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Distinct regulation of c-myb gene expression by HoxA9,
Meis1 and Pbx proteins in normal hematopoietic progenitors
and transformed myeloid cells
E Dassé1, G Volpe1, DS Walton1, N Wilson2, W Del Pozzo3, LP O’Neill1, RK Slany4, J Frampton1,5 and S Dumon1,5

The proto-oncogenic protein c-Myb is an essential regulator of hematopoiesis and is frequently deregulated in hematological
diseases such as lymphoma and leukemia. To gain insight into the mechanisms underlying the aberrant expression of c-Myb
in myeloid leukemia, we analyzed and compared c-myb gene transcriptional regulation using two cell lines modeling normal
hematopoietic progenitor cells (HPCs) and transformed myelomonocytic blasts. We report that the transcription factors HoxA9,
Meis1, Pbx1 and Pbx2 bind in vivo to the c-myb locus and maintain its expression through different mechanisms in HPCs and
leukemic cells. Our analysis also points to a critical role for Pbx2 in deregulating c-myb expression in murine myeloid cells
cotransformed by the cooperative activity of HoxA9 and Meis1. This effect is associated with an intronic positioning of epigenetic
marks and RNA polymerase II binding in the orthologous region of a previously described alternative promoter for c-myb.
Taken together, our results could provide a first hint to explain the abnormal expression of c-myb in leukemic cells.
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INTRODUCTION
c-Myb is a key regulator of hematopoiesis, influencing aspects of
proliferation, differentiation and programmed cell death through-
out the hematopoietic hierarchy. Abundantly expressed in the
hematopoietic stem and progenitor cell compartments, c-Myb is
downregulated as cells progress toward terminal differentia-
tion.1–3 Confirming its crucial role in hematopoiesis, the
constitutive ablation of the c-myb gene results in a failure to
develop an adult blood system.4 Although the expression and
function of c-Myb have been extensively studied, the mechanisms
underlying its transcriptional regulation remain unclear. To date,
the murine c-myb gene has been described to be constitutively
active. Its downregulation during differentiation has been
attributed to a block in transcriptional elongation within the first
intron combined with posttranscriptional modulation through
the action of specific micro RNAs.5–8 However, to our knowledge,
no studies have addressed the mechanisms promoting and
maintaining high levels of c-myb expression in hematopoietic
progenitor cells (HPCs), where c-Myb has critical functions.2

The need to maintain c-Myb levels above a minimum threshold
in HPCs has been demonstrated in vivo using genetically
engineered mouse models. Conditional loss of c-myb gene
function results in a depletion of the HPC pool,9 and the HPC
compartment is also profoundly affected in mice homozygous for
either a constitutive knock down allele10,11 or hypomorphic
variants of c-myb.12,13 In these cases, the respective reduced
level or compromised activity of c-Myb correlate with the loss of
stem cell quiescence and the acquisition of a myeloproliferative
phenotype characterized by increased peripheral monocytes and

platelets together with corresponding aberrations in the bone
marrow. This phenotype, reminiscent of the myeloproliferative
disorder essential thrombocythemia, adds to a growing body of
evidence linking c-Myb deregulation to hematological disorders.
Likewise, aberrant c-Myb expression has been circumstantially
associated with the development of several types of leukemia
including chronic myeloid leukemia, acute lymphoblastic leukemia
and acute myeloid leukemia (AML). Although high levels of
c-myb transcripts have been directly related to chromosomal
translocation or duplication affecting the c-myb locus in subsets of
acute lymphoblastic leukemia,14,15 the mechanisms underlying
abnormal expression of c-myb in chronic myeloid leukemia or AML
remain unclear. Studies on a model of MLL-ENL-induced AML
demonstrated a critical role for c-Myb in the transforming
potential of the fusion protein.16 The authors suggest that, albeit
having no intrinsic transforming activity, c-Myb potentially serve
as an entry point to influence central growth control. Although the
precise mechanism affecting c-myb gene expression in these cells
was not determined, it was suggested that the transcription
factors HoxA9 and myeloid ecotropic viral integration site (Meis1)
could link MLL-ENL activity to c-myb transcription. How HoxA9 and
Meis1 may influence c-myb expression in these cells or in normal
HPCs remains to be defined.

