
METHOD Open Access

Haploflow: strain-resolved de novo
assembly of viral genomes
Adrian Fritz1,2, Andreas Bremges1,2, Zhi-Luo Deng1, Till Robin Lesker1,2, Jasper Götting2,3, Tina Ganzenmueller2,3,4,
Alexander Sczyrba1,5, Alexander Dilthey6,7, Frank Klawonn8,9 and Alice Carolyn McHardy1,2*

* Correspondence: alice.mchardy@
helmholtz-hzi.de
1Department of Computational
Biology of Infection Research,
Helmholtz Centre for Infection
Research, Braunschweig, Germany
2German Centre for Infection
Research (DZIF), Site
Hannover-Braunschweig,
Braunschweig, Germany
Full list of author information is
available at the end of the article

With viral infections, multiple related viral strains are often present due to coinfection

or within-host evolution. We describe Haploflow, a deBruijn graph-based assembler

for de novo genome assembly of viral strains from mixed sequence samples using a

novel flow algorithm. We assess Haploflow across multiple benchmark data sets of in-

creasing complexity, showing that Haploflow is faster and more accurate than viral

haplotype assemblers and generic metagenome assemblers not aiming to reconstruct

strains. We show Haploflow reconstructs viral strain genomes from patient HCMV

samples and SARS-CoV-2 wastewater samples identical to clinical isolates.

Due to co-infection or within host evolution, in viral infections closely related

strains, or haplotypes, might be present, with high average nucleotide identity (ANI)

[1] to one another [2–5]. Modern sequencing technologies can capture this variation

and computational assembly techniques reconstruct the individual genomes from the

resulting data. Currently, there are predominantly two types of methods for this prob-

lem, viral haplotype assemblers [6, 7] and general (meta)genome assemblers [8–12].

Assembly of individual strains is very difficult, especially if variation is low and few

reads span varying sites, resulting in highly fragmented strain genome reconstructions

or consensus assemblies [13, 14].

(Meta)genome assemblers usually represent read data initially as a deBruijn (k-mer)

graph and haplotype assemblers use string graphs [15–18]. String graphs, while being

computationally more expensive to construct [19], due to overlap calculation for all

read pairs, have the advantage of detecting mutations that co-occur on a single read

[6], while for deBruijn graphs, this is limited to mutations occurring within the speci-

fied k-mer length [20]. String graphs are thus more sensitive in matching mutations to

strains. If the strains have long stretches of identical sequences, co-occurrences may

not happen, which typically is then solved by returning fragmented genome assemblies,

where contigs are split between consecutive mutations that cannot be assigned to indi-

vidual strains. As more contextual information is lost in the deBruijn graph, mutations

appear as “bubbles” in the graph, where consecutive vertices are connected by more

than one edge [21, 22]. (Meta)genome assemblers typically consider these bubbles as

errors and follow different approaches for their resolution [22]. The popular SPAdes

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

Fritz et al. Genome Biology (2021) 22:212
https://doi.org/10.1186/s13059-021-02426-8

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-021-02426-8&domain=pdf
mailto:alice.mchardy@helmholtz-hzi.de
mailto:alice.mchardy@helmholtz-hzi.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

assembler only considers one path of the bubble and thus loses the information of the

second strain and reconstructs the dominant strain [9, 13, 23]. MEGAHIT instead ter-

minates contigs prematurely if a bubble is encountered [8]. This leads to fragmented

assemblies in the presence of closely related strains [13].

We here describe Haploflow, a new method and software for the de novo, strain-

resolved assembly of viral genomes, which overcomes the problems for both types of

methods, i.e., low speed versus loss of strain-specific information, by using information

on differential coverage between strains to deconvolute the assembly graph into strain

resolved genome assemblies. Haploflow thus does not require reads spanning multiple

variable sites for strain resolved assembly of low divergent haplotype populations. As it

is based on deBruijn graphs, it approaches the runtime behavior of modern metagen-

ome assemblers. We demonstrate the ability of Haploflow to resolve strains fast and ac-

curately on multiple data sets, including a low complexity HIV strain mixture to a

complex, simulated virome sample consisting of 572 viruses with substantial strain-

level variation, varying abundances and genome sizes as well as two data sets of clinical

human cytomegalovirus (HCMV) and SARS-CoV-2 data.

Results
We next describe the algorithm for creating and manipulating the assembly graph and

the flow algorithm that gave Haploflow its name.

deBruijn and unitig graph creation

The input to Haploflow is a sequence file including read sequences and specifying the

k-mer size for constructing the deBruijn graph. Optionally, the lowest expected strain

abundance (or error rate) can be specified, leading to removal of more rare k-mers from

the graph, for graph simplification. Setting the error-rate size too low possibly makes

the unitig graph and subsequent assembly more complex, while a too high value will

prevent low abundant strains from being assembled.

First, a deBruijn graph is created from the reads, using ntHash [24] for k-mer hash-

ing. Given the reads R = {r1,…, rn}, a deBruijn graph G = (V, E, k) contains all substrings

of length k-1 of R as vertices V and two vertices u and v are connected with a directed

edge, if a substring of length k exists, which has u as prefix and v as suffix [21]. In

addition to this definition, in our deBruijn assembly graph, the count of every encoun-

tered k-mer in R is stored for the respective edge. After creating this deBruijn assembly

graph, all weakly connected components (called CCs, a set of vertices that are con-

nected directly or indirectly to each other in the graph) of the graph are determined.

The connected components are found with repeated depth-first searches, until every

vertex has been visited and its connected component set. Afterwards, CCs are trans-

formed individually into condensed versions of deBruijn graphs, so-called unitig graphs,

where linear paths of vertices, having only one ingoing and one outgoing edge, are col-

lapsed into one vertex.

This unitig graph has the following properties:

a) Every remaining vertex is a junction, having more than one ingoing or outgoing

edge or being a source or sink. This means that all variation is found in vertices, all

non-unique sequences (i.e., occurring in multiple haplotypes) are found in edges.

Fritz et al. Genome Biology (2021) 22:212 Page 2 of 19

b) The unitig graph is a homeomorphic image of the input deBruijn graph, disregard-

ing error correction. This means that no information is lost and the original deBruijn

graph could be reconstructed.

When constructing this unitig graph, for each connected component, so-called junc-

tions, vertices having a different in- from out-degree, or an in- or out-degree of more

than one in the deBruijn graph are identified with a depth-first search. These will be

the vertices of the new unitig graph, and their k-mers are maintained (Additional File

1: Fig. S1). The sequence of all the traversed k-mers is added to the connecting edge,

and we define the length of an edge as the length of this sequence in base pairs. Start-

ing from any junction, the next junction in the deBruijn graph is searched, passing ver-

tices with exactly one ingoing and one outgoing edge until the next junction is found.

Since all junctions are guaranteed to be searched and the transformation is determinis-

tic, the choice of starting junction does not matter. When the next junction is found,

the coverage of all the traversed edges is averaged and checked versus a threshold based

on the error rate (Additional File 1: Fig. S1). If it is above, the target junction is also

added as a vertex to the unitig graph and an edge with the (averaged) coverage value as

the edges coverage is added between the two vertices. If the coverage is below the

threshold, then neither the target vertex nor the edge is created and the next outgoing

edge of the source is considered. This is repeated until all junctions have been searched,

such that no vertices with in-degree = out-degree = 1 are remaining (Fig. S1). The

resulting unitig graph is usually of drastically reduced size in comparison to the original

graph, with sometimes less than 0.01% of vertices remaining. All linear paths of the ori-

ginal graph are condensed into single edges that represent stretches of unique contig

sequences.

For every unitig graph a k-mer coverage histogram is built (Additional File 1: Fig. S1).

These histograms reveal several key properties on our data sets: first, the coverage of

reads belonging to one genome is approximately normally distributed around the “real”

coverage of that genome [19, 20]. Second, if several sufficiently distinct (in terms of

average nucleotide identity) genomes are present in a single unitig graph, all of them

have a corresponding peak in the histogram. The longer a genome, the more different

k-mers it includes, and accordingly, the higher the peak. If genomes are closely related,

the peaks correspond to k-mers that are unique to the individual strains and additional,

smaller peaks for common k-mers (across or within genomes).

Haploflow uses these coverage histograms as indication of the putative number of

genomes [25] and their size relation as well as for error correction. Every read error will

create k erroneous k-mer vertices in the deBruijn graph [22, 26], with low coverage in

comparison to the real coverage cov of the genomes. Since sequencing errors are rare

in Illumina reads, most erroneous k-mers will only appear once [27, 28], with fewer k-

mers appearing multiple times, creating an exponentially decreasing curve in the k-mer

histogram. This information is factored into the error correction with too rare k-mers

being removed (red line, Additional File 1: Fig. S1). The exact method and values used

for error correction can be customized by the user, but by default, all k-mers with a

coverage less than the first inflection point of the coverage histogram are filtered and

every k-mer which has less than 2% of the coverage of its neighboring k-mers. This par-

ameter can be increased when dealing with long read data to reflect the higher number

of errors in current long read technologies.

