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Abstract: Psilocybin is a classical serotoninergic psychedelic that induces cognitive disruptions
similar to psychosis. Gamma activity is affected in psychosis and is tightly related to cognitive
processing. The 40 Hz auditory steady-state responses (ASSR) are frequently used as indicators to
test the ability to generate gamma activity. Based on previous literature, we studied the impact of
psilocybin on 40 Hz ASSR in healthy volunteers. The study was double blind and placebo controlled
with a crossover design. A sample of 20 healthy subjects (10M/10F) received psilocybin orally
0.26 mg/kg or placebo. Participants were measured four times in total, one time before ingestion
of psilocybin/placebo and one time after ingestion, during the peak of intoxication. A series of
500 ms click trains were used for stimulation. Psilocybin induced a psychedelic effect and decreased
40 Hz ASSR phase-locking index compared to placebo. The extent of the attenuation was related to
Cognition and Affect on the Hallucinogen Rating Scale. The current study shows that psilocybin
lowers the synchronization level and the amplitude of 40 Hz auditory steady-state responses, which
yields further support for the role of gamma oscillations in cognitive processing and its disturbance.

Keywords: psilocybin; psychedelics; auditory steady-state response; model of psychosis; EEG; serotonin

1. Introduction

Psilocybin (O-phosphoryl-4-hydroxy-N, N-dimethyltryptamine) can be found in many
species of psychoactive fungi and is classified as a classical serotoninergic psychedelic drug,
which acts as an agonist at serotonin 5-HT2A/C and 5-HT1A receptors [1]. Psilocybin
has recently received a great deal of attention as a potential therapeutic candidate in
several neuropsychiatric disorders, especially in treating depression and anxiety [2,3].
However, the acute effects of psilocybin are reflected in altered states of consciousness
(characterized by changes in perception (e.g., illusions or pseudo-hallucinations)) and
altered sense of self, thinking and emotion that depend on the dosage and several individual
nonpharmacological variables [4] that are not yet fully understood. Importantly, effects of
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psilocybin on cognitive functions have received increased attention in recent years [5–7],
and a dose-dependent attenuation of behavioral measures related to associative learning,
working and episodic memory was shown [8]. Nonetheless, the extent of the effects of
psilocybin on the neural mechanisms of cognitive functioning is not yet clear.

Psilocybin has been shown to negatively affect the electrophysiological markers of both
early visual (P1 and N170)/auditory (N100) [9–12] and higher-order attentive cognitive
processing (P300) [9,13], but the mismatch negativity (MMN), as a marker of pre-attentive
cognition [9,12], was not attenuated. Similarly, serotoninergic psychedelics, including
psilocin, the active metabolite of psilocybin, have been shown recently to decrease gamma
oscillations in the animal model [14]. Although gamma activity is one of the most valuable
avenues for understanding the neurobiology of cognitive processing [15], the resting state
gamma oscillations are difficult to study using EEG in humans due to contamination with
muscle artefacts.

The 40 Hz auditory steady-state response (40 Hz ASSR) emerged as one of the biomark-
ers that, in a controlled manner, allows evaluation of the ability of the brain to generate
gamma-range activity. Indeed, ASSRs are consistently diminished in magnitude and phase-
locking level in states with disrupted cognition, especially across schizophrenic and bipolar
spectrum disorders with psychosis status, and the severity of illness is linked to the extent
of the reduction [16–20]. Furthermore, alterations of the response are seen in clinically high-
risk subjects for psychosis [21,22], and a recent systematic review confirmed that gamma-
range ASSRs in patients are related to executive and memory functions [23]. In studies
with NMDA receptor antagonist ketamine, a dissociative anesthetic with psychedelic prop-
erties [24], 40 Hz ASSRs were shown to stand as a possible biomarker of cortical NMDA
function that is translatable to schizophrenia and bipolar disorder [25,26]. Surprisingly, no
prior research has evaluated the role of serotoninergic system on ASSRs in detail, although
the importance of serotonin system in neurobiology of psychosis [27–29] and cognitive
processing [30] is well known.

In order to understand whether psilocybin-induced cognitive deficits are attributable
to the attenuated processing within gamma range activity, we studied the effects of acute
psilocybin intoxication on ASSR in healthy volunteers. Based on the similarities of the
psychedelic states induced by psilocybin or ketamine and the psychotic-like state, we
hypothesized that psilocybin would, in a similar manner, impact upon ASSR measures.
Specifically, we expected to observe decreased phase-locking and amplitude of 40 Hz
ASSR and the individual intensity of disruption to be positively linked with the individual
intensity of the psychedelic state and serum psilocin levels.