The Hox proteins represent a family of transcription factors
containing a DNA-binding motif of 60 amino acids known as the
homeodomain. In addition to their role in embryonic develop-
ment,17 considerable evidence shows the importance of HoxA
proteins as key regulators of hematopoiesis. Among the hoxA
genes, highly expressed in hematopoietic progenitors, hoxA9 has
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been linked to a variety of leukemias in which its elevated
expression is often considered to be a marker of poor prognosis.18

The HoxA9 protein is able to form heterodimers or heterotrimers
with members of the TALE (3-amino-acids-loop-extension) protein
families Meis (myeloid ecotropic viral integration site) and Pbx
(pre-B cell leukemia homeobox). Through these complexes, the
TALE factors influence HoxA9 binding affinity and specificity.19 It is
therefore not surprising that like hoxA9, expression of both meis1
and pbx1 has also been closely linked with leukemogenesis. The
meis1 gene locus was first identified in the BHX-2 mouse model as
a site of viral integration in 15% of the induced leukemias20 and its
role in leukemogenesis was subsequently well-established.21 In
human Pre-B ALL, the pbx1 gene was identified as a component of
the t(1,19) chromosomal translocation that results in the genera-
tion of the E2A-Pbx1 transforming protein.21,22 Importantly, the
collaboration between HoxA9 and TALE proteins is suggested
to be essential for their respective transforming capacities. In
particular, Meis1 was shown to drastically lower the latency of
HoxA9-mediated transformation, leading to the rapid onset of a
fully penetrant AML in transplantable mouse models.23

Here, we assess the role of HoxA9 and Meis1 in c-myb gene
regulation in AML and HPCs using representative cell line models.
The HPC7 line is a nonleukemic HPC line ectopically expressing
the LIM-homeodomain protein Lhx2, which retains multilineage
differentiation capacity in response to specific cytokines.24

Importantly, the Lhx2 protein, which allows culture and
expansion of the cells in an undifferentiated state, has been
shown not to alter HPC properties.25 We also used the FMH9 line,
derived from primary HoxA9/Meis1-transformed bone marrow
progenitors, as an AML model. By comparing c-myb regulation in
the HPC7 and FMH9 cellular systems, we demonstrate that the
c-myb gene is a direct target for HoxA9, Meis1, Pbx1 and Pbx2. Our
analysis uncovers major differences in the regulation of c-myb
transcription in the HoxA9/Meis1-transformed cell line compared
with the HPC model, which could explain the overexpression of
c-myb observed in leukemic cells.

MATERIALS AND METHODS
Cell culture and differentiation
HPC7 cells, kindly provided by Dr Lief Carlsson (Umea, Sweden), were
cultured in Stem Pro 34 medium (Invitrogen Ltd, Paisley, UK) and
recombinant stem cell factor (SCF) (100 ng/ml). To induce myeloid
differentiation, stem cell factor was replaced by a mixture of recombinant
cytokines: 20 ng/ml G-CSF, 10 ng/ml GM-CSF, 10 ng/ml IL-3 and 10 ng/ml
IL-6. FMH9 cells were cultured in RPMI medium supplemented with 10%
fetal bovine serum, 50 ng/ml stem cell factor, 5 ng/ml GM-CSF, 5 ng/ml IL-3
and 5 ng/ml IL-6. All the cytokines were purchased from Peprotech EC
(London, UK).

Transfection and plasmids
20� 106 HPC7 cells or 5� 106 FMH9 cells were electroporated using the
Amaxa transfection Kit (Biosystems, Warrington, UK) according to the
manufacturer’s instructions. The expression vector for Pbx1 and short
hairpin RNA (shRNA) for HoxA9, Meis1, Pbx1 and Pbx2 were purchased
from Origene (Cambridge, UK). The plasmids encoding the transcription
factors HoxA9 and Meis1 were as described.16 The cDNA for mouse
Pbx2 was amplified by PCR and introduced into the pcDNA3 vector
(Invitrogen Ltd).

Nuclease hypersensitive site mapping
Cells were washed with PBS and nuclei prepared by resuspension in 1 ml
aliquots of digestion buffer (Tris-HCl 15 mM pH7.5, NaCl 15 mM, KCl 60 mM,
MgCl2 5 mM, glucose 300 mM, EGTA 0.5 mM, NP40 0.1%). For digestion of
nuclei, 0–60 units of DNase I were added to each aliquot and incubated for
10 min at 37 1C. The reaction was terminated by addition of 330ml of stop
solution (EDTA 100 mM, SDS 4%). RNA and proteins were sequentially
digested by addition of 100mg of RNase A and 100mg of proteinase K,
incubated respectively for 1 h and overnight at 37 1C. Following phenol/

chloroform extractions, DNA was ethanol precipitated and resuspended in
water. Quantitative-PCR (Q-PCR) was performed on 100 ng of undigested
and DNAseI-treated DNA.

