primarily.40 Since the beginning of this
century, >1.5 million childbearing age women have been
annually threatened by HIV-1 infection to varying
extents.41 Maternal HIV-1 infection accounts for adverse
pregnancy outcomes, such as premature labor, miscar-
riage, and IUGR, which deteriorates in women with
advanced HIV disease or immunosuppression.41–43 The
vertical transmission of HIV could be archived through
intrauterine, intrapartum (contacting with mother’s blood,
cervix, and vaginal secretions), and postpartum transmis-
sion. Maternal viral load, immune and nutritional status,
and fetal birth mode will directly affect the likelihood and
efficiency of HIV-1 perinatal transmission. Fortunately,
the risk of HIV-1 vertical transmission could be decreased
from 40% to<1% if the appropriate clinical management
including cesarean section, combination antiretroviral
therapy (cART), neonatal antiretroviral administration,
and bottle-feeding were implemented in HIV-1-infected
mothers during pregnancy.44–47

The definitive mechanisms of HIV vertical transmission
remain largely unknown, especially the ones contributing to
intrauterine transmission. Despite a large number of in
utero transmission cases being documented in the third
trimester, detectable HIV in aborted fetuses as early as 8
weeks implicates that HIV could disseminate to the fetus
prior to a mature placental barrier.48 It has been originally
suggested that HIV-1 circulating in the amniotic cavity
could pass through themucosal surface of fetal oropharynx
or gastrointestinal tract, while recently published studies
have not observed HIV-1 in the amniotic fluid even if
systemic viral titers of some participants in plasma exceeded
105 copies/mL.49–51 Additionally, fetal HIV infection in
utero is hypothesized primarily to occur by the transpla-
cental route, which is supported by the presence ofHIV-1 in
placentas from infected mothers.52 Although HIV could
infect trophoblasts straight by a syncytin-dependent
mechanism, the virus enters the trophoblasts with much
lower efficacy compared to CD4+ cells.53–55 Several in vivo
studies have also confirmed that HIV-1 resides within
placental Hofbauer cells (HBCs).56,57 Indeed, these unique
macrophages express the HIV-1 (co)-receptors such as
CD4, C-X-C motif chemokine receptor 4, and DC-SIGN,
along with fragment crystallizable (Fc) g receptors which
may sequester HIV-1-antibody (Ab) immune complexes for
in utero transmission of HIV-1.58 Therefore, transcytosis
transmission of Ab-associated virions is another hypothesis
of HIV vertical transmission.
It is not clear how HIV infection causes specific adverse

pregnancy outcomes. Therein, recognizing the alternations
of placental structural and functional features upon HIV
infection could provide mechanistic insights into fetal and
neonatal health. Gross pathological assessments of placen-
tal specimens have identified lowplacentalweight,maternal
vascular malperfusion, chorioamnionitis, and placental
inflammation relative to HIV infection.59,60 More recently,
Kalk et al.61 reported HIV-infection induced a 2.21-fold
higher frequency of maternal vascular malperfusion, which
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can significantly boost the risk of IUGR and fetal demise.
Crucially, excessive inflammatory response, disordered
immune cell composition, and performance in HIV-1
infected placenta could also directly affect the fetal growth
and development leading to babies with low birth weight.
For instance, several observations have shown that the
functions and subsets of tissue-resident T cells were
changed, specifically a growing tendency of activated tumor
necrosis factor-a-producing T cells in HIV-1-infected
pregnant women.62 Besides T cells, other studies have
shown thatHIV-1 infection could impair natural killer (NK)
cell effector functions and reduce anergic NK cells
accumulation, which may cause the insufficient formation
of placental vasculatures and nutrient supply for the infant,
thereupon then, fetal growth is impacted.63

Vertical transmission of HIV has been effectively
reduced in the last two decades mainly attributing to
the highly active antiretroviral therapy. The anti-HIV
interventions include strategies either reducing maternal
viral exposure and load or prophylaxis in the infants by
antiretroviral treatment. The pharmacological nature of
antiretroviral reagents covers the antagonists of viral
enzymes such as reverse transcriptase, protease, and
integrase, as well as HIV co-receptor inhibitors.63,64

However, cART could simultaneously increase the risk
of pregnancy complications, particularly preterm birth.65