2. Materials and Methods
2.1. Participants

Participants were recruited from November 2017 to July 2018 through the snowball
method and were initially pre-screened by phone interview for major inclusion/exclusion
criteria (see online Supplementary Material for more detail) and if eligible, they were in-
vited for a face-to-face interview with study investigators. After detailed introduction to the
study design, effects of psilocybin, safety issues, and after answering all the participant’s
questions related to the study, informed consent was obtained and, subsequently, subjects
were screened by the Minnesota Multiphasic Personality Inventory (MMPI-2) [31] and Mini-
International Neuropsychiatric Interview (MINI) [32] for any significant psychopathology.
Participants were excluded if they screened positive for any psychiatric disorder (accord-
ing to ICD-10), as well as any family history of psychotic disorder (up to second degree
relatives). Participants with major physical disorders (intracranial hypertension, arterial or
pulmonary hypertension, a cerebral stroke in the past, cardiac insufficiency, coeliac disease,
and liver dysfunction), regular use of medication (except contraceptives), pregnancy, pres-
ence of ferromagnetic materials in their body and cardio-stimulator, and left-handedness
(evaluated using the Edinburgh Handedness Inventory) were also excluded from the study.
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Finally, 20 healthy volunteers were enrolled (10M/10F, mean age M = 36; SD = 8).
During the screening visit, subjects were physically examined, vital sign measurements
(blood pressure (BP) and heart rate (HR)) were documented, and blood samples were taken
to assess liver function (plasma levels of bilirubin, alanine aminotransferase, aspartate
aminotransferase and gamma-glutamyl transferase). All participants underwent a urine
drug screening test. The same research team that led them through all of the subsequent
measurements examined participants. The study team consisted of three people: (1) a study
clinician (psychiatrist), (2) a second sitter (psychologist or psychiatrist) and (3) a laboratory
EEG technician/nurse. The pair of the study clinician and the second sitter was always
gender balanced. Participants were asked: (1) to remain drug-free until the day of the
experiment (urine drug screening was performed on the day of testing), (2) to abstain from
alcohol for at least one week prior to the session (an alcohol breath test was obtained on
the day of testing), (3) not to eat anything or drink coffee on the day of the experiment,
and (4) not to smoke tobacco for at least two hours prior to administration of the study
medication. The study design was elaborated to correspond to the Guidelines for Safety in
Human Hallucinogen Research [33].

2.2. Study Approval

The study was approved by the local ethical committee of National Institute of Mental
Health and by Czech State Institute for Drug Control. It was approved as a clinical trial
registered under the EudraCT No. 2012-004579-37.

2.3. Experimental Design

A study was planned as a crossover, double blind, placebo-controlled design. Each
participant underwent two sessions, with the interval between measurements set for at least
28 days. On the dosing (experimental) day, participants were physically re-examined by
the study clinician, vital sign measurements (BP, HR) were collected and a short, structured
interview was conducted in order to (1) exclude any new possible contraindications that
would make participants ineligible for the study and (2) again, shortly describe the nature
of effects of psilocybin, risks, side effects and description of the measures that would be col-
lected during the session. Participants subsequently underwent insertion of an intravenous
cannula for blood sampling, and a high-density (256 channels) gel EEG net was mounted
on volunteer’s head. The experiment was performed in a sound-attenuated and electrically
shielded experimental room (Faraday cage) that was decorated with colored blankets on
the wall, candles, and other decorative items, in order to induce a pleasant and relaxed en-
vironment. The whole session lasted approximately 6 h from drug administration. During
the whole experiment, blood samples (for serum psilocin levels) and vital signs (BP/HR)
were collected, as shown in the timeline in Figure S1 in the online Supplementary Material.
Resting-state EEG and other ERPs were also collected but are not reported here.

2.4. Psilocybin Dosage

Psilocybin was manufactured according to good manufacturing practice standards
from THC-Pharm GmbH, Frankfurt, Germany. Gelatin capsules containing 1 and 5 mg
of psilocybin homogenized with Trittici amylum were prepared in the pharmacy of the
Institute for Clinical and Experimental Medicine in Prague, Czech Republic. The dosage
was set according to the weight of the participant to be approximately 0.26 mg/kg, which
should induce psychotic-like symptoms [34,35]. The dose was increased by 1 mg per 5 kg
of body weight. The drug was administered orally in an adjusted number of capsules and
swallowed after drinking 200 mL of water.