Chromatin immunoprecipitation (X-ChIP)
Cross linking and X-ChIP were performed as previously described.26

Antibodies against HoxA9 (N-20 X), Meis1 (C-17 X), Pbx1 (P-20 X) or Pbx2
(G-20 X) were purchased from Santa Cruz Biotechnology, Inc. (Heidelberg,
Germany). Antibodies against histone marks were made in-house.

ChIP on chip analysis
A series of 60-base-long oligonucleotides were designed to span the c-myb
locus and compared against the mouse genome, using BlastN, to avoid
repeated or crossreacting sequences. The oligonucleotides were arrayed in
triplicate onto Codelink slides (Amersham GE healthcare, Little Chalfont,
UK) using a Microgrid II arrayer (Biorobotics/Genomic Solutions, Cambridge,
UK) and stored at room temperature until hybridized. Hybridizations were
performed as previously described by Follows et al.27

RESULTS
c-myb cis-regulatory domains encompass multiple Hox and TALE
consensus binding sites
In order to locate potential Hox-TALE functional binding sites, we
set out to identify cis-regulatory modules based on their sensitivity
to nuclease digestion and a corresponding location of consensus-
binding-site sequences. Nuclei from HPC7 cells and HoxA9/Meis1-
transformed FMH9 cells were digested with up to 60 units of
DNAse I before DNA extraction. Following an initial Southern blot
analysis encompassing a wide region of the c-myb locus, our
analysis was refined around regions of interest using a Q-PCR-
based method (Figure 1). This rating of nuclease digestion
highlighted the presence of several sites of hypersensitivity in
the promoter (HS-B) and first intron (HS-C and HS-D), each
encompassing a number of consensus sites for the binding of Hox
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Figure 1. Analysis of DNAseI sensitivity at the c-myb locus. Nuclei
from both HPC7 and FMH9 cells were treated with 0 or 60 units of
DNAseI and the resulting purified DNA was used as a template for
Q-PCR reactions across regions of interest. The ratio between
digested and undigested samples reflects the extent of hypersensi-
tivity across regions covered by the PCR amplicons. The dashed lines
indicate the basal level of digestion across the locus. Error bars
represent the standard error of the mean. The defined regions of
hypersensitivity and a representation of the first and second exon of
the c-myb transcript are shown at the bottom of the figure.
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and TALE proteins. For instance, nine consensus sites for binding
of HoxA9–TALE complexes, such as HoxA9–Meis1 complexes,
were located within the intronic HS-D region, a large nuclease
sensitive area that displays high degrees of sequence conservation
across species. The patterns of nuclease hypersensitivity were
broadly similar in HPC7 and FMH9 cells, although some region-
specific variations appear, for example at the upstream end of
region HS-D.

HoxA9 and Meis1 participate in the regulation of c-myb gene
expression
To investigate the extent to which HoxA9 and Meis1 contribute to
the regulation of c-myb transcription, we manipulated their levels
through shRNA knockdown and overexpression in both HPC7 and
FMH9 cells. shRNA-mediated silencing of HoxA9 and Meis1 were
achieved by transient transfection (Supplementary Figure S1a)
and c-myb RNA levels were measured 24 h later by Q-PCR
(Figure 2a). A reduction of HoxA9 or Meis1 led to a decrease in
c-myb expression in both normal and leukemic cells. In contrast,
enforced expression of HoxA9 and Meis1 (Supplementary Figure
S1b and c), singly or in combination, failed to influence c-myb
expression in the HPC line (Figure 2b). We therefore conclude that
HoxA9 and Meis1, although required to maintain c-myb expres-
sion, cannot further activate c-myb transcription when over-
expressed in the HPC cell line.