Fritz et al. Genome Biology (2021) 22:212 Page 3 of 19

Assembly using the flow algorithm

In the second stage, the algorithm operates on the unitig graph. It infers and returns a

set of contigs based on paths of similar coverages throughout the graph. The flow algo-

rithm consists of three steps that are repeated until the whole graph has been resolved

into contigs: (i) finding paths through the graph, (ii) assigning flow values to them, and

(iii) determining the path sequence.

In the first step, the source vertex (with an in-degree of 0) with the highest coverage

is selected from the unitig graph. Starting from this source, a modified Dijkstra’s algo-

rithm [29] is applied, which identifies the fattest path from a source to sink (a vertex

having an out-degree of 0) based on edge coverages (Fig. 1, Fig. 2). The fatness of a

path is defined by the minimal fatness of the edges on the path. The fatness of an edge

is determined as the minimum of its coverage and the fatness of the path from the

source until the current edge [30] and can also be called the “capacity” of the edge. The

fattest path from a source to a sink is then determined by following the edges

Fig. 1 Flow chart of the Haploflow algorithm and its two parts: First, the construction of the deBruijn graph
and operations thereon, namely splitting it by connected components and calculating coverages. Then, the
creation of the unitig graphs per CC and the assembly process consisting of calculating the thresholds and
the coverage histograms and the putative paths through the graphs. Next is the calculation of the concrete
flows and thereby the generation of the contigs and finally the cleaning of the graph and the generation
of the assembly graphs. As intermediate output, the assembly graph is created during every step
(bottom left)

Fritz et al. Genome Biology (2021) 22:212 Page 4 of 19

maximizing fatness until the sink is found. All edges on this path are then marked with

a path number. Subsequently, the coverage for all edges on this path is reduced by the

path fatness, the next source is selected, and the previous steps are repeated until no

edges with coverage remain.

Likely due to technical issues, such as amplification biases [31] and read errors [32],

and biological structures such as genomic repeats [33], coverages do not follow a nor-

mal distribution globally and consequently some consecutive edges in the assembly

graph may exhibit steep changes in coverage. This is the reason why Haploflow uses a

two-step procedure for path finding: First, paths are found through the graph as de-

scribed before. Instead of directly returning contigs for these paths, these paths are only

putative, meaning that all paths and changes to the graph are temporary at first. The al-

gorithm of Haploflow is then able to handle heterogeneous coverages across genomes,

e.g., highly pronounced in amplicon data or sequence data with high error rates, by

using the local, not global coverage distribution, and not absolute coverage, but relative

coverage, i.e., the only assumption is that the ratio between haplotypes is somewhat

conserved. Additionally, putative paths can get removed, if too many of its edges are

already part of a previous putative path (Methods). If a path consists almost only of

edges that have been used before, this is an indicator that these paths would lead to du-

plicated contigs. Finally, this results in a graph where all edges are marked with one or

more paths they are assumed to be on.

Fig. 2 The adapted Dijkstra algorithm used in Haploflow to find fattest paths through the unitig graph.
Instead of determining the shortest paths from the source to all vertices, this algorithm determines the
fattest path. The fatness is initialized as 0 for all vertices, but the source and then the graph is searched
using a breadth-first search and based on the fact that the fattest path from a source s to a sink t is based
on the edge with the lowest coverage along this path (lines 9 to 12)

Fritz et al. Genome Biology (2021) 22:212 Page 5 of 19

In the second part of the path finding, we start again from the source with the high-

est coverage. Since we have all edges marked with the path that they are on, we can se-

lect the edge that is farthest away from our source on the same path and calculate the

fattest path from the source to this sink. If Haploflow is not able to resolve the fatness

unambiguously, for example because two outgoing edges have almost the same fatness,

then the path is terminated in this vertex. This is to prevent formation of chimeric con-

tigs, because locally two strains might have similar coverages. For the final path, a cor-

responding contig is returned and the coverage reduced permanently (see the

“Methods” section). Then, all edges with capacity 0 and all vertices without any edges

are removed and the flow algorithm starts anew from the source vertex. This procedure

is repeated until the graph does not have any edges remaining.

Haploflow has multiple parameters that can be set to improve the assembly, if more

information is given. If no additional information is given, Haploflow has default set-

tings that usually already provide high quality assemblies. All the evaluations in this art-

icle were performed using these default parameters, i.e., a value for k of 41, and an

error-rate of 0.02. The value of k = 41 was chosen since too small (in comparison to

read lengths) values for k lead to more ambiguities and a higher k might lead to frag-

mented assemblies. If k does not exceed 50% of read-size, the assemblies are of com-

parable quality. The error-rate parameter was set to 0.02, because this is the value

assumed to be the upper bound of errors in short-read sequencing [34] and can be in-

creased when dealing with more error-prone reads like those from PacBio or Oxford

Nanopore.

Additional parameters include a setting for detecting strains with very low absolute

abundance (strict), for data sets with exactly two strains (two-strain), as well as an ex-

perimental mode for highly complex data sets with clusters containing five or more

closely related strains.

SARS-CoV-2 clinical and wastewater metagenome data

We reconstructed viral haplotypes using Haploflow from 17 clinical SARS-CoV-2 sam-

ples sampled in Northrhine-Westphalia, Germany (DUS, 5 Illumina short-read sam-

ples) and Madison, Wisconsin (WIS, 6 Illumina short-read and 6 Oxford Nanopore

long-read samples). After correcting for PCR amplification and sequencing errors (see

the “Methods” section), Haploflow identified two strains in nine samples, consistent

with in-sample variation [35–37]. The assembled contigs were assessed with QUAST

[38] using the Wuhan-Hu-1 isolate strain (RefSeq NC_045512.2) as reference genome.

For all samples, Haploflow produced contigs spanning the complete genome, in 13

cases as a single contig. Haploflow reconstructed the consensus genome sequence(s)

found in GISAID [39] with almost 100% identities as the major strain—from both Illu-

mina and MinION data generated for all WIS samples (Fig. 3). For the Wisconsin

strains, which were passaged for up to two rounds in cell cultures, the reconstructed

minor strains from short read data had more evolutionary divergences. In comparison

to calls from the variant caller Lofreq [44], (see the “Methods” section), which performs

particularly well on mixed strain viral data [45], both identified 17 (65.4%) of overall 26

identified variant sites (mutations and up to 2 bp indels). Interestingly, most of these

are C- > T transitions, indicating a tendency to alter genome composition [46]

Fritz et al. Genome Biology (2021) 22:212 Page 6 of 19

(Additional File 1: Table S1). In addition, Haploflow identified three longer deletions.

Five (19.2%) “unique” LoFreq variants are located in error-prone regions (homopoly-

meric or strand biased) or at the very end of the genome. Four further low frequency

sites (< 5%, 15.4%) were found by Haploflow and were also among low frequency

Lofreq predictions.

In a study of eight shotgun metagenome samples of sewage from the San Francisco

Bay Area [47], the authors manually assembled consensus SARS-CoV-2 genomes from

seven samples and subsequently called variants with inStrain [48]. A comparison to

common variants of clinical isolate genomes showed that most of the SNPs found in

the data set could be detected in the isolate genomes, with the more (> 10%) abundant

ones found in strains from California or the US. This and the abundance distribution

of some SNPs over time suggested that the data set captured real genomic variation

and that different SARS-CoV-2 strains were present in this data set. Haploflow with

the option strict 1 (reduced error correction threshold to account for shallow sequen-

cing depth) and scaffolding, assembled full-length SARS-CoV-2 genomes for the same

seven samples, recovering two strains for six of them (Additional File 1: Table S2).

Strikingly, for all assemblies identical genomes of clinical SARS-CoV-2 isolates were

identified in the GISAID database using minimap [49] v2.17 (Additional File 1: Table

S2), mostly from samples obtained in the USA (5), and California (3), highlighting the

ability of Haploflow to recover high quality, strain-resolved viral haplotype genomes

from metagenomic data.