2.5. Psychological and Physiological Measures

The Brief Psychiatric Rating Scale (BPRS) [36] was administered 40 min before inges-
tion of the drug and again 60, 175, and 360 min after ingestion. The scale contains 18 items,
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rated by the researcher on a six-point, Likert-type scale ranging from “not present” to
“severe/very strong”.

The Hallucinogen Rating Scale (HRS) [37], which consists of 71 items evaluating
six domain scales (Somasthesia, Affect, Volition, Cognition, Perception and Intensity) was
used. Participants rated each item on a four-point Likert-type scale ranging from “not at
all” to “extremely”. HRS measures the perceptual, somatic and psychological effects of
hallucinogenic drugs.

The Altered States of Consciousness Rating Scale (ASC) [38] was administered just
after the end of session, when the symptoms of intoxication had worn off. It reflects a
subjective rating of the whole experience and consists of 94 items, which are divided
into 11 factors: Experience of Unity (EOU), Spiritual Experience (SE), Blissful State (BS),
Insightfulness (IF), Disembodiment (DB), Impaired Control and Cognition (ICC), Anxiety
(AX), Complex Imagery (CI), Elementary Imagery (EI), Audio-Visual Synaesthesia (AVS),
and Changed Meaning of Percepts (CMP). ASC measures deviation in the subjective
experience or psychological functioning of a normal individual from her/his usual waking
consciousness [39].

2.6. Auditory Stimulation

The auditory steady-state response was recorded 10 min before the ingestion of the
drug and again ~105 min after drug ingestion, around the typical peak of experience and
when most pronounced psychotic-like symptoms were expected [34,40]. Subjects were
laying in the bed with their eyes closed and instructed to focus on the stimulation.

The 40 Hz click stimulation trials lasted 500 ms and consisted of 20 identical clicks.
Each 40 Hz trial was presented 150 times, with an inter-stimulus interval set at 700–1000 ms.
Sounds were presented binaurally through Sennheiser HD 280 earphones; the sound pres-
sure level was adjusted to 60 dB with an AZ8922 digital sound level meter (AZ Instrument
Corp., Taichung City, Taiwan). The click train onset was corrected for jitter and tested by
the EGI AV TESTER hardware.

2.7. EEG Recording

Data were recorded using EGI 256-channel EEG system equipped by Net Amps
400 series amplifier, Fs = 1000 Hz, DC coupling with 256 HydroCel Geodesic Sensor Net
220 MR, and Net Station 5 acquisition software.

2.8. Data Analysis
2.8.1. EEG Data Pre-Processing

The off-line pre-processing of the EEG data was performed with a BrainVision Ana-
lyzer v. 2.2 (BVA). Firstly, the data were filtered by an IIR filter (range 1–200 Hz) and a 50 Hz
notch was used. Then, the data were screened visually for any major artefacts caused by
muscle activity, and artefactual segments (e.g., those generated by rough head movements
etc.) were removed from further processing. As, especially during the psilocybin intox-
ication, participants were clenching their jaws, the outer range electrodes were rejected
from further evaluation. Among the remaining 173 electrodes (layout plotted in Figure S2,
Supplementary Material), channels with excessive noise/artefacts were determined by
careful visual inspection and removed, in order not to contaminate the subsequent indepen-
dent component analysis (ICA). Removed channels were replaced using spherical spline
interpolation of the voltage from surrounding electrodes [41]. As 40 Hz ASSRs are sensitive
to fluctuations in arousal level [42,43], the data were carefully visually screened to exclude
drowsiness and sleep periods: segments with continuous NREM I states lasting more than
15 s were excluded, based on standard criteria [44]. Subsequently, in order to exclude
eye blinks and eye movements, ICA built-in BVA, followed by the manual elimination
of corresponding components (based on typical graphoelements and topographic maps)
were performed, and built-in inverse ICA was used to recompose the data. Afterwards,
the signal was re-referenced to the average of the electrodes. The epochs of 1100 ms were
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selected within the time windows, starting at 250 ms prior to the stimulus onset and lasting
for 850 ms post-stimulus onset.