Pbx1 and Pbx2 have distinct roles in the regulation of the c-myb
gene
As effective HoxA9- and Meis1-mediated gene regulation can
require the cooperative function of a member of the Pbx family,
we next assessed the role of Pbx1 and Pbx2 in c-myb gene
regulation. The efficiency of knock down or overexpression of
Pbx1 and Pbx2 in HPC7 and FMH9 cells is illustrated in
Supplementary Figure S2. ShRNA-mediated knock down of Pbx1

resulted in reduced c-myb RNA expression in both HPC7 and
FMH9 cells, an effect enhanced when HoxA9 and Meis1 were
cosilenced (Figure 3a). Correspondingly, overexpression demon-
strated the cooperation between Hox and TALE proteins in
regulating c-myb expression in HPCs. Although Pbx1 overexpres-
sion alone did not increase c-myb RNA levels, the combined
enforced expression of Pbx1/Meis1, Pbx1/HoxA9 and Pbx1/Meis1/
HoxA9 resulted in 4-, 7- and 14-fold increases, respectively, of
c-myb mRNA level in HPC7 cells (Figure 3b). Pbx1 therefore acts in
synergy with both HoxA9 and Meis1 in relation to c-myb gene
activation in the HPC line. In contrast, enforced expression of Pbx1
does not increase c-myb RNA levels in FMH9 cells (Figure 3b).
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Figure 2. Effect of the modulation of HoxA9 and Meis1 expression
levels on c-myb RNA expression. Q-PCR analysis of c-myb mRNA
expression was performed on HPC7 and FMH9 cells transfected with
HoxA9 or Meis1 shRNA vectors (a) or corresponding expression
vectors. (b) q-PCR results were normalized against the 18S gene and
compared with the control samples transfected with scrambled
shRNA. Error bars represent the standard error of the mean. Results
are representative of four independent experiments. ***Po0.001;
**Po0.01.
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Figure 3. Effect of the modulation of Pbx1 and Pbx2 expression
levels on c-myb mRNA. q-PCR analysis of c-myb mRNA expression
was performed on HPC7 and FMH9 cells transfected with shRNA
vectors for Pbx1, HoxA9 and Meis1 (a) or corresponding expression
vectors (b). Similarly, vectors expressing Pbx2 shRNA (c) or Pbx2
(d) were used to modulate Pbx2 expression in both cell types alone
or in combination. q-PCR results were normalized against the 18S
gene and compared with the control samples transfected with
scrambled shRNA. Error bars represent the standard error of the
mean. Results are representative of four independent experiments.
***Po0.001; **Po0.01.
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Similar modulations of Pbx2 expression revealed drastic and
opposite effects in normal versus leukemic cells. When over-
expressed alone or in combination with HoxA9 and Meis1 in HPC7
cells, Pbx2 acts as a repressor of c-myb expression, while it
displays activating function in FMH9 cells (Figures 3c and d). In
fact, in the FMH9 cells, Pbx2 function appears to substitute for
Pbx1 ability to cooperate with overexpressed HoxA9 and Meis1 in
activating c-myb expression.

Differential recruitment of HOX-TALE proteins at the c-myb locus
We next tested HoxA9, Meis1, Pbx1 and Pbx2 in vivo binding to
the c-myb locus using crosslinked chromatin immunoprecipita-
tions (X-ChIP). DNA samples generated by ChIP from HPC7 or
FMH9 chromatin were analyzed by Q-PCR using primers covering
the defined regions of nuclease hypersensitivity and relative
enrichments were determined by comparison with matched IgG
ChIP controls. HoxA9, Meis1 and Pbx1 were found associated to
the c-myb HS-D domain, although their precise locations varied
between HPCs and transformed cells (Figure 4). No binding of
these proteins was found on HS-A, HS-B or HS-C. Furthermore,
reflecting its opposite effect on c-myb regulation, Pbx2 binding
was found to be dramatically different between HPCs and

leukemic cell line. In HPC7 cells, Pbx2 was found associated with
HS-A and HS-C, whereas in FMH9 cells, it was found to be located
on the HS-D region. Hence, the repressive activity of Pbx2 on
c-myb expression correlates with its binding to the proximal
promoter and first intron of the gene, while its activating function
is associated with its co-location with HoxA9 and Meis1 at the
HS-D region, immediately upstream the second exon.

Epigenetic modifications and PolII recruitment suggest alternative
c-myb promoter usage in normal and leukemic cells
Our data suggested that most of the differential features of c-myb
regulation comparing HPC7 and FMH9 cells are associated with
the HS-D region. This sequence of the c-myb gene is highly
conserved amongst mammals and has previously been described
as an alternative promoter in human cells.28 In order to locate
potential sites of transcriptional initiation, we mapped two
promoter-related epigenetic marks (H3K9ac and H3K4me3) and
identified sites of RNA poIymerase II (PolII) occupancy in vivo. ChIP-
on-chip analyses revealed that both histone modifications were
broadly enriched over the c-myb promoter and first intron in HPC7
cells but restricted to the intronic HS-D domain in FMH9 cells
(Figure 5a). Mirroring this difference, RNA polII X-ChIP analysis
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revealed enrichments at the c-myb promoter in HPC7 cells,
while it was bound preferentially upstream of exon 2 in FMH9
cells (Figure 5b). Taken together, these results might suggest
that an alternative promoter in the intron immediately upstream
exon 2 could drive the expression of c-myb in myelomonocytic
FMH9 blasts.