Performance evaluation
We evaluated Haploflow on three simulated data sets with increasing complexity: a

mixture of three HIV strains represented by error-free simulated reads, multiple in-

vitro created mixtures with different proportions of two HCMV strains sequenced with

Fig. 3 Phylogenetic relationships of reconstructed strain genomes inferred with Raxml [40, 41], including
closely related (ANI greater than 99.99%, determined with MASH [42]) strains from GISAID [43]. Strains from
the same sample are indicated by color, and “major” and “minor,” based on their inferred abundances.
Evolutionary events, including mutations, and indels are shown on edges

Fritz et al. Genome Biology (2021) 22:212 Page 7 of 19

Illumina MiSeq [14, 50], and a simulated virome [51, 52] data set of 572 viruses, includ-

ing 417 genomes in unique taxa and 155 genomes in common strain taxa with up to

eleven closely related strains, to assess Haploflow’s ability to assemble complex, larger

data sets. Finally, we assembled HCMV genome data from clinical samples collected

longitudinally over time from different patients [53], to characterize the within- and

across patient genomic diversity of viral strains, including also larger genomic differ-

ences between individual strains in mixed-strain infections, which has not been possible

so far. The evaluation was performed using metaQUAST [54] v.5.0.2, which is com-

monly used to evaluate metagenome assemblies and provides useful metrics for meas-

uring completeness (genome fraction), continuity (NGA50, largest alignment), and

accuracy (mismatches per 100 kb, duplication ratio) of assemblies and has specific op-

tions for analyzing strain-resolved assemblies. In addition, we calculated metrics for

assessing strain-resolved assembly: the strain recall, specifying the fraction of correctly

assembled strains (more than 90 (80)% genome fraction and less than 1 (5) mis-

matches/kb); the strain precision, specifying the fraction of correctly assembled strain

genomes of all provided genome assemblies (true positives defined as in recall; total

number of genome assemblies estimated as number of ground truth genomes with at

least one mapping contig * duplication ratio); and the composite assembly quality score

we previously defined [45]. This composite score takes six common assembly metrics

(genome fraction, largest alignment, duplication ratio, mismatches per 100 kb, number

of contigs and NGA50), normalizes them in the range of all results, such that scoreð
methodÞ ¼ valueðmethodÞ− minðvalueðm∈methodsÞÞ

maxðvalueðm∈methodsÞÞ− minðvalueðm∈methodsÞÞ for genome fraction, largest alignment

and NGA50 and scoreðmethodÞ ¼ maxðvalueðm∈methodsÞÞ−valueðmethodÞ
maxðvalueðm∈methodsÞÞ− minðvalueðm∈methodsÞÞ for the other

metrics, and then weighs with a weight of 0.3 for genome fraction and largest align-

ment, respectively, and a weight of 0.1 for the other metrics.

HIV-3 in silico mixture

HIV, the human immunodeficiency virus, is a single-stranded RNA virus with an approxi-

mately 9.5 kb genome that infects humans, causing AIDS (acquired immunodeficiency

syndrome). HIV evolves rapidly within the host and may also present as multi-strain in-

fections [55, 56]. The three HIV-1 strains 89.6, HXB2 and JR-CSF, which are commonly

used to evaluate viral haplotype assemblers [40, 57], were downloaded from NCBI RefSeq

[41], mixed in the proportions 10:5:2 and error-free reads with a length of 150 bp and

depth of 20,000 created with CAMISIM [42] and the wgsim read simulator [43]. These

genomes differ mainly by SNPs and have an average nucleotide identity (ANI) of ~ 95%.

This threshold was chosen, because experiments on MEGAHIT and metaSPAdes showed

that genomes more closely related than 95% will not be resolved [42].

We benchmarked the quality of strain-resolved Haploflow assemblies for the three

strain HIV data against five other de novo assemblers (SPAdes, metaSPAdes, megahit,

PEHaplo, SAVAGE in de novo mode) with metaQUAST v.5.0.2, using multiple param-

eter settings, if defaults settings were undefined (QuasiRecomb [58], PEHaplo). Further-

more, we assessed five reference-based assemblers (GAEseq [59], SAVAGE ref-based

mode, PredictHaplo, QuasiRecomb and CliqueSNV), which were provided with one

strain genome for assembly.

Fritz et al. Genome Biology (2021) 22:212 Page 8 of 19

Of all evaluated de novo assemblers, Haploflow performed best across all metrics and

the composite assembly score (Additional File 1: Fig. S3, Table S3), assembling all three

strains almost completely (more than 90%), with less than 1 mismatch/kb, providing no

false positive strain assemblies—that for some methods (QuasiRecomb) reached several

thousand strains—and with more than double the assembly contiguity (NGA50) than

the second best method (PEHaplo). Haploflow was the only method assembling all

strain genomes into complete contigs (Fig. 4A). Also in comparison to the reference-

based assemblers, Haploflow performed best. SAVAGE in reference-based mode, run

on a subsample of the data, performed similarly well in five of the eight metrics; how-

ever, it provided a substantially more fragmented assembly (lower NGA50, more con-

tigs) and a strain genome with more mismatches. Haploflow also closely estimated the

true underlying strain proportions, with predicted coverages of 10,371 for HIV 89.6,

5372 for HIV HXB2, and 1745 for HIV JR-CSF.

Fig. 4 A HIV genome structure [60] and Icarus plots [61] for three HIV strains reconstructed by Haploflow.
For each of the three reference genomes, there is one contig spanning almost the complete genome. B
Radar plot of relative performance with commonly used and strain-resolved genome assembly metrics for
Haploflow and 12 other methods on the HCMV benchmark data (best values are at 100%, see the
“Performance evaluation” section). Haploflow, in orange, ranks first in genome fraction, strain recall, strain
precision, and composite score. C Boxplots with median and interquartile range of genome fraction and
NGA50 values across samples for different methods

Fritz et al. Genome Biology (2021) 22:212 Page 9 of 19

HCMV in vitro mixtures

We next evaluated Haploflow on six lab-created mixtures of two HCMV strains se-

quenced with Illumina MiSeq as described previously [14]. HCMV is one of the largest

human pathogenic viruses, causing severe illness in immunocompromised patients and

infants, and possessing a double-stranded DNA genome of more than 220 kb [62]. The

data set includes two different strain mixtures, denoted “TA” (strains TB40 and AD169,

97.9% ANI) and “TM” (strains TB40 and Merlin, 97.7% ANI), with three different mix-

ture ratios each (1:1, 1:10, and 1:50), allowing us to test the ability of assemblers to re-

solve strains at varying abundances. We ran Haploflow on these data and compared the

results to those of twelve other assemblers. These include nine (meta)genome assem-

blers (ABySS, IDBA, MEGAHIT, metaSPAdes, Ray, SPAdes, tadpole, IVA [63] and Vi-

cuna [64]) also widely used for single-cell and virome data because of their accuracies

and speed and three specialized viral haplotype assemblers delivering a result (refer-

ence-based SAVAGE, VirGenA [65] and PEHaplo). Four more viral haplotype assem-

blers, SAVAGE de novo, PredictHaplo [66], CliqueSNV [67], and QuasiRecomb [50],

either did not return results [45] or were terminated after 10 days (Haploflow on aver-

age required 1.5 h per sample). Assemblies were evaluated using metaQUAST v.5.0.2

with the benchmarking workflow QuasiModo [45], based on common assembly met-

rics, the composite assembly score, recall and precision in strain-resolved genome as-

sembly, as before, and the top performing methods falling in the 95–100% range of

results identified for every metric.

Of the 12 evaluated de novo assemblers, Haploflow scored best in 5 of the 8

metrics, followed by metaSPAdes (best in 2 of 8: NGA50, duplication ratio), while

PEHaplo, tadpole, IDBA, Vicuna, and IVA each scored best for one metric, respect-

ively (Additional File 1: Table S4). Haploflow assemblies were of very high quality

(Fig. 4B), recovering the most correct strain genomes (10 of 12), providing the best

strain precision and composite assembly score (9.34 of 10), highest genome fraction

(83.87%, Fig. 4C), and the most contiguous assemblies (NGA50 62,560, Fig. 4C).

Interestingly, the similarly good NGA50 values of metaSPAdes and Haploflow were

obtained in different ways, for the former due to a more contiguous assembly for

the abundant strain (Additional File 1: Table S5), while only Haploflow and the

haplotype assembler SAVAGE in reference-mode recovered more than 50% of the

low abundant strain in several mixtures.

Simulated virome data set

To test Haploflows’ ability to recover viral strain genomes from complex data sets, we

evaluated Haploflow, MEGAHIT, and metaSPAdes on the simulated virome data set

from the Namib desert [51], which includes short-read data simulated from an in silico

mixture of 572 viral genomes created to assess different assemblers [52]. It was not pos-

sible to run the reference-free haplotype-assemblers (SAVAGE, PEHaplo) on this data

set. To assess the evolutionary divergence between the viral genomes, we identified

clusters of similar genomes using dRep [68]. This resulted in 469 clusters in total, out

of which 52 clusters had at least two (and up to 11, Additional File 1: Table S6) mem-

bers with more than 95% ANI (average nucleotide identity), corresponding to 417

“unique” genomes and 155 genomes in common strain clusters. The 95% threshold was

Fritz et al. Genome Biology (2021) 22:212 Page 10 of 19

chosen, since MEGAHIT and metaSPAdes were only able to resolve genomes less simi-

lar than that [42].