A study from Europe first reported the association of
cART and preterm birth in 1998, with subsequent studies
complementing this phenomenon and speculating on the
possible mechanisms: (1) Certain antiviral medicine,
Ritonavir for example, may directly reduce progesterone
and estradiol levels and consequently lead to IUGR, which
provides a potential mechanistic link between protease
inhibitors-based antiviral treatment and greater risk of
preterm birth.66 (2) Antiretroviral agents could cross the
blood-placenta barrier to varying degrees, thus the toxicity
of specific drugs in adults could be observed theoretically
in the exposed fetuses and newborns as well.67 Moreover,
fetuses may be more sensitive than adults to certain toxic
antiviral medicines, such as zidovudine and stavudine,
leading to mitochondrial dysfunction and inflammasome
activation in placentas. (3) Usage of cART may dysregu-
late immune response systemically and locally at the
maternal-fetal interface, which could cause a shifted
immunological feature during pregnancy to favor preterm
birth.68 Overall, assessing the potential health threats of
such antiretrovirals exposures are quite challenging but
critical for optimizing the cART treatment on HIV-1-
infected pregnant women.

IAV

Influenza viruses could cause acute respiratory symptoms
including fever, malaise, and coughing. Although influenza
viruses are classified into A, B, C, and D types, only type A
viruses, such as swine influenza (H1N1), are recognized to
have a wide range of hosts including mankind and become
a major driver of human infectious diseases.69 Airborne
droplets are the main route of IAV transmission from
human to human, potentially, active virus particles can
also spread to the eyes or nose via contacting with other
body fluids and contaminated inanimate objects.69 The
current epidemiological data show that the symptoms of
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H1N1 infection in the general population are mild and
self-healing, while people with chronic diseases and from
the age group of>60 years hold the highest mortality rate,
indicating that IAV poses a greater threat to high-risk
groups.70,71 Pregnant women have been found 4∼5 times
more susceptible to IAV infections and increased risk for
extrapulmonary complications than nonpregnant wom-
en.72,73 During the 2009 pandemic of IAV, pregnant
womenwere more frequently hospitalized than individuals
in the general population.74 In addition, the maternal
mortality rate of IAV infection was significantly higher in
the United States, which is in line with 27%–45%
maternal mortality and 52% pregnancy loss rate during
the 1918 pandemic.75 It should be noted that the
possibility of adverse maternal outcomes increases with
the advancing gestational age.75 Women with full-term
pregnancy are five times more likely to be hospitalized with
IAV infection than the ones at postpartum or early
pregnancy stage.76 Reviewing the characteristics of
patients in the past influenza epidemic, it was found that
the proportion of hospitalized pregnant women with heart
and lung damages increased significantly in the later
trimester comparing early-to-middle trimester.74 Further-
more, pregnant women who are complicated with obesity,
metabolic diseases, smoking history, and heart and
respiratory diseases should be given extra attention to
avoid severe or even life-threatening symptoms.77,78

Thus far, mechanisms underlying the high occurrence
and severity of IAV infection have not been fully clarified.
Pregnant women are particularly vulnerable to IAV
infection, which may partially result from pregnancy-
induced immunological changes, including suppressed
cell-mediated immunity, alterations in NK cell activity, by
contrast, enhanced humoral immunity.79–81 For example,
several studies have suggested the significantly attenuated
interferon (IFN) response in peripheral mononuclear cells
isolated from pregnant women with IAV infection,
indicating a possible mechanism underlying increased
susceptibility to viral infections during pregnancy.82

Furthermore, others suggested that inactivated lung
dendritic cells and virus-specific CD8 T cells deficiency
in the airway contributed to the inability to control the
virus in pregnancy.83,84 Besides, anatomical and physio-
logical changes of a pregnant woman could also contribute
to the high-risk adverse pregnancy outcomes in the setting
of IAV infection.85 Functional changes of the cardiopul-
monary system during pregnancy, critical for meeting the
metabolic demands of the mother and fetus, have been
recognized as a risk factor for severe influenza infection.
During pregnancy, increased maternal oxygen consump-
tion and lung tidal volumes, with reduced residual volume,
expiratory reserve volume, and functional residual
capacity, could compromise the compensatory capacity
of the respiratory system to meet the IAV challenge and
result in worse outcomes.86,87