However, PolII occupancy could also be reflecting the stage of
lineage differentiation of FMH9 cells compared with HPC7 rather
than being a feature of the transformed state. In order to rule out
this possibility, we looked into the recruitment of PolII in
differentiated HPC7 expressing the myeloid markers CD11b and

Gr1 after 4 (HPC7 D4) or 6 days (HPC7 D6) in presence of GM-CSF,
GC-CSF, IL-3 and IL-6 (Supplementary Figure S3a). In contrast to
FMH9 cells, binding of PolII was preferentially found on exon 1
(ex1) and to a lesser degree upstream of exon 2 in HPC7 derived
cells (Supplementary Figure S3b). Thus, PolII occupancy as
observed in FMH9 cells appears to reflect a leukemia-related
mechanism rather than a myelomonocytic lineage-associated
phenomenon.

To further validate the hypothesis of an alternative promoter,
we first tried a direct approach using a 50-RACE PCR method but
were unsuccessful in obtaining products starting before exon 3,
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probably owing to the presence of a tertiary structure interfering
with the PCR-elongation process. Therefore, to further establish if
Pbx differential binding could override an elongation attenuation
signal or actually activates an intronic alternative promoter,
we proceeded to measure the levels of expression of c-myb
exon 1 and exon 2 by Q-PCR. Indicative of the relative level
of transcription upstream and downstream of the elongation
attenuation signal, the ratio of expression (ex1/ex2) were
calculated for sorted primary KSL (c-kitþ Sca-1þ Lin-) HSC, HPC7
and FMH9 cells (Figure 5c). Noticeably, KSL and HPC7 cells, which
display comparable expression patterns with respect to c-myb,
hoxA9, meis1, pbx1 and pbx2 (Supplementary Figure S3c), also
revealed similar c-myb ex1/ex2 ratios. Indicating the overrepre-
sentation of exon 1 compared with exon 2, these ratios are
consistent with the possibility of a mild elongation attenuation
occurring within the intron 1. In contrast, a ex1/ex2 ratio of 0.28
demonstrates the overrepresentation of exon 2 compared with
exon 1 in FMH9 cells. Associating with high levels of H3K9ac,
H3K4me3 and PolII occupancy on the first intron of the c-myb
gene, this result substantiates the use of an alternative intronic
promoter in FMH9 cells that may override a block in transcription
elongation and could explain the abnormal expression of c-myb in
this model for AML.

DISCUSSION
In this report, we demonstrate the direct involvement of HoxA9
and its cofactors Meis1, Pbx1 and Pbx2 in the transcriptional
regulation of c-myb in HPCs and HoxA9/Meis1-transformed
myeloblastic cellular models. In the HPC cell line, we show that
Pbx1 acts in synergy with HoxA9 and Meis1 to induce c-myb
expression, although Pbx2 displays a repressive activity. In
contrast, in the leukemic model, Pbx2 acts as an activator of
c-myb transcription and seems to substitute for Pbx1. In those
cells, Pbx2 colocates with HoxA9 and Meis1 upstream of c-myb
exon 2 in a region that appears to display promoter properties.

Noticeably, following previous work on the CCRF-CEM lymphoid
leukemia cell line29 and the cloning of a c-myb cDNA, which
5’ suggested alternative transcription initiation within c-myb
intron 1, the human hortologue region was described by Jacobs
and colleague as an alternative promoter relating to several
transcription start sites.28

Specific cooperative interactions between Pbx and Hox proteins
have been shown to modulate the properties of Hox proteins and
influence their DNA-binding specificities.30 Amongst the Hox
proteins, HoxA9 and HoxA10 paralogs exhibit the capacity to
interact with either Meis or Pbx proteins to form DNA-binding
complexes with respective affinities for HoxA/TALE consensus
sequences.19 Meis1 can also bind both HoxA9 and Pbx, which
allows for the formation of HoxA9/Meis1 or Meis1/Pbx dimeric
complexes31 and HoxA9/Meis1/Pbx trimeric complexes.32 We have
observed that HoxA9, Meis1 and Pbx bind the c-myb locus on
different HoxA/TALE consensus sequences in HPC and leukemic
cell lines. The differences of binding sites, in particular in the
intronic HS-D region, could reflect the formation of different
functional complexes in leukemic cells that express high levels of
HoxA9 and Meis1. Interestingly, our result contrasts with the
recent work of Huang et al.,33 which did not identify these
binding, suggesting that the recruitment of HoxA9 and Meis1 may
be subject to external signals and culture conditions.