A wavelet transformation and further time-frequency analyses were performed in
MATLAB and ERPWAVELAB [45]. The complex Morlet wavelet from MATLAB© Wavelet
Toolbox, with frequencies represented from 1 to 60 Hz in 1 Hz intervals between each
frequency, was used for wavelet transformation. The phase-locking index (PLI), time-
frequency transformed evoked potential (EA), and event-related spectral perturbation
(ERSP) measures were calculated. The PLI corresponds to the phase consistency of the
response over epochs and ranges between 0 and 1. The EA corresponds to wavelet-
transformed evoked potential and represents a phase-aligned amplitude measure [45]. The
ERSP measure reflects mean event-related changes in amplitude of the frequency spectrum,
induced in this case by auditory stimulation [46]. The PLI, EA and ERSP curves were
extracted by averaging gamma activity within the 35 to 45 Hz frequency range. To focus on
the late-latency gamma response [47–49], the signal was averaged within the 200 to 500 ms
range. PLIs, EAs and ERSPs were baseline-corrected by subtracting mean activity of the
pre-stimulus period (starting −150 ms before the stimulus onset until −50 ms). The ASSRs
were analyzed as the average of the fronto-central electrodes (see Supplementary Material),
where ASSRs are maximal.

2.8.2. Statistical Evaluation

Repeated measures ANOVAs were performed to encounter the effects of the drug
(psilocybin vs. placebo) and the treatment order (pre-drug vs. post-drug) as individual
factors, and their potential interactions, separately, for PLI, EA and ERSP indices. In order
to assess the drug’s effects in detail, planed contrasts for interaction (type: repeated) with
the weights set at 0 for pre-drug, 1 for post-placebo and −1 for post-psilocybin were used,
as implemented in JASP 0.14.1 [50].

To see the connection between psychological and psychiatric measures of intoxication
intensity and ASSR, the scores on 11 factors of ASC, 6 factors of HRS, and the BPRS values
obtained at 60 and 175 min were correlated to PLI, EA and ERSP measures obtained after
psilocybin. Additionally, the intensity of the effect measured as the pre-psilocybin to post-
psilocybin difference for PLI, EA and ERSP values were correlated to the scales. Pearson
correlation coefficients and other statistics that are part of Supplementary Material were
calculated using IBM SPSS Statistics 22.

3. Results

Out of 20 enrolled subjects, the final sample consisted of 12 subjects. The data of
eight subjects could not be used due to the following reasons: two subjects had decreased
vigilance during the placebo session, one was excluded due to premature termination
(subject participated in one session only), and five other subjects were excluded due to
insufficient data quality. Several participants had a previous history of psychedelic use
(n = 6) and others were drug-naive (n = 6). Five participants had previous experience with
psilocybin (not fulfilling F16 diagnosis).

3.1. Psilocin Pharmacokinetics

The average dose of psilocybin used was 17.83 mg (15–21 mg). The highest psilocin
serum levels, 13.63 ng/mL (SD ± 4.61), were observed at 120 min after ingestion, then
dropped to 7.46 ng/mL (SD ± 2.02) at 240 min and to less than 5 ng/mL 360 min after
ingestion (Table S1, online Supplemental Material).

3.2. Effects of Psilocybin on Subjective Experience and Psychopathology

Analyses of ASCs revealed a significant effect of psilocybin compared to the placebo
in all subscales. BPRS measured at 60 and 175 min also revealed a significant effect and,
similarly, the effects of the treatment were significant in almost all subscales of HRS (see
Figure 1A,B and the online Supplementary Material for more information).
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Figure 1. (A) The graph shows comparisons of 11 factors from the Altered states of consciousness
scale, including the clustering of factors into three main subscales Oceanic boundlessness, Self-
disintegration and Perception in 12 subjects during psilocybin intoxication vs. placebo. (B) The graph
shows comparison of 6 factors from the Hallucinogen rating scale in 12 subjects during psilocybin
intoxication vs. placebo. (C) Grand averages of the PLI, EA and ERSP curves across fronto-central
ROI in pre-placebo, post-placebo, pre-psilocybin, and post-psilocybin conditions. (D) Time-frequency
plots of PLI, EA and ERSP. (E) Scatterplots showing significant correlations between PLI difference
values and facets of HRS—affect, cognition; scatterplot showing significant correlation between
PLI values in the peak of intoxication and HRS facet intensity. Legend: PLI = Phase-locking index;
ERSP = Event-related spectral perturbation; EA = Evoked amplitude; Pre = measurement before drug
intake; Post = measurement in the peak of intoxication.
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3.3. Vital Signs

At the peak of intoxication (60 min after ingestion), psilocybin led to a mild but
significant increase in systolic and diastolic BP of 13–21 mmHg, but not an increase in heart
rate (for details see online Supplementary Material).