IAV infection during pregnancy causes severe fetal and
neonatal complications as well, including IUGR, preterm
birth, neonatal death, and neurological disorders. The
reasons for fetal mortality and morbidity upon IAV
infection during pregnancy are currently unclear. Different
from TORCH pathogens, vertical transmission of IAV
appears to be rare because of infrequent viremia, despite a
recent study reported that the highly pathogenic strain
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H5N1 could be detected in the placental trophoblasts and
fetal respiratory tract.88,89 Maternal symptoms of IAV
infection, such as fever, hypoxia, and septic shock, could
exert influence on fetal health in the absence of direct fetal
infection. Recently, Liong et al.90 demonstrated virus
dissemination to major maternal blood vessels leads to a
peripheral “vascular storm”, featured as profoundly
elevated proinflammatory and antiviral mediators in the
maternal vascular system, which could subsequently
induce hypoxia in the placenta and fetal brain. Moreover,
accumulating evidence suggests that offspring born to
prenatally IAV-infected mothers exposed high risk of
chronic diseases in later life, among which neurocognitive
disorders, autism for instance, are the best described
ones.91–93 Animal models corroborate this link and
suggest that IAV infection can affect lifelong neuropathol-
ogy and altered behaviors in offspring, which may be due
to oxygen deprivation, placental transmission of cyto-
kines, and antibodies or dysregulated hormone signaling
after infection with influenza virus.94,95 Moreover,
Jacobsen et al.92 proposed that neonates from IAV-
infected pregnant dame exhibited increased susceptibility
to viral and bacterial infections due to reduced hemato-
poietic development and immune responses, which further
highlights the importance of fundamental mechanistic
study regarding IAV induced poor maternal-fetal out-
comes in the future.
ZIKV

ZIKV is a single-stranded RNA virus of the Flaviviridae
family, which was originally isolated from a rhesusmonkey
residing in Uganda. It spread globally from 2015 to 2016
and led to a Public Health Emergency of International
Concern declared by theWorldHealthOrganization due to
emerging neuropathogenicity such as the Guillain-Barré
syndrome in adults and microcephaly in neonates,
respectively.96 Although ZIKV is initially recognized as a
mosquito-borne virus predominately transmitted by Aedes,
there has been a great accumulation of new evidence that
ZIKV can be transmitted in many new routes, especially
through sexual contact, blood transfusion, and most
important of all, vertical transmission. About 80% of
ZIKV infection cases in the general population are
asymptomatic like other arbovirus infections, and only a
fewpatients develop symptoms such as fever, joint pain, and
malaise. It is estimated that the mortality rate of ZIKV
infection is as low as 0.01%, while a limited number of
death cases occurred in individuals with immunocompro-
mised complications.2 The clinical manifestations of
systemic ZIKV infections during pregnancy present similar
symptoms like those described in nonpregnant individuals,
usuallymildand self-limitingdiseases, suggestingno specific
maternal clinical features and increased pathogenicity in
general. Nevertheless, clinical and basic investigations have
shown that congenital ZIKV infection could dramatically
provoke pregnancy diseases, such as miscarriage, IUGR,
premature delivery, and fetal death.97,98

Moreover, the fetal congenital Zika syndrome (CZS), a
unique pattern of birth defects and disabilities found
among fetuses and babies born to mothers exposed to
ZIKV during pregnancy, has attracted extensive attention
since the most recent epidemics in the Americas.99 Until
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now, >4000 infants worldwide have laboratory-con-
firmed CZS.96,100 Typical clinical manifestations of CZS
mainly include severe microcephaly, severe brain abnor-
malities (subcortical calcifications, ventriculomegaly),
ocular abnormalities, etc.101 A study of Brazilian infants
with microcephaly caused by ZIKV infection revealed that
93% of infants had brain calcification, 69% encountered
cortical developmental malformations such as lissence-
phaly and pachygyria, and 66% developed ventriculome-
galy due to brain atrophy.102 Following studies have
demonstrated that 35%–70% of infants with microceph-
aly and cerebral calcification are accompanied by a
spectrum of ocular alterations such as optic nerve
hypoplasia and double-ring sign, foveal reflex loss,
chorioretinal macular atrophy, and cataracts.101,103,104

Mechanistically, Li et al.105 reported a direct link between
ZIKV infection in the embryonic brain and microcephaly
by disrupting neural progenitor development in a mouse
model, which could provide valuable resources for further
exploration of the underlying mechanisms and manage-
ment of ZIKV-related pathological effects. Besides the
above disorders, musculoskeletal, genitourinary, and
pulmonary abnormalities are also observed in CZS babies,
indicating phenotypic diversity caused by congenital ZIKV
infection.106–108

Sadly, up to now, very little is understood about the
pathogenic mechanisms underlying the vertical transmis-
sion of ZIKV. It has been reported that ZIKV can infect
human and mouse blastocysts in vitro, especially in
trophectoderm which gives rise to various trophoblast
lineages in the mature placenta. This result indicates that
ZIKV infection may directly lead to the developmental
restriction of blastocysts and trophoblast stem cells through
apoptosis and necrosis pathway, and eventually cause the
occurrence of severe CZS.109 However, whether ZIKV
could infect blastocysts and induce any embryonic
abnormality in vivo remains unknown. If it is true, it could
explain at least partially why ZIKV infection in early
pregnancy causes more serious adverse pregnancy out-
comes observed in human and mouse models.106,110,111