For the 155 common strain genomes, Haploflow correctly assembled 13-28.6% more

sequence (62.85% genome fraction versus 55.58% and 48.88% for SPAdes and MEGA

HIT, respectively). This was even more pronounced for clusters with genomes of at

least eightfold coverage, for which 19.8–37.5% more genome sequence was correctly as-

sembled (89.37% versus 74.58% and 64.99% for SPAdes and MEGAHIT, respectively).

For the less abundant strains from these clusters, 32.7–45.3% more genome sequence

was correctly assembled (87.37% versus 65.85% and 60.12% genome fraction, respect-

ively). Even for the complete data set with “unique” genomes and low abundant ge-

nomes, Haploflow reconstructed genome fractions similar to the MEGAHIT and

metaSPAdes assemblers (72.2% and 68.6% versus 66.6% genome fraction; Table S7),

which performed best in the original publication.

Analysis of clinical HCMV data

We used Haploflow with default parameters to reconstruct genomes from longitudinal

clinical samples of eight HCMV positive patients, who had multi-strain infections [53]

(Additional File 1: Table S8). QUAST was used to map Haploflow’s contigs against the

consensus strain of the first time point as reference genome, as the exact underlying

strain genomes in the samples are unknown. Using the QUAST output, in particular

the duplication ratio, the number of strains predicted by Haploflow was determined by

rounding the duplication ratio and then clustering the contigs into that many clusters

using Haploflow’s predicted flow (using python’s sklearn [69] k-means method). For

each of the clusters, QUAST was re-run, again using the consensus as reference gen-

ome. Since the resulting genomes, in particular the low abundant (minor) strains, will

inherently be different to the consensus to some degree, only the genome fraction is

considered a relevant metric here. Additionally, to confirm that Haploflow created ac-

curate strain-resolved contigs instead of consensus contigs, we compared clusters from

the same patient at different time points with each other, finding that contigs from two

clusters from consecutive time points showed ~ 99.9% ANI, while randomly matched

clusters only had ~ 98% ANI.

For all patients with multi-strain infections, Haploflow reconstructed multiple

complete genomes for at least one time point. For most patients, sequencing data of

their infection exist for multiple time points and Haploflow recovered all strains, if the

abundance of the lower abundant strain exceeded 6.8%, once as low as 6.1% (Additional

File 1: Table S8). Haploflow reconstructed the genomes of both, or in two cases three,

strains infecting the patient. Haploflow correctly predicted at least one lower abundant

strain for 19 of 23 (82.6%) time points with multiple strain infections, correctly pre-

dicted 44 strains of the total 48 strains (91.7% recall) and only predicted (parts of) three

unconfirmed, additional strains (93.2% precision). Haploflow also reproduced the re-

sults from the original publication [53], where a strain with a structurally altered gen-

ome established itself as dominant over two consecutive time points in patients SCTR1

and SCTR11, and also recovered three distinct strains from the SCTR18 sample (Add-

itional File 1: Table S8). The samples for which Haploflow did not assemble a second

strain had either a very low abundant second strain (4% for SCTR1-day91), a shallow

Fritz et al. Genome Biology (2021) 22:212 Page 11 of 19

coverage (coverage of 22 and 38 for SCTR1-245 days and SCTR3-320 days) or a com-

bination thereof (6.8% variant at 105 coverage for SCTR1-194 days).

Finally, we tested Haploflow on a HCMV sample for which the genotypes and propor-

tion of both strains were previously determined by motif-matching [70] (Additional File 1:

Fig. S4). Haploflow reconstructed both strains with a total of 19 contigs, 4 for the high

abundant strain and 15 for the low abundant. The high abundant strain assembly matched

the consensus strain with 0.87 mismatches/100 kb, an NGA50 value of 113,718 and

99.84% genome fraction. The contigs produced for the low abundant strain were also

evaluated using the consensus sequence, showing 94.58% genome fraction and an NGA50

of 62,533. The largest contig showed a 7830 base sequence not present in the consensus

sequence, but matching perfectly to another (BE/43/2011) HCMV sequence, demonstrat-

ing the ability of Haploflow to accurately phase different haplotypes.

Runtime and memory consumption

Haploflow’s run time depends on the three main steps (Fig. 1): first reading in the read

data and building the deBruijn graph. For this, every read is split into k-mers, with a

time complexity in O(n) for the number of reads n. Since the maximal number of k-

mers is constant in the number of reads and the length of the reads with |k| =

(length(n) - k)·|n|, it is also in O(k). Next the graph is split into CCs and the unitig

graph constructed, with a time complexity of O(k) using Tarjan’s algorithm [71]. Fi-

nally, the overall complexity of the assembly step is dominated by finding the paths

through the unitig graph. While theoretically there is an exponential number of differ-

ent paths through a graph, every vertex can only be the source of a path once and every

path has length at most k, since vertices cannot be visited multiple times on the same

path. The worst-case complexity of the assembly step is thus in O(k2), where k is the

number of distinct k-mers. In practice, the number of paths is usually limited by the

number of different strains, causing this step to also be linear time complexity.

For runtime assessment we compared Haploflow to SAVAGE and PEHaplo, the only

other haplotype assemblers able to process the HCMV data, though SAVAGE only in

reference-based mode, as well as metaSPAdes and MEGAHIT, which performed closest

to Haploflow in terms of the summary score or is a very fast metagenome assembler,

respectively (Table 1). On the HIV data, Haploflow was more than twice as fast than

SAVAGE. The running time and memory requirements of Haploflow and metaSPAdes

were comparable, while MEGAHIT was most efficient.

On the HIV three strain and the HCMV two strain mixtures, building the deBruijn

graph and creation of the unitig graphs from the reads dominated the overall running

time. For the HIV data, building the deBruijn and unitig graphs took ~ 8min on a lap-

top with 4 cores and 16 GB RAM. The resulting single unitig graph included 281 verti-

ces and assembly finished after 0.6 seconds. For the HCMV data, assembly on the same

laptop required ~ 100minutes, of which 85 were used for building the deBruijn and

unitig graphs from the reads.

Discussion and conclusions
Viral pathogens can evolve rapidly, leading to infections with multiple strains, by

within-host evolution or multiple infections of the same host. Reconstructing their

Fritz et al. Genome Biology (2021) 22:212 Page 12 of 19

genomes in a strain-resolved manner can substantially advance our understanding and

capabilities to combat the diseases they cause. It is also key for genomic epidemiology,

i.e., tracing viral spread using genomic information [72, 73] and genome-based viral

phenotyping [74]. Strains can differ in their phenotypes, such as virulence, resistance,

or the degree of their immune resistance to host immunity, which may be critical for

the choice of therapy.

Strain-resolved de novo assembly from short-read as well as long read data generated

in viral genome sequencing, however, is also extremely challenging. Haploflow fills a

void between fast metagenome assemblers not aiming for strain-level resolution and

viral haplotype assemblers for small viral genomes of a few kb in size. It combines the

best of both worlds for strain-resolved genome assembly, by using the fast algorithms

of the metagenome assemblers, i.e., deBruijn graph based assembly, together with a

specialized flow algorithm for capturing strain variation, which allows to link variants

that do not co-occur on reads.

Taken together, our results demonstrate a substantial performance improvement

in strain-resolved assembly for Haploflow in comparison to sixteen other metagen-

ome and viral haplotype assemblers evaluated across different benchmark data sets.

The benchmark experiments on data sets with varying numbers of strains and

abundances demonstrated that Haploflow can handle data sets with substantial

variation in genomic coverage introduced by amplicon sequencing and resolved

strains at different degrees of evolutionary divergences well, ranging from 95% ANI

(HIV), over 98% ANI (HCMV), to more than 99% ANI (SARS-CoV-2 data). On

the six lab-generated HCMV mixed strain data sets, Haploflow was top scoring in

the most metrics (5 of 8) in comparison to twelve other assemblers. This perform-

ance improvement in strain recall, strain precision, composite score, genome frac-

tion, and NGA50 was largely due to a better assembly of the less abundant strains.