3.4. 40 Hz Auditory Steady-State Response

The statistical evaluation was performed on the fronto-central ROI, where 40 Hz ASSRs
show maximal activation (see Figure S2 in Supplementary Material for electrodes) [51,52].
The grand-averaged PLI, EA and ERSP curves for pre/post placebo and pre/post psilocybin
conditions are plotted in Figure 1D. The individual PLI curves in all experimental conditions
are presented in Figure 2. Means and standard deviations of PLI, EA and ERSP before
and after placebo and before and after psilocybin are presented in Table S2 in the online
Supplementary Material.
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conditions. X axis—time in milliseconds, Y axis—PLI values.

3.4.1. Phase-Locking Index (PLI)

Significant effects of drug (psilocybin vs. placebo), F (1,11) = 7.301, p = 0.021, ηp
2 = 0.399

and of treatment order (pre-drug vs. post-drug), F (1,11) = 10.097, p = 0.009, ηp
2 = 0.479 were

observed. The interaction between the factors was not significant, F (1,11) = 1.081, p = 0.321,
ηp

2 = 0.089; however, the planned contrast analysis for interaction was significant (t = 2.532,
p = 0.019) for the weights 0 0 1 −1, indicating that PLIs at the pre-placebo and pre-psilocybin
stages did not differ, and post-placebo PLIs were higher than post-psilocybin values.

3.4.2. Evoked Amplitude (EA)

We found significant effects for drug condition, F (1,11) = 7.842, p = 0.017, ηp
2 = 0.416

and treatment order, F (1,11) = 11.857, p = 0.005, ηp
2 = 0.519, but no interaction between the

drug and treatment order was observed (F (1,11) = 1.263, p = 0.285, ηp
2 = 0.103). However,
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planned contrast analysis for the interaction was significant (t = 2.721, p = 0.013) for the
weights 0 0 1 −1, indicating that EAs at the pre-placebo and pre-psilocybin stages were
similar, and post-placebo EAs were higher than post-psilocybin measures.

3.4.3. Event-Related Spectral Perturbation (ERSP)

We did not find significant effects of drug condition, F (1,11) = 4.764, p = 0.052, ηp
2 = 0.302,

but significant effects of treatment order, F (1,11) = 6.282, p = 0.029, ηp
2 = 0.363 were observed.

No interaction between drug and treatment order was observed, F (1,11) = 0.358, p = 0.562,
ηp

2 = 0.032. A planned contrast analysis for interaction was not significant (t = 2.002, p = 0.058)
for the weights 0 0 1 −1, indicating that ERSPs at the pre-placebo and pre-psilocybin stages
did not differ, and post-placebo ERSPs tended to be higher than values at post-psilocybin.

3.5. ASSR Correlations with Psychometric Measures and Psilocin Plasma Levels

Only the scores on the Intensity subscale of HRS were negatively correlated to PLI
values obtained after psilocybin intoxication (r = −0.59, p < 0.05). A significant relation-
ship between the intensity effect for PLI and the two subscales of HRS was observed:
Cognition (r = 0.674, p < 0.05) and Affect (r = 0.628, p < 0.05) (see Table S3 in online
Supplementary Material). A positive relationship between Cognition and intensity effect
for EA (r = 0.605, p < 0.05) was also evident. There were no other significant correlations
between the 11 factors of the ASC and any of the measures of ASSR (PLI, ERSP and EA, see
Table S5 in online Supplementary Material). There was no significant relationship between
BPRS measured at 60 min and 175 min and any of the ASSR measures (see Table S6 in online
Supplementary Material). There was no significant relationship between the measures of
ASSR and the level of psilocin in the blood samples at 120 min. The results are shown in
Table S7 in the online Supplementary Material.