Another explanation for different vulnerabilities to ZIKV
infectionatdifferentpregnancy stages is due to thegradually
gained placental defense mechanisms along with the
progress of pregnancy, which will be discussed in detail
below. In addition, the transplacental transmission routines
of ZIKV are still debatable. Several cellular mechanisms
may mediate the vertical transmission of ZIKV, including
cell-to-cell spread within trophoblasts, para-placental
routes (traversing the amino-chorion), autophagy-mediated
placental transmission, ZIKV dissemination seeded from
infected HBCs, and Ab dependent enhancement of ZIKV
infection.112,113 Each of those mechanisms is unique
somehow, indicating the complexity and heterogeneity of
vertical transmitted ZIKV infection, which need to be
further explored in future in-depth mechanistic studies. It is
worthy of note that although some molecules are proposed
as potential receptors or host factors for ZIKV infections in
different organs, such as Axl, Tyro3, and Mertk, none of
them has been validated in the setting of transplacental
infection, which impedes the mechanisms underpinning
strong placental tropism of ZIKV.114,115

Extensive researches have focused on how ZIKV
infection targeting the developing brain independently
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causes neurological damages in fetuses. Nonetheless,
maternal ZIKV infection in human and multiple animal
models resulting in microcephaly was accompanied by
substantial placental insufficiency and abnormalities,
where few studies keep a watchful eye on how placental
structure and function are modified upon ZIKV infection
and the contribution of placental defects to CZS.116,117 In
fact, malfunction of placenta alone could induce CZS-like
diseases. Thus, whether CZS is caused by direct ZIKV
infection or placental insufficiency indirectly (or combined
effects) is another aspect worth pondering. Moreover,
whether ZIKV infection during pregnancy could affect
neonatal development and even long-term health issues
especially in those who had no obvious CZS at birth?
There is evidence that some normal-appearing newborns
born to the mother with ZIKV exposure during pregnancy
developed a microcephaly phenotype during postnatal
development, such as head growth restrictions and brain
neuroimaging abnormalities. Furthermore, motor disor-
ders and neurodevelopmental delay in the language
function in infants can also be observed after birth in
some ZIKV-exposed cases in utero.118 In line with those,
Paul et al.119 did not observe significant morphological
alterations and ZIKV existence in perinatal mice after
intraperitoneal ZIKV infection on pregnant dams, while
manifested postnatal growth impediments and neuro-
behavioral deficits appeared later in postnatal life.
Therefore, a transient ZIKV infection during pregnancy
is likely to affect future development and health of the
neonates and even adulthood health in a long run, which
still needs in-depth mechanistic studies to address.
SARS-CoV-2

Coronaviruses belonging to the family Coronaviridae are
positive-sense RNA viruses.120 To date, the Middle East
respiratory syndrome coronavirus, SARS-CoV, and SARS-
CoV-2 are deadly pathogens with high transmissibility.120

The outbreak of coronavirus disease 2019 (COVID-19)
caused by SARS-CoV-2 seriously threatens the health of
people all over the world.121 Clinical manifestations of
COVID-19 range from asymptomatic, through mildly
symptomatic with cough, fever, myalgia, and malaise to
full-blown viral pneumonia.121 Acute respiratory distress
syndrome belonging to serious COVID-19 can progress to
multi-organ failure that figured the main cause of death
worldwide in infected patients.121 As new evidence
accumulated exponentially due to the increasing number
of infected pregnant women, a picture of how COVID-19
impacts pregnant women and their infants has been
crystallized.122–125

At the beginning of the current SARS-CoV-2 epidemic, a
substantially higher hospitalization percentages in preg-
nant women (31.5%) than non-pregnant women (5.8%)
were reported based on the limited cases.126,127 However,
whether the higher hospitalization rate is due to special
cautions given to the pregnant population rather than
more serious COVID-19 is still controversial.127,128 In
addition, a few maternal death cases were reported in
pregnant women infected with SARS-CoV-2, while most
pregnant women positive for SARS-CoV-2 showed overall
only mild to moderate symptoms of COVID-19.129–134 On
the contrary, a systematic review discovered that pregnant
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women even have a lower incidence of cough, sore throat,
fatigue, headache, and diarrhea. Notably, risk factors such
as race, nutritional status, age, and chronic diseases
including obesity, diabetes, and hypertension could
aggravate COVID-19 related poor outcomes.127,135–137