Imbalances in the expression of HoxA9 and Meis1 are observed
in over 50% of human AML and nearly all ALL-containing
translocations of the MLL gene.34–37 In addition, both proteins
cooperate in inducing AML-like leukemia in mice.23 Similarly,
functional studies have highlighted the collaborative role of Pbx,
whose synergistic function with HoxA9 was shown to be crucial
for myeloid transformation.38 However, the different Pbx family
members appear to participate in leukemogenesis to different

extents: Pbx1 exhibits no synergistic effect with HoxA9 and Meis1
in transforming primary bone marrow cells and inducing leukemia
in a murine transplantable AML model.23 A possible explanation
for this can be found in the work of Shen and colleagues who
showed that HoxA9 and Meis1 preferentially form complexes with
Pbx2 in a myeloid environment.32 Accordingly, Pbx2 or Pbx3 were
found to be crucial to MLL transformation, although Pbx1, which is
expressed to a lesser extent in myeloid cells, proved to be
dispensable.39 It is therefore perhaps not surprising that we find
that Pbx2, but not Pbx1, has a profound effect on the regulation
of c-myb expression in myeloblastic cells. Adding to the fact that
c-myb expression was reported to be a crucial downstream event
of MLL transformation,16 our findings add to the growing body of
evidence linking Pbx2 activity to leukemogenesis. However, a key
role of Pbx2 in normal or deregulated hematopoiesis contrasts
with the apparent lack of phenotype observed in Pbx2 gene
knockout mice,40 although this lack of effect could be due to
redundancy with the other member of the Pbx family. Further
studies involving Pbx2 conditional knockout mice models would
unveil the detailed role of Pbx2 in hematopoiesis.

Remarkably, although the repressive activity of Pbx2 on c-myb
expression in HPCs is associated with its recruitment to the
promoter and the mid-intronic region, its activating function in
leukemic myeloid cells correlates with its binding to the HS-D
regulatory module, together with HoxA9, Meis1 and RNA PolII.
Contrasting with its persistent association with the c-myb
promoter in normal differentiated myeloid cells derived from
the HPC7 cells, the switch in RNA PolII occupancy to the HS-D
region seems to reflect a leukemia-related phenomenon. Such a
feature could be a direct consequence of the inappropriate
expression of HoxA9 and Meis1 in the committed cells, which is
likely to create an environment that favors Pbx2 and RNA PolII
recruitment leading to transcriptional activation of the c-myb gene
despite an attenuation mechanism. In this respect, our findings
could be a first hint regarding the molecular mechanisms
underlying the deregulation of the c-myb gene in certain types
of myeloid leukemia. In the transformed cells, HoxA9, Meis1, Pbx
and RNA PolII binding to the HS-D domain correlate with the
repositioning of promoter-related epigenetic modifications imme-
diately upstream of c-myb exon 2. Incidentally, this highly
conserved region corresponds to a second c-myb promoter and
cluster of transcription start sites that has been characterized in
human cells.28 Positioned downstream of the c-myb elongation
attenuation domain,5 this alternative promoter could drive c-myb
expression in the FMH9 cells although overriding the normal
downregulatory mechanism associated with the differentiation
process. Although the transformed cells display a promyeloblast
phenotype, it is probable that earlier progenitors constituted
the population initially targeted by HoxA9 transforming activity.
Using the HPC7 as a model of nontransformed early progenitors,
we propose that, within the transformation process, HoxA9
overexpression participates in counteracting c-Myb down-
regulation associated with further commitment to the myeloid
lineage rather than activating c-myb expression as reported
by others in different systems.16,33,41 However, the precise
mechanisms underlying the abnormal expression of c-myb
observed in several types of leukemia could have different
origins. Indeed, considering the central role of c-myb during the
different stages of the hematopoiesis, it would not be surprising
to find that various transcriptional and posttranscriptional mecha-
nisms are involved in the control of its expression. Further studies
using in vitro and in vivo leukemic models, as well as other models
of hematopoietic diseases would be required to address these
questions.
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