4. Discussion

The main finding of our study is that psilocybin intoxication resulted in a significant
reduction of phase-locked measures of 40 Hz ASSRs. Moreover, the intensity of the effect
(pre-post difference) for the phase-locking was strongly related to the state of Cognition
and Affect according to the HRS scales, and the phase-locking after psilocybin intoxication
was inversely related to the Intensity scores of HRS. Importantly, despite the fact that the
reduced PLI and EA were observed during the peak of psilocybin intoxication, we did not
find any correlations with the plasma levels of psilocin at 120 min after ingestion.

Psilocybin, acting as an agonist at serotonin 5-HT2A/C and 5-HT1A receptors [1] is
known to mimic positive-like symptoms and, thus, it is also used as a serotoninergic model
of psychosis [27,40]. Indeed, a single dose of psilocybin produced a significant increase in
psychotic symptoms (Supplementary Material); however, no correlations between ASSR
measures and the measures evaluated by the ASCS and BPRS scales were observed. The
40 Hz ASSRs were suggested as potential biomarkers of psychosis [53] and sensitive marker
of excitation/inhibition (E/I) balance in the brain [49,54], as supported by numerous animal
studies targeting glutamate- and GABA-ergic transmission [26,55,56]. Previous studies
in animal models demonstrated that 5-HT2A and 5-HT1A receptors finely tune the am-
plitude of gamma oscillations [57], and serotonin-boosting medications suppress gamma
activity [58,59], possibly through 5-HT1AR [57]. Our recent study [14] showed the global
desynchronization of gamma activity by tryptamines (such as psilocin) administered to rats.
Thus, we expected that psilocybin would attenuate the gamma response in a similar man-
ner, as seen in various states with disrupted E/I balance and cognition, including psychosis
or during intoxication with other psychedelic substances, such as ketamine [25,26,54]. The
current findings on the phase-locked measures of 40 Hz ASSRs fully support this notion,
and the insignificant finding for the ERSP that reflects the event-related changes in power
relative to a pre-stimulus baseline may probably be attributed to the higher susceptibility of
this measure to noise in EEG signal, compared to PLI and EA. Moreover, the results, along-
side the previous reports on the reduced phase synchronization and power of 40 Hz ASSRs
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in cannabinoid models of psychosis [60] and increased power in dopaminergic model [61],
suggest a possible link between 5-HT, cannabinoid, dopaminergic and, especially, NMDA
functioning. However, more research is needed to elucidate this connection with respect to
the characteristic psychological effect shared by all these pharmacological manipulations.

It was shown earlier that psilocybin reduces coupling between the posterior cingulate
cortex and the medial prefrontal cortex [62]; these areas were recently shown to contribute
to 40 Hz ASSRs [63], and are implicated in memory and executive control [64]. Overall,
the observation of reduced 40 Hz ASSRs after psilocybin ingestion is in congruence with
the assumption that, under the influence of serotoninergic psychedelics, the “primary
states” of the brain are elevated, so the brain function is disorganized, affecting reality-
testing and self-awareness [65]. Importantly, the reduction of ASSRs during psilocybin
intoxication was evident only in subjects with initially stronger ASSRs (details in Figure 2).
This suggests that at a certain low level of inhibition/excitation balance, as indexed by
ASSR, the drug’s effects are not prominent. This observation is in accordance with the
recent report [66] in patients with schizophrenia, where subjects with larger ASSR responses
had more robust cognitive gains in response to targeted cognitive training. It is possible
that the “baseline” (i.e., pre-intervention) gamma activity may stand as an index of the
brain’s overall “adaptive integrity“ of its lower-level perceptual networks. With this line
of thinking in mind, the positive relationship between the intensity of PLI change and
Cognition and Affect subscales of HRS (meaning stronger distortion of cognition and affect
alongside the larger drug-induced reduction in PLIs) is an interesting finding, as, in our
previous work, we have seen similar linkage between these measures and P300 [9]. This is
also supported by a negative correlation between the Intensity scores of HRS (measuring
the state of the drug effect) and PLI values after the psilocybin intoxication. It is plausible
that experiencing intense emotional states contributes to the disturbance of cognitive
processing [67], as serotonin possibly relaxes prior assumptions to habitual responses and
5-HT2AR mediates enhanced brain plasticity [68]. Under serotoninergic psychedelics,
the brain approaches criticality [69], and is thus sensitive to perturbation, while phase
synchronization of the brain and, possibly, executive functioning are attenuated. Taken
together, our findings yield further support for the role of gamma oscillations in cognitive
processing and its disturbance.