In general, viral infections on the maternal respiratory
track were associated with higher rates of several adverse
fetal-neonatal consequences, including IUGR, preterm
birth, in some serious cases, even intrauterine fetal demise
and neonatal death.74,137–141 Thus far, most larger cohort
studies surely confirmed the intense relationship between
COVID-19 during pregnancy and iatrogenic preterm
birth.142–144 Interestingly, the increased preterm labor
may be related to a higher rate of cesarean delivery, which
might be the optimal scheme to ensure the safety of both
mother and fetus under the scenario of SARS-CoV-2
infection.145,146 Fortunately, although certain neonatal
abnormalities were observed, the overall frequency of
adverse outcomes in the neonates from women with
COVID-19 showed no significant difference in general.145

Systematic reviews reported that the rates of stillbirth and
neonatal death in pregnancy with COVID-19 were<2.5%
and 0.6%,147,148 respectively, which is comparable with
healthy pregnant women. Despite this, SARS-CoV-2 was
proven to cross the blood-brain barrier, proposing the
possibility that it could attack brain tissues leading to the
potential pathogenesis of neural tube defects.149 Given the
importance of placenta throughout the entire episodes of
pregnancy, information on pathological changes of pla-
centas from mothers with COVID-19 is rapidly increasing.
The most common pathological signature of SARS-CoV-2
infected placentas includes perivillous fibrin diffusion,
maternal and fetal vascular malperfusion, intervillous
thrombi, multi-focal infarctions, and chronic inflammatory
lesions.1,150 However, whether the pathological changes of
placenta are directly caused by the viral infection at the
maternal-fetal interface or secondary to systemic infection
needs further confirmation.
A significant concern regarding COVID-19 during

pregnancy is whether vertical transmission of SARS-
CoV-2 exists and what are the corresponding impacts on
fetal-neonatal outcomes. Recent investigations demon-
strated the presence of SARS-CoV-2 in infected placentas
at different gestation stages through reverse transcriptase
polymerase chain reaction, RNA in situ hybridization,
immunohistochemistry, and electron microscopy, which
suggested potential transplacental infection caused by the
SARS-CoV-2.151–156 For example, Hosier et al.151 found
that the placenta from a pregnant woman with symptom-
atic COVID-19 infection at the second trimester compli-
cated by severe preeclampsia showed SARS-CoV-2
infection localized predominantly to syncytiotrophoblasts
(STBs).Mechanistically, the transplacental transmission of
SARS-CoV-2 is also implicated by extrapolating placental
transcriptomics. The molecular basis of SARS-CoV-2
infection is highly dependent on the angiotensin-convert-
ing enzyme 2 (ACE2) and transmembrane serine protease
2 (TMPRSS2).123 Blockade of ACE2 or TMPRSS2 protein
function can significantly reduce the sensitivity of cells to
the virus, suggesting their expression dynamics may be
responsible for SARS-CoV-2 infectivity, tropism, and
pathogenicity.123,157,158 Single-cell RNA sequencing on
maternal-fetal interface revealed the heterogenous expres-
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sion patterns of ACE2 and TMPRSS2 in different cell
types, which suggests that placentas might be vulnerable to
SARS-CoV-2 floating in the maternal blood and seed the
dissemination of the virus to fetus.159–161

Although the presence of virus in placental cells raises the
possibility of transplacental transmission of SARS-CoV-2,
the evidence supporting intrauterine fetal infection is
controversial. Original studies at the beginning of the
pandemic implicated that the SARS-CoV-2 could spread
vertically based on the detection of immunoglobulin M Ab
specific to SARS-CoV-2 from the neonatal blood following
birth, as well as aggravated immunoglobulin G (IgG) and
inflammatory cytokines.162,163 However, with the increase
of cases and the improvement of supervision system, the
majority of studies believed that vertical transmission of
SARS-CoV-2 should be rare.164–166 No neonatal infection
with SARS-CoV-2 was proved in a recent study involved in
43 pregnant caseswithCOVID-19 on thefirst day of life.167

Perinatal transmission of SARS-CoV-2 still needs further
validation owing to several unaddressed technical issues.
First, for most congenital viral infections, immunoglobulin
M is not a reliable criterion to diagnose an intrauterine
infection due to low sensitivity and specificity, which may
cause an unpredicted high rate of false positive.168