Except for Haploflow and SAVAGE, no method assembled low abundant strains to

50% on average and Haploflow had a far higher NGA50, creating long contigs ra-

ther than a highly fragmented assembly. On the clinical HCMV data tested, Haplo-

flow almost perfectly (91.7% recall and 93.6% precision) assembled strains with

variants predicted by variant callers and very closely predicted the abundances of

second and third strains. On a three-strain HIV data set, Haploflow assembled all

Table 1 Runtime and memory consumption of Haploflow, SAVAGE in de novo mode (version
0.4.1), metaSPAdes (3.14), and MEGAHIT (1.2.9). Time and memory is averaged for the HCMV
mixtures. SAVAGE did not successfully complete on the HCMV in vitro mixtures and the simulated
virome data. Values were calculated using Linux’ time command

Software/
data set

HIV 3 in silico
mixture

HCMV in vitro
mixture

Simulated
virome

Metric CPU user time
(seconds)

Memory
peak (GB)

Avg. CPU user
time (seconds)

Avg. memory
peak (GB)

CPU user time
(seconds)

Memory
peak (GB)

Haploflow 724 0.009 5170 17.509 18,245 47.678

SAVAGE 110,208 102.938 75,518 17.658 – –

PEHaplo 10,127 11.819 58,920 13.998 – –

metaSPAdes 1500 1.054 42,906 65.641 25,996 23.399

MEGAHIT 250 0.269 2910 0.754 9,690 2.148

Fritz et al. Genome Biology (2021) 22:212 Page 13 of 19

three genomes almost entirely, with very few mismatches. This is reflected in Hap-

loflow scoring top in all eight metrics, with a composite assembly score of 9.66

(out of 10), in comparison to 8.02 for the best reference-based assembler Pre-

dictHaplo, and of 6.28 for the best reference-free assembler PEHaplo.

Benchmarking on a rather complex simulated virome data set with 417 taxa with

unique genomes and 155 genomes in common strain taxa showed that Haploflow suc-

cessfully assembled 2-3 strains for “common strain taxa” with 2-11 strains, substantially

better than the state-of-the-art metagenome assemblers and able to process the data

set, other than the evaluated haplotype assemblers. This effect was particularly pro-

nounced for strain genome coverages within a favorable (> 8) range for assembly. The

abundance distribution of taxa in microbial communities is assumed to be oftentimes

log-normal [13], with only a few abundant and a long tail of very low abundant ones

with consequently low coverages. This indicates that Haploflow is suitable for process-

ing many real world data sets and characterizing the more abundant strains, similar to

the reference-based StrainPhlan strain-typing software [75]. Finally, Haploflow recon-

structed multiple, full length SARS-CoV-2 strains from a multi-sample wastewater

metagenome data set with exact matches to clinical isolate genomes found in the GISA

ID database, highlighting the ability of Haploflow to recover high quality, strain-

resolved viral haplotype genomes from metagenomic data.

In addition to short-read data, Haploflow also allows processing of long read data,

which we demonstrated on the SARS-CoV-2 clinical data sets. For most applications

dealing with low viral loads (e.g., the SARS-CoV-2 sequence data used here), PCR amp-

lification is necessary to enrich viral reads. This naturally limits the possible maximum

read length to the length of the PCR product, which is for those applications in the do-

main of short-read sequencing. The speed of the Haploflow algorithm principally also

allows its extension to bacterial data, e.g., by adding multi-core and multi-k support

and modules for handling differently sized and structured microbial genomes. Thus,

strain-resolved assembly from metagenome data for microbial taxa with several closely

related strains could be a future application.

Methods
Exemplary clarification of path finding step realized in Haploflow

In the unitig graph, there are multiple paths between a source and a sink which (sans

sequencing errors) correspond to the different strains present in a sample. The choice

of the correct path follows the fatness algorithm described before. There is another fac-

tor though, namely the length of the fattest path, which Haploflow also maximizes. In

Fig. S1 (Additional File 1), there is exactly one source, the vertex ACTA, and one sink,

the vertex ATGC, but there are infinitely many paths from ACTA to ATGC, since

CTAT to TCTA and TCTA to CTAT form a loop. To prevent this, Haploflow allows

every edge only to be used once in every path finding step. This makes the particular

loop in Fig. S1 “resolvable,” the number of paths reduces to five:

1 : ACTA→CTAT→TCTA→CTAT→ATGC witha fatness of 30
2 : ACTA→CTAT→TCTA→CTAC→CTAT→ATGCwitha fatness of 45
3 : ACTA→CTAT→ATGCwitha fatness of 75
4 : ACTA→CTAC→CTAT→ATGCwitha fatness of 25
5 : ACTA→CTAC→CTAT→TCTA→CTAT witha fatness of 25

Fritz et al. Genome Biology (2021) 22:212 Page 14 of 19

Just going by the fattest graph, path 3 would get selected, but this path is shorter than

all other paths and thus only paths 2 and 5 can be selected, out of which path 2 has the

higher fatness of 45 (the coverage of the first sequence). The next longest and fattest

path is path 5 with a fatness of 25 (the coverage of the last sequence) and finally path 1

remains with a fatness of 30. Paths 3 and 4 do not exist at this point, since the capacity

of all edges has been used.

Algorithmic details of the flow algorithm

The fatness of a path is defined by the lowest fatness value of any edge along this path.

Since the fatness of an edge might be underestimated if the coverage dropped for edges

occurring before this edge in the path, it is not sufficient to just remove the calculated

fatness when reducing flow along a path. Instead, the coverage of the source is set to 0

and for every other edge on the path the flow is reduced to max(capacity - previously_

removed_flow, 0) where previously_removed_flow is the flow removed from the last edge

on the path. Since it is possible that edges are used multiple times, it is also possible

that there are paths that have hardly any edges that are “unique” to that path. We call

an edge unique, if it is part of exactly one path. If the fraction or length of unique edges

of a path is too low, by default less than 500 bases, the path is removed for all edges on

which it is not unique, to avoid overestimating the total number of paths in the graph.

Edges with coverage of 0 will get removed, possibly producing new sources. If Haplo-

flow crosses a junction with two or more outgoing edges with similar coverage values

and cannot make an informed decision, which is the higher abundant path, Haploflow

will break the contig at this position. This happens either if multiple strains have very

similar coverages or on genomic repeats. The exact threshold for this break is derived

using the error_rate and strict/threshold parameter: If the difference is less than the

percentage value given or the (either explicitly stated or derived from strict) threshold,

the contig is broken.

After the path has been found, the coverage of all unique edges on this path is re-

duced to 0, as no other path will be traversing this edge. If there is more than one path

going over the edge, then the flow is reduced, corresponding to the expected coverage

of the current edge. This value is the flow removed from the last visited unique edge,

meaning that local increases and decreases in coverage are also captured. If the cover-

age of an edge would be reduced to 0, even though there are still paths going over this

edge, the coverage is set to a dummy value such that it can still be used. On the other

hand, if a path consists solely of non-unique edges, a duplication is assumed and the

current path is not considered.

When permanently reducing the flow, it is not sufficient to remove the (overall) fat-

ness of the path, since the fatness can only decrease (or stay the same) along a path,

while the coverage values might fluctuate, based on amplification and sequencing strat-

egy. To circumvent this, the flow is reduced by a “local fatness”: all unique edges are re-

moved as described before, for all other edges either flow removed from the last edge

or, if the value is higher, of the average per-base removed flow, is taken as a baseline

and depending on the fact whether the flow decreased or increased within the last edge,

the flow to be removed is decreased and increased accordingly. If there would not be

any flow remaining, a minimal value is left over.

Fritz et al. Genome Biology (2021) 22:212 Page 15 of 19

Reconstruction of full length SARS-CoV-2 sequences

In nine out of 17 SARS-CoV-2 samples and 6 out of 7 wastewater SARS-CoV-2 sam-

ples, QUAST reported a high duplication ratio for the Haploflow assembly; four out of

five DUS and five out of twelve WIS samples. This can be explained by either artificially

duplicating parts of the genome or the presence of two closely related strains. Since

Haploflow did not construct single contig assemblies for all these strains, first a “scaf-

folding” step was performed: all contigs are clustered using k-means clustering on Hap-

loflow’s predicted abundance, the number of clusters depending on the duplication

ratio. Then, using the NC_0455122.2 RefSeq strain, the contigs are extended to

complete genomes, using the contigs bases for all parts of the genome covered by it. If

a part of a genome is not covered by a strain, the bases from the highest abundant

strain with bases at this position are inserted; if no strain has bases at this position, the

reference base is inserted. If a position is covered twice, the base from the contig with

higher flow is chosen. To reduce the number of false positive SNPs, an additional filter-

ing step was performed to remove typical sequencing and PCR related artifacts (Add-

itional File 1: Table S1), such as deletions within homopolymeric sites [34], mutations

in short-tandem repeats [76], and mutations on sites with strong strand bias [77]. This

for example removed a SNP included in the original submission of the DUS sample (in

the HCMV data set) at position 4655 due to a high strand bias value.