Finally, the complex methodology of the current study, including collection of the
ASSRs in each participant four times, allowed an evaluation of the test-retest stability
of the response. Several previous works reported a good test-retest stability of 40 Hz
ASSRs in both clinical [70,71] and healthy samples [72,73]. Our observation goes further by
providing evidence that ASSRs remain individually consistent, even after pharmacological
intervention (see Tables S8–S10 in the online Supplementary Material).

Limitations

The main limitation of this study is a relatively small final sample size. Future studies
should seek to enroll larger groups of participants, and potentially not exclude data based
on the signs of early sleep stages. Nevertheless, the double blind, placebo-controlled
investigation with a crossover design allowed evaluation of the effect of interest.

5. Conclusions

The current study showed that psilocybin lowered the synchronization level and the
amplitude of 40 Hz auditory steady-state responses. These changes were associated with
subjective experiences of Affect, Cognition and Intensity. The result yields further support
for the role of gamma oscillations in cognitive processing and its disturbance.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jpm12061004/s1, Figure S1: The timeline of the experimental session;
Figure S2: 256 channel EEG map; Figure S3: Mean difference in blood pressure and heart rate during
psilocybin intoxication; Figure S4: Mean values for Factors 1–5 of BPRS for psilocybin intoxication
during baseline, at 60 and 180 min and end of session 360 min; Table S1: Psilocin plasma levels during
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intoxication with psilocybin; Table S2: Means and standard deviations of three ASSR measures; Table S3:
Pearson correlation coefficient of HRS questionnaire and difference measures of ASSR; Table S4: Pearson
correlation coefficient of HRS questionnaire and measures of ASSR in the peak of intoxication.; Table S5:
Pearson correlation coefficient of 5D-ASC questionnaire and measures of ASSR; Table S6: Pearson
correlation coefficient of BPRS measured in 60 and 175 min since administration of psilocybin and
measures of ASSR; Table S7: Pearson correlation coefficient of psilocin level in 120 min and measures
of ASSR measured in the peak of intoxication; Table S8: Pearson correlation coefficient of measure
of ASSR—Evoked amplitude; Table S9: Pearson correlation coefficient of measure of ASSR—Phase-
locking index; Table S10: Pearson correlation coefficient of measure of ASSR—Event-related spectral
perturbation. Refs. [9,74,75] cited in Supplementary.
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3. Więckiewicz, G.; Stokłosa, I.; Piegza, M.; Gorczyca, P.; Pudlo, R. Lysergic Acid Diethylamide, Psilocybin and Dimethyltryptamine

in Depression Treatment: A Systematic Review. Pharmaceuticals 2021, 14, 793. [CrossRef] [PubMed]
4. Studerus, E.; Gamma, A.; Kometer, M.; Vollenweider, F.X. Prediction of Psilocybin Response in Healthy Volunteers. PLoS ONE

2012, 7, e30800. [CrossRef]
5. Meinhardt, M.W.; Pfarr, S.; Fouquet, G.; Rohleder, C.; Meinhardt, M.L.; Barroso-Flores, J.; Hoffmann, R.; Jeanblanc, J.; Paul,

E.; Wagner, K.; et al. Psilocybin targets a common molecular mechanism for cognitive impairment and increased craving in
alcoholism. Sci. Adv. 2021, 7, eabh2399. [CrossRef]

6. Vollenweider, F.X.; Preller, K.H. Psychedelic drugs: Neurobiology and potential for treatment of psychiatric disorders. Nat. Rev.
Neurosci. 2020, 21, 611–624. [CrossRef]

http://doi.org/10.31887/DCNS.2019.21.2/dnutt
http://doi.org/10.1016/j.jad.2021.09.041
http://www.ncbi.nlm.nih.gov/pubmed/34587546
http://doi.org/10.3390/ph14080793
http://www.ncbi.nlm.nih.gov/pubmed/34451890
http://doi.org/10.1371/journal.pone.0030800
http://doi.org/10.1126/sciadv.abh2399
http://doi.org/10.1038/s41583-020-0367-2


J. Pers. Med. 2022, 12, 1004 11 of 13

7. Doss, M.K.; Považan, M.; Rosenberg, M.D.; Sepeda, N.D.; Davis, A.K.; Finan, P.H.; Smith, G.S.; Pekar, J.J.; Barker, P.B.;
Griffiths, R.R.; et al. Psilocybin therapy increases cognitive and neural flexibility in patients with major depressive disorder.
Transl. Psychiatry