Additionally, a solid proof of vertical transmission of
pathogens such as ZIKV requires the isolation of viral RNA
in fetal or placental tissues within the sterile intrauterine
environment and/or in the newborn.169,170 To exclude
horizontal transmission during vaginal delivery and poten-
tial virions contamination due to intimate contact, an
adequate range of biological samples from bothmother and
neonate (including neonatal nasopharyngeal or rectal
swabs, serum, placenta, amniotic fluid, umbilical cord
blood, and vaginal secretions) should be included and
tested, which could reflect the authenticity of vertical
transmission more precisely. Unfortunately, according to
the transplacental transmission classification system, there
has been no report showing the virus particles can be
isolated from the fetus so far.170 Therefore, the direct and
convincing evidence of SARS-CoV-2 transplacental infec-
tion is still lacking.
Other emerging viruses

Some other emerging viruses, such as Ebola virus, Rift
Valley fever virus (RVFV), and West Nile virus (WNV),
may also threaten maternal and fetal health through
underappreciated mechanisms. For instance, RVFV, as an
arbovirus, is strongly associated with fetal loss and/or
stillbirth in pregnant domesticated animals, where some
same outcomes have been observed in pregnant women
infected by RVFV.171–173 In humans, RVFV could infect
placental cytotrophoblasts (CTBs) and STBs in ex vivo
experiment, which could highlight the possibility of
vertical transmission.174 Indeed, the maternal-fetal trans-
mission of RVFV in the third trimester was reported in a
case study, while the specific transplacental route of RVFV
is still unclear.172 Additionally, several studies have
demonstrated the maternal-fetal transmission of WNV,
and the corresponding abnormalities in the central nervous
system like CZS induced byZIKV.175,176Human placental
extravillous trophoblasts (EVTs) are permissive to WNV
infection, which may disseminate the virus to fetus.175 In
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general, the emerging virus infection during pregnancy
brings great challenges to a healthy pregnancy, which
should be a prioritized research area we need to show
solicitude for in the future.
Placental defense mechanisms

The nosogenesis and substantial consequences resulting
from viral infections during pregnancy still remain largely
uncharacterized, in particular, relatively little is known
about the fundamental biology behind the vertical
transmission of viruses. Although it has been widely
accepted that the placenta acts as a defensive barrier
against viral insults, the molecular mechanisms underlying
control of placental infection are still poorly understood.
Several hypotheses have been proposed to explain how the
placenta avoids viral infections under normal conditions
based on human and mouse studies, which include but not
limited to the physical or anatomical defenses, intrinsic
cellular mechanisms, the constitutive release of antimicro-
bial immunomodulators, and so on8 (Fig. 2). Moreover,
great progress has been achieved regarding the transpla-
cental transmission and pathogenesis of TORCH patho-
gens, especially those advanced insights obtained in animal
models.3,4,177,178 In this section, we will highlight
molecular and cellular signatures of the placenta barrier
function, which not only illustrate the etiology of vertical
transmission but also shed light on the foundation of
possible new therapeutic approaches to mitigate viral
infection-related diseases during pregnancy.

Cellular structure of human placenta and the
corresponding susceptibility to viral infections

The structure of human placenta consists of both floating
villi and anchoring villi. A continuous single layer of
multinucleated STBs sets up the outer lining of floating
villous tree that is in direct contact with maternal blood
flowing into the intervillous space, which is critical to
facilitate maternal/fetal exchange of gases, waste prod-
ucts, and nutrients. Furthermore, the STBs are also a
major cell type undertaking the endocrine function of
human placenta to drive the physiological and metabolic
adaptations to pregnancy. Underneath the STB layer is
the undifferentiated, mononucleated CTBs, which are
anchored to a basement membrane within the placental
villus. The CTBs have high proliferative capacity and
form a monolayer of polarized stem cells, which
eventually differentiate via cell-cell fusion into STBs that
cover the entire villous surface. Another subtype of
differentiated CTBs can invade and remodel the decid-
ualized endometrium, where they are termed EVTs.6,179–
182 Moreover, EVTs are unique in their immune-
privileged status as they are coated with self-antigens
including the major histocompatibility antigen, human
leukocyte antigen G, which is expressed almost exclu-
sively in EVTs and is implicated in the maintenance of
immune tolerance.183

Different subtypes of trophoblasts exhibit differential
susceptibilities to pathogenic infections. Although the
mechanisms are still poorly understood, the STBs have
been shown to resist infections by diverse pathogens. For
instance, in human placental explant cultures, cytomega-
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loviruses could preferentially infect CTBs verse STBs.184,185

Nevertheless, in the recent pandemic, it was proposed that
SRAS-CoV-2 prefers to target STBs probably due to high
abundance of viral receptors on their apical surface.161,186

EVTs are known to be more sensitive to bacterial and viral
infections than the CTBs and STBs, but the mechanisms
underlying this observation are not well defined.187 Indeed,
in naturally infected human term placentas, most cytomeg-
alovirus is predominantly found in the EVTs.188,189