Lofreq version 2.1.4 was run on the original reads and the variants filtered by an

abundance value over 5% and a score of > 1000 to reduce the number of false positive

calls. This filtered similar SNPs as the filtering of homopolymeric or strand biased sites

performed for Haploflow.

Supplementary information
The online version contains supplementary material available at https://doi.org/10.1186/s13059-021-02426-8.

Additional File 1:. Fig. S1-S4 and Tables S1-S8

Additional file 2:. Review history

Acknowledgements
We thank Hadi Foroughmand, Sama Goliaei, Thorsten Klingen, Fernando Meyer, and Susanne Reimering for helpful
discussions and Gary Robertson for technical support.

Peer review information
Kevin Pang was the primary editor of this article and managed its editorial process and peer review in collaboration
with the rest of the editorial team.

Review history
The review history is available as Additional file 2.

Authors’ contributions
A.C.M. conceived the research; A.C.M. and A.S. planned and coordinated the study; A.C.M., A.S., A.F., A.B., and F.K.
designed the methodology; A.F. implemented the software. A.F., Z-L.D. and J.G. tested the software. T.R.L., Z-L.D., J.G.,
T.G., and A.D. provided data and analyzed results together with A.F., A.B., A.C.M., and F.K.; A.F. and A.C.M. wrote the
manuscript. All authors read and approved the manuscript.

Funding
Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence
Strategy RESIST – EXC 2155 – Projektnummer 390874280, by the Volkswagen foundation, Communities Allied in
Infection and by the DZIF (project number TI 12.002_00). Open Access funding enabled and organized by Projekt
DEAL.

Availability of data and materials
The code of Haploflow is available with a GPLv3 license on Github under https://github.com/hzi-bifo/Haploflow [78].
The version (v0.2) used for the assemblies in this publication is available under the DOI https://doi.org/10.5281/zenodo.
4106497 [79]. All further scripts used are available on Github under https://github.com/hzi-bifo/Haploflow_

Fritz et al. Genome Biology (2021) 22:212 Page 16 of 19

https://doi.org/10.1186/s13059-021-02426-8
https://github.com/hzi-bifo/Haploflow
https://doi.org/10.5281/zenodo.4106497
https://doi.org/10.5281/zenodo.4106497
https://github.com/hzi-bifo/Haploflow_supplementary

supplementary (DOI 10.5281/zenodo.4916177) [80]. All data sets and results from the performed evaluations are
provided on Publisso with the DOI 10.4126/FRL01-006424451 [81].

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig,
Germany. 2German Centre for Infection Research (DZIF), Site Hannover-Braunschweig, Braunschweig, Germany.
3Institute of Virology, Hannover Medical School, Hannover, Germany. 4Institute for Medical Virology, University Hospital
Tuebingen, Tuebingen, Germany. 5Faculty of Technology and Center for Biotechnology, Bielefeld University, Bielefeld,
Germany. 6Institute of Medical Microbiology and Hospital Hygiene, University Hospital, Heinrich-Heine-University
Düsseldorf, Düsseldorf, Germany. 7Genome Informatics Section, Computational and Statistical Genomics Branch,
National Human Genome Research Institute, Bethesda, MD 20892, USA. 8Department of Computer Science, Ostfalia
University of Applied Sciences, Wolfenbuettel, Germany. 9Biostatistics Group, Helmholtz Centre for Infection Research,
Braunschweig, Germany.

Received: 3 July 2020 Accepted: 29 June 2021

References
1. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad.

Sci. U. S. A. 2009;106(45):19126–31. https://doi.org/10.1073/pnas.0906412106.
2. Waner JL. Mixed viral infections: detection and management. Clin. Microbiol. Rev. 1994;7(2):143–51. https://doi.org/1

0.1128/CMR.7.2.143.
3. Ghedin E, Fitch A, Boyne A, Griesemer S, DePasse J, Bera J, et al. Mixed infection and the genesis of influenza virus

diversity. J. Virol. 2009;83(17):8832–41. https://doi.org/10.1128/JVI.00773-09.
4. Ojosnegros S, Beerenwinkel N, Domingo E. Competition-colonization dynamics: an ecology approach to quasispecies

dynamics and virulence evolution in RNA viruses. Commun. Integr. Biol. 2010;3(4):333–6. https://doi.org/10.4161/
cib.3.4.11658.

5. Kumar N, Sharma S, Barua S, Tripathi BN, Rouse BT. Virological and immunological outcomes of coinfections. Clin.
Microbiol. Rev. 2018;31(4). https://doi.org/10.1128/CMR.00111-17.

6. Baaijens JA, Schönhuth A. Overlap graph-based generation of haplotigs for diploids and polyploids. Bioinformatics. 2019;
35(21):4281–9. https://doi.org/10.1093/bioinformatics/btz255.

7. Töpfer A, Marschall T, Bull RA, Luciani F, Schönhuth A, Beerenwinkel N. Viral quasispecies assembly via maximal clique
enumeration. PLOS Comput. Biol. 2014;10(3):e1003515. https://doi.org/10.1371/journal.pcbi.1003515.

8. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex
metagenomics assembly via succinct de Bruijn graph. Bioinforma. Oxf. Engl. 2015;31(10):1674–6. https://doi.org/10.1093/
bioinformatics/btv033.

9. Nurk S, Meleshko D, Korobeynikov A, Pevzner P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res.
2017;27:824–34.

10. Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing
data with highly uneven depth. Bioinforma. Oxf. Engl. 2012;28(11):1420–8. https://doi.org/10.1093/bioinformatics/bts174.

11. Boisvert S, Laviolette F, Corbeil J. Ray: simultaneous assembly of reads from a mix of high-throughput sequencing
technologies. J. Comput. Biol. 2010;17(11):1519–33. https://doi.org/10.1089/cmb.2009.0238.

12. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I. ABySS: a parallel assembler for short read sequence data.
Genome Res. 2009;19(6):1117–23. https://doi.org/10.1101/gr.089532.108.

13. Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, et al. Critical assessment of metagenome
interpretation—a benchmark of metagenomics software. Nat. Methods. 2017;14(11):1063–71. https://doi.org/10.1038/
nmeth.4458.

14. Deng Z-L, Dhingra A, Fritz A, Götting J, Münch PC, Steinbrück L, et al. Evaluating assembly and variant calling software
for strain-resolved analysis of large DNA viruses. Brief. Bioinform. 2020;22(3). https://doi.org/10.1093/bib/bbaa123.

15. Eriksson N, Pachter L, Mitsuya Y, Rhee SY, Wang C, Gharizadeh B, et al. Viral population estimation using
pyrosequencing. PLoS Comput. Biol. 2008;4(5). https://doi.org/10.1371/journal.pcbi.1000074.

16. Astrovskaya I, Tork B, Mangul S, Westbrooks K, Măndoiu I, Balfe P, et al. Inferring viral quasispecies spectra from 454
pyrosequencing reads. BMC Bioinformatics. 2011;12(S6):S1. https://doi.org/10.1186/1471-2105-12-S6-S1.

17. Mancuso, N., Tork, B., Skums, P., Măndoiu, I. & Zelikovsky, A. Viral quasispecies reconstruction from amplicon 454
pyrosequencing reads. in 2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops (BIBMW)
94–101 (2011). doi:https://doi.org/10.1109/BIBMW.2011.6112360.

18. O’Neil ST, Emrich SJ. Haplotype and minimum-chimerism consensus determination using short sequence data. BMC
Genomics. 2012;13(Suppl 2):S4. https://doi.org/10.1186/1471-2164-13-S2-S4.

19. Miller JR, Koren S, Sutton G. Assembly algorithms for next-generation sequencing data. Genomics. 2010;95(6):315–27.
https://doi.org/10.1016/j.ygeno.2010.03.001.

20. Schatz MC, Delcher AL, Salzberg SL. Assembly of large genomes using second-generation sequencing. Genome Res.
2010;20(9):1165–73. https://doi.org/10.1101/gr.101360.109.

Fritz et al. Genome Biology (2021) 22:212 Page 17 of 19

https://github.com/hzi-bifo/Haploflow_supplementary
https://doi.org/10.1073/pnas.0906412106
https://doi.org/10.1128/CMR.7.2.143
https://doi.org/10.1128/CMR.7.2.143
https://doi.org/10.1128/JVI.00773-09
https://doi.org/10.4161/cib.3.4.11658
https://doi.org/10.4161/cib.3.4.11658
https://doi.org/10.1128/CMR.00111-17
https://doi.org/10.1093/bioinformatics/btz255
https://doi.org/10.1371/journal.pcbi.1003515
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/bioinformatics/bts174
https://doi.org/10.1089/cmb.2009.0238
https://doi.org/10.1101/gr.089532.108
https://doi.org/10.1038/nmeth.4458
https://doi.org/10.1038/nmeth.4458
https://doi.org/10.1093/bib/bbaa123
https://doi.org/10.1371/journal.pcbi.1000074
https://doi.org/10.1186/1471-2105-12-S6-S1
https://doi.org/10.1109/BIBMW.2011.6112360
https://doi.org/10.1186/1471-2164-13-S2-S4
https://doi.org/10.1016/j.ygeno.2010.03.001
https://doi.org/10.1101/gr.101360.109

21. Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA fragment assembly. Proc. Natl. Acad. Sci. U. S. A.
2001;98(17):9748–53. https://doi.org/10.1073/pnas.171285098.