Moreover, chorionic villus explants from first-trimester
placentas have confirmed that ZIKV appears to bypass the
STBs to reproducibly replicate in EVTs.113,190 The are the
most plausible hosts to pathogensmaybe due to the fact that
these cells express human leukocyte antigen G and may
provide a protected niche for viral reservoirs.191 In addition
to trophoblasts, leukocytes derived frommaternal compart-
ments, including decidual NK cells, macrophages, T cell
subsets, and placenta-specific macrophages-the HBCs, not
only play a key role in maintaining the immune tolerance
feature of normal pregnancy but also have some complex
mechanisms for removing pathogens or as a “Trojan
Horse” for viral vertical transmission. For example,
decidual NK cells could limit HIV infection in decidual
macrophages by the contact-dependent cytolysis and IFN
release. On the contrary, a higher permission of HBCs to
ZIKV infection could promote the dissemination of ZIKV
within fetal compartments.116,192,193
Physical defense mechanism

By term, owing to extensive branching morphogenesis of
placenta villi during 9 months of gestation, the overall
epithelial surface area of STB layer reaches approximately
12–14 m2, which forms the frontline of placental defense
restricting the hematogenous spread of pathogens.177

Physical characteristics of placenta syncytium that
naturally confers microbial resistance cover the brush
border formed at the apical surface of STB layer, the
diminished cell–cell junctions, and condensed cortical
actin network.194,195 Cell–cell junctions, intercellular seal
structures formed by various transmembrane proteins
coupled with cytoplasmic adaptors, are essential compo-
nents of the epithelial fence, which were weakened or
exploited by many pathogens in the process of traversing
epithelial barriers.195 Therefore, lack of cell–cell junctions
in STBs may be beneficial for blocking pathogens from a
gateway to fetus in general. The unique cytoskeletal
organization of the STB (such as disordered mesh of actin
microfilament) conduces to its elasticity, while obstruction
of this feature promotes microbial infections. It should be
noted that pathogens accessing to fetus also should
overcome the defensive functions of the cells embedding
in villous stroma like microvasculature of fetal blood
vessels.8
Autophagy

Autophagy is established to be a vital part of the host
immune response to microbial infection and is considered
to directly eliminate intracellular pathogens by mediating
their delivery to lysosomes.196 Trophoblast cells exhibit a
high basal autophagy level at term, which could be used as
a pan-antimicrobial strategy to limit the replication and



Figure 2. Placental defense mechanisms against viral infections. The human placenta exploits disparate cellular and molecular mechanisms of antiviral
defense, which encompasses the physical or anatomical defenses, constitutive release of antimicrobial immunomodulators, autophagy and FcRn
mediated antibodies transplacental transfer. CCL2: C-C motif chemokine ligand 2; CTB: Cytotrophoblast; ECs: Endothelial cells; EVT: Extravillous
trophoblast; FcRn: The neonatal fragment crystallizable receptor; HBCs: Hofbauer cells; HBV: Hepatitis B virus; HIV: Human immunodeficiency virus; IAV:
Influenza A virus; IFNl: Interferon l; IgG: Immunoglobulin G; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; STB: Syncytiotrophoblast;
TORCH: Toxoplasma, Others, Rubella, Cytomegalovirus, and Herpes simplex virus; ZIKV: Zika virus.
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transplacental transmission of various pathogens.197,198

Consistent with this idea, dysregulated autophagy has
been characterized in malaria- and bacteria-infected
human placenta samples.199,200 However, major patho-
gens, known to induce transplacental infection, can evade
or subvert autophagic cellular machinery to survive or
replicate intracellularly. Recently, we have demonstrated
that vertical transmission of ZIKV was significantly
reduced in autophagy-deficient mouse models, consistent-
ly, treatment of autophagy inhibitors also hindered
placental and fetal ZIKV infection and rescued the
corresponding poor pregnancy outcomes.201 In summary,
the effects of autophagy in terms of transplacental
infection might be highly dependent on the pathogens
involved.
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Secretion of antimicrobial immunomodulators
Aside from the protective architecture of human placental,
trophoblasts possess the robust innate immune activity
and secrete antimicrobial molecules to limit infection. We
and others proved that trophoblast-derived IFNs confer
complex protection from viral infections. IFN-a receptor
knockout mice recapitulate the maternal and fetal
phenotypes of transplacental ZIKV infection.117 However,
hyperactivated type I IFN signaling in response to live virus
or viral mimics could result in detrimental outcomes to
fetus including fetal demise and IUGR, which is at least
partly due to deficient trophoblast syncytialization caused
by IFN induced trans-membrane proteins.202–204 There-
fore, the activation of type I IFNs in placenta in response to
infectious signals is a double-edged sword with regards to
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pregnancy outcomes. Type III IFNs (including interferon l
(IFNl1), IFNl2, and IFNl3) also confer resistance to
ZIKV infection in both mice and human placenta, which
may partially explain distinct vulnerability to ZIKV
infection in placentas from different gestational ages.
Exogenous prophylactical and therapeutic IFN-l treat-
ment has been proposed against vertical transmission in
the setting of ZIKV as well.205