22. Pevzner PA, Tang H, Tesler G. De novo repeat classification and fragment assembly. Genome Res. 2004;14(9):1786–96.
https://doi.org/10.1101/gr.2395204.

23. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A new genome assembly algorithm
and its applications to single-cell sequencing. J. Comput. Biol. 2012;19(5):455–77. https://doi.org/10.1089/cmb.2012.0021.

24. Mohamadi H, Chu J, Vandervalk BP, Birol I. ntHash: recursive nucleotide hashing. Bioinformatics. 2016;32(22):3492–4.
https://doi.org/10.1093/bioinformatics/btw397.

25. Chor B, Horn D, Goldman N, Levy Y, Massingham T. Genomic DNA kmer spectra: models and modalities. Genome Biol.
2009;10(10):R108. https://doi.org/10.1186/gb-2009-10-10-r108.

26. Idury RM, Waterman MS. A new algorithm for DNA sequence assembly. J. Comput. Biol. 1995;2(2):291–306. https://doi.
org/10.1089/cmb.1995.2.291.

27. Melsted P, Halldórsson BV. KmerStream: streaming algorithms for k -mer abundance estimation. Bioinformatics. 2014;
30(24):3541–7. https://doi.org/10.1093/bioinformatics/btu713.

28. Chikhi R, Medvedev P. Informed and automated k-mer size selection for genome assembly. Bioinformatics. 2014;30(1):
31–7. https://doi.org/10.1093/bioinformatics/btt310.

29. Dijkstra EW. A note on two problems in connexion with graphs. In: A note on two problems in connexion with graphs;
1959.

30. luca. CS 261 Lecture 10: the fattest path. in theory. 2011. https://lucatrevisan.wordpress.com/2011/02/04/cs-261-lecture-1
0-the-fattest-path/. 8 Jul 2021.

31. Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, Russ C, et al. Analyzing and minimizing PCR amplification bias in
Illumina sequencing libraries. Genome Biol. 2011;12(2):R18. https://doi.org/10.1186/gb-2011-12-2-r18.

32. Schirmer M, D’Amore R, Ijaz UZ, Hall N, Quince C. Illumina error profiles: resolving fine-scale variation in metagenomic
sequencing data. BMC Bioinformatics. 2016;17(1):125. https://doi.org/10.1186/s12859-016-0976-y.

33. Sivadasan, N., Srinivasan, R. & Goyal, K. Kmerlight: fast and accurate k-mer abundance estimation. ArXiv160905626 Cs
(2016).

34. Laehnemann D, Borkhardt A, McHardy AC. Denoising DNA deep sequencing data—high-throughput sequencing errors
and their correction. Brief. Bioinform. 2016;17(1):154–79. https://doi.org/10.1093/bib/bbv029.

35. Walker, A. et al. Genetic structure of SARS-CoV-2 in Western Germany reflects clonal superspreading and multiple
independent introduction events. medRxiv (2020) doi:https://doi.org/10.1101/2020.04.25.20079517.

36. Rose, R. et al. Intra-host site-specific polymorphisms of SARS-CoV-2 is consistent across multiple samples and
methodologies. medRxiv (2020). https://doi.org/10.1101/2020.04.24.20078691.

37. Moreno, G. K. et al. Limited SARS-CoV-2 diversity within hosts and following passage in cell culture. bioRxiv (2020) doi:
https://doi.org/10.1101/2020.04.20.051011.

38. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinforma. Oxf. Engl.
2013;29(8):1072–5. https://doi.org/10.1093/bioinformatics/btt086.

39. Shu Y, McCauley J. GISAID: global initiative on sharing all influenza data – from vision to reality. Eurosurveillance. 2017;
22(13). https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494.

40. Chen J, Zhao Y, Sun Y. De novo haplotype reconstruction in viral quasispecies using paired-end read guided path
finding. Bioinforma. Oxf. Engl. 2018;34(17):2927–35. https://doi.org/10.1093/bioinformatics/bty202.

41. Brister JR, Ako-Adjei D, Bao Y, Blinkova O. NCBI viral genomes resource. Nucleic Acids Res. 2015;43(D1):D571–7. https://
doi.org/10.1093/nar/gku1207.

42. Fritz A, Hofmann P, Majda S, Dahms E, Dröge J, Fiedler J, et al. CAMISIM: simulating metagenomes and microbial
communities. Microbiome. 2019;7(1):17. https://doi.org/10.1186/s40168-019-0633-6.

43. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools.
Bioinforma. Oxf. Engl. 2009;25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352.

44. Wilm A, Aw PPK, Bertrand D, Yeo GHT, Ong SH, Wong CH, et al. LoFreq: a sequence-quality aware, ultra-sensitive variant
caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res. 2012;
40(22):11189–201. https://doi.org/10.1093/nar/gks918.

45. Deng, Z.-L. et al. Evaluating assembly and variant calling software for strain-resolved analysis of large DNA-viruses.
bioRxiv (2020). https://doi.org/10.1101/2020.05.14.095265.

46. Holmes EC. The evolution and emergence of RNA viruses. New York: Oxford University Press; 2009.
47. Crits-Christoph, A. et al. Genome sequencing of sewage detects regionally prevalent SARS-CoV-2 variants. medRxiv

(2020) https://doi.org/10.1101/2020.09.13.20193805.
48. Olm, M. R. et al. InStrain enables population genomic analysis from metagenomic data and rigorous detection of

identical microbial strains. http://biorxiv.org/lookup/doi/10.1101/2020.01.22.915579 (2020) https://doi.org/10.1101/2020.
01.22.915579.

49. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics. 2016;32(14):
2103–10. https://doi.org/10.1093/bioinformatics/btw152.

50. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial
community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6(8):1621–4. https://doi.org/10.1038/ismej.2
012.8.

51. Hesse U, et al. Virome assembly and annotation: a surprise in the Namib Desert. Front. Microbiol. 2017;8:13.
52. Sutton TDS, Clooney AG, Ryan FJ, Ross RP, Hill C. Choice of assembly software has a critical impact on virome

characterisation. Microbiome. 2019;7(1):12. https://doi.org/10.1186/s40168-019-0626-5.
53. Hage E, Wilkie GS, Linnenweber-Held S, Dhingra A, Suárez NM, Schmidt JJ, et al. Characterization of human

cytomegalovirus genome diversity in immunocompromised hosts by whole-genome sequencing directly from clinical
specimens. J. Infect. Dis. 2017;215(11):1673–83. https://doi.org/10.1093/infdis/jix157.

54. Mikheenko A, Saveliev V, Gurevich A. MetaQUAST: evaluation of metagenome assemblies. Bioinformatics. 2016;32(7):
1088–90. https://doi.org/10.1093/bioinformatics/btv697.

Fritz et al. Genome Biology (2021) 22:212 Page 18 of 19

https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1101/gr.2395204
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1093/bioinformatics/btw397
https://doi.org/10.1186/gb-2009-10-10-r108
https://doi.org/10.1089/cmb.1995.2.291
https://doi.org/10.1089/cmb.1995.2.291
https://doi.org/10.1093/bioinformatics/btu713
https://doi.org/10.1093/bioinformatics/btt310
https://lucatrevisan.wordpress.com/2011/02/04/cs-261-lecture-10-the-fattest-path/
https://lucatrevisan.wordpress.com/2011/02/04/cs-261-lecture-10-the-fattest-path/
https://doi.org/10.1186/gb-2011-12-2-r18
https://doi.org/10.1186/s12859-016-0976-y
https://doi.org/10.1093/bib/bbv029
https://doi.org/10.1101/2020.04.25.20079517
https://doi.org/10.1101/2020.04.24.20078691
https://doi.org/10.1101/2020.04.20.051011
https://doi.org/10.1093/bioinformatics/btt086
https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494
https://doi.org/10.1093/bioinformatics/bty202
https://doi.org/10.1093/nar/gku1207
https://doi.org/10.1093/nar/gku1207
https://doi.org/10.1186/s40168-019-0633-6
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/nar/gks918
https://doi.org/10.1101/2020.05.14.095265
https://doi.org/10.1101/2020.09.13.20193805
http://biorxiv.org/lookup/doi/10.1101/2020.01.22.915579
https://doi.org/10.1101/2020.01.22.915579
https://doi.org/10.1101/2020.01.22.915579
https://doi.org/10.1093/bioinformatics/btw152
https://doi.org/10.1038/ismej.2012.8
https://doi.org/10.1038/ismej.2012.8
https://doi.org/10.1186/s40168-019-0626-5
https://doi.org/10.1093/infdis/jix157
https://doi.org/10.1093/bioinformatics/btv697

55. van der Kuyl AC, Cornelissen M. Identifying HIV-1 dual infections. Retrovirology. 2007;4(1):67. https://doi.org/10.1186/1
742-4690-4-67.

56. Leye N, et al. High frequency of HIV-1 infections with multiple HIV-1 strains in men having sex with men (MSM) in
Senegal. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2013;20:206–14.

57. Baaijens JA, Aabidine AZE, Rivals E, Schönhuth A. De novo assembly of viral quasispecies using overlap graphs. Genome
Res. 2017;27(5):835–48. https://doi.org/10.1101/gr.215038.116.

58. Töpfer A, Zagordi O, Prabhakaran S, Roth V, Halperin E, Beerenwinkel N. Probabilistic inference of viral quasispecies
subject to recombination. J. Comput. Biol. 2013;20(2):113–23. https://doi.org/10.1089/cmb.2012.0232.

59. Ke Z, Vikalo H. A graph auto-encoder for haplotype assembly and viral quasispecies reconstruction. Proc. AAAI Conf.
Artif. Intell. 2020;34:719–26.

60. Splettstoesser, T. English: structure of the HIV-1 genome. It has a size of roughly 10.000 base pairs and consists of nine
genes, some of which are overlapping. (2014).

61. Mikheenko A, Valin G, Prjibelski A, Saveliev V, Gurevich A. Icarus: visualizer for de novo assembly evaluation.
Bioinformatics. 2016;32(21):3321–3. https://doi.org/10.1093/bioinformatics/btw379.

62. Sijmons S, Van Ranst M, Maes P. Genomic and functional characteristics of human cytomegalovirus revealed by next-
generation sequencing. Viruses. 2014;6(3):1049–72. https://doi.org/10.3390/v6031049.

63. Hunt M, Gall A, Ong SH, Brener J, Ferns B, Goulder P, et al. IVA: accurate de novo assembly of RNA virus genomes.
Bioinforma. Oxf. Engl. 2015;31(14):2374–6. https://doi.org/10.1093/bioinformatics/btv120.

64. Yang X, Charlebois P, Gnerre S, Coole MG, Lennon NJ, Levin JZ, et al. De novo assembly of highly diverse viral
populations. BMC Genomics. 2012;13(1):475. https://doi.org/10.1186/1471-2164-13-475.

65. Fedonin GG, Fantin YS, Favorov AV, Shipulin GA, Neverov AD. VirGenA: a reference-based assembler for variable viral
genomes. Brief. Bioinform. 2017;20:15–25.

66. Prabhakaran S, Rey M, Zagordi O, Beerenwinkel N, Roth V. HIV haplotype inference using a propagating dirichlet process
mixture model. IEEE/ACM Trans. Comput. Biol. Bioinform. 2014;11(1):182–91. https://doi.org/10.1109/TCBB.2013.145.

67. Knyazev, S. et al. CliqueSNV: an efficient noise reduction technique for accurate assembly of viral variants from NGS
data. bioRxiv 264242 (2020). https://doi.org/10.1101/264242.

68. Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables
improved genome recovery from metagenomes through de-replication. ISME J. 2017;11(12):2864–8. https://doi.org/10.1
038/ismej.2017.126.

69. Pedregosa F, et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 2011;12:2825–30.
70. Suárez NM, Musonda KG, Escriva E, Njenga M, Agbueze A, Camiolo S, et al. Multiple-strain infections of human

cytomegalovirus with high genomic diversity are common in breast milk from human immunodeficiency virus–infected
women in Zambia. J. Infect. Dis. 2019;220(5):792–801. https://doi.org/10.1093/infdis/jiz209.

71. Tarjan RE. Depth-first search and linear graph algorithms. SIAM J Comput. 1972;1(2):146–60. https://doi.org/10.1137/0201
010.

72. Grenfell BT, Pybus OG, Gog JR, Wood JL, Daly JM, Mumford JA, et al. Unifying the epidemiological and evolutionary
dynamics of pathogens. Science. 2004;303(5656):327–32. https://doi.org/10.1126/science.1090727.

73. Reimering S, Muñoz S, McHardy AC. Phylogeographic reconstruction using air transportation data and its application to
the 2009 H1N1 influenza A pandemic. PLOS Comput. Biol. 2020;16(2):e1007101. https://doi.org/10.1371/journal.pcbi.1
007101.

74. Beerenwinkel N, Däumer M, Oette M, Korn K, Hoffmann D, Kaiser R, et al. Geno2pheno: estimating phenotypic drug
resistance from HIV-1 genotypes. Nucleic Acids Res. 2003;31(13):3850–5. https://doi.org/10.1093/nar/gkg575.

75. Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N. Microbial strain-level population structure and genetic diversity
from metagenomes. Genome Res. 2017;27(4):626–38. https://doi.org/10.1101/gr.216242.116.

76. Tørresen OK, Star B, Mier P, Andrade-Navarro MA, Bateman A, Jarnot P, et al. Tandem repeats lead to sequence
assembly errors and impose multi-level challenges for genome and protein databases. Nucleic Acids Res. 2019;47(21):
10994–1006. https://doi.org/10.1093/nar/gkz841.

77. Guo Y, Li J, Li CI, Long J, Samuels DC, Shyr Y. The effect of strand bias in Illumina short-read sequencing data. BMC
Genomics. 2012;13(1):666. https://doi.org/10.1186/1471-2164-13-666.

78. Fritz, A. et al. Haploflow: strain-resolved de novo assembly of viral genomes. Github. https://github.com/hzi-bifo/Ha
ploflow (2020).

79. Fritz, A., McHardy, A. & Robertson, G. hzi-bifo/Haploflow: Haploflow revision. Zenodo. https://doi.org/10.5281/zenodo.41
06497 (2020).

80. Fritz, A. hzi-bifo/Haploflow_supplementary. Zenodo. https://doi.org/10.5281/zenodo.4916178 (2020).
81. Fritz, A. et al. Haploflow evaluation. Publisso. https://repository.publisso.de/resource/frl%3A6424451 (2020).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Fritz et al. Genome Biology (2021) 22:212 Page 19 of 19

https://doi.org/10.1186/1742-4690-4-67
https://doi.org/10.1186/1742-4690-4-67
https://doi.org/10.1101/gr.215038.116
https://doi.org/10.1089/cmb.2012.0232
https://doi.org/10.1093/bioinformatics/btw379
https://doi.org/10.3390/v6031049
https://doi.org/10.1093/bioinformatics/btv120
https://doi.org/10.1186/1471-2164-13-475
https://doi.org/10.1109/TCBB.2013.145
https://doi.org/10.1101/264242
https://doi.org/10.1038/ismej.2017.126
https://doi.org/10.1038/ismej.2017.126
https://doi.org/10.1093/infdis/jiz209
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010
https://doi.org/10.1126/science.1090727
https://doi.org/10.1371/journal.pcbi.1007101
https://doi.org/10.1371/journal.pcbi.1007101
https://doi.org/10.1093/nar/gkg575
https://doi.org/10.1101/gr.216242.116
https://doi.org/10.1093/nar/gkz841
https://doi.org/10.1186/1471-2164-13-666
https://github.com/hzi-bifo/Haploflow
https://github.com/hzi-bifo/Haploflow
https://doi.org/10.5281/zenodo.4106497
https://doi.org/10.5281/zenodo.4106497
https://doi.org/10.5281/zenodo.4916178
https://repository.publisso.de/resource/frl%3A6424451

	Results
	deBruijn and unitig graph creation
	Assembly using the flow algorithm
	SARS-CoV-2 clinical and wastewater metagenome data

	Performance evaluation
	HIV-3 in silico mixture
	HCMV in�vitro mixtures
	Simulated virome data set
	Analysis of clinical HCMV data
	Runtime and memory consumption

	Discussion and conclusions
	Methods
	Exemplary clarification of path finding step realized in Haploflow
	Algorithmic details of the flow algorithm
	Reconstruction of full length SARS-CoV-2 sequences

	Supplementary information
	Acknowledgements
	Peer review information
	Review history
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Competing interests
	Author details
	References
	Publisher’s Note