TheToll-like receptors,Retinoicacid-inducible gene I-like
receptors, and nucleotide-binding oligomerization domain-
like receptors are pattern recognition receptors expressed at
the maternal-fetal interface throughout pregnancy, whose
expression exhibit both temporal and cell type specific
fluctuations. The activation of antiviral signals downstream
of pattern recognition receptors triggers a potent defense
mechanism utilized by placenta cells to effectively protect
the fetus from pathogen attacks through producing large
amounts of pro-inflammatory cytokines and chemokines
such as tumor necrosis factor-a, interleukin-1b, and C-C
motif chemokine ligand 2.206,207 Indeed, the inhibition of
inflammasome signaling could robustly sensitize tropho-
blasts to the infection of Listeria monocytogenes in human
placental explants, highlighting cytokines secreted from
placenta could limit infections. However, detrimental
actions of interleukin-1b and other pro-inflammatory
cytokines in infected placentas are involved in adverse
neonatal outcomes, suggesting that tightly regulated
immune responses are crucial to sustain placenta homeo-
stasis.208 Besides, human trophoblasts-associated antiviral
microRNAs, such as chromosome 19 miRNA cluster that
are packaged into placental exosomes, were also systemi-
cally isolated from pregnant women, which operate in a
paracrine or autocrine manner to resist infection.209,210

Mechanistically, primary human trophoblast-derived chro-
mosome 19 miRNA cluster family members drastically
limited both RNA and DNA viral infections in non-
placental cells by inducing autophagy, demonstrating a
unique placenta-secreted effector for shielding virus-sensi-
tive cells in placenta from infections.198,211
The neonatal fragment crystallizable receptor
(FcRn) mediated antibodies transplacental transfer

Transplacental passage of IgG begins in the first trimester
of pregnancy and lasts until labor, which sets up another
layer of fetal protection from viral infections.212 Generally,
endocytosis of IgG from maternal blood was initiated by
binding to a canonical IgG shuttle receptor, FcRn, on the
apical side of STBs. Furthermore, a successful transpla-
cental transfer of IgG must cross other two barriers: the
villous stroma and the fetal endothelium. However,
fibroblasts, HBCs, and fetal endothelial cells do not
express FcRn, which remains somewhat a knowledge gap
regarding IgG transfer.213 Some noncanonical Fc recep-
tors, such as FcgRIII and FcgRII, may be engaged in
transplacental IgG transfer as well.213 Recent findings
revealed that the selective transfer of maternal IgG
traversing placenta involved a panel of risks, including
antigen, IgG subclass, and glycan profile, which simulta-
neously determine the efficient placental transfer of
maternal antigen-specific IgG.214 For example, Jennewein
et al.215 demonstrated that di-glycosylated Fc-glycans of
antigen-specific antibodies, selectively binding to FcRn
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and FCGR3A, were preferentially passed across the
placenta. Future studies defining the determinants and
mechanisms of placental IgG transportation will generate
possible new strategies to improve the transfer of maternal
IgGs to the vulnerable fetus and fundamentally mitigate
viral infection-related diseases.
Conclusions and prospects

The mechanisms contributing to maternal and fetal
damages due to viral infections are complex and highly
depend on various pathogenesis factors such as the
infectious power of certain viruses, tissue and cellular
tropism, and host–pathogen interactions in the placenta
niche. Sustained research efforts on understanding how
maternal physiological adaptations to pregnancy govern
different susceptibility to certain viral infections are
needed. Besides, much remains to be learned about the
fundamental and unique features of placental defense
mechanisms that can help us to cope better with emerging
viruses to avoid congenital diseases during pregnancy,
which is especially critical in the context of vertical
transmission. Comprehensive clinical and basic studies
uncovering the etiological nature of viral infections during
pregnancy can empower us with countermeasures to face
new viral epidemics that cause known and unanticipated
maternal and fetal complications. Foundational research
on the development of antiviral treatments and vaccines
effective in the pregnant population with no safety concern
should be prioritized as a powerful weapon to fight the
next epidemics and pandemics.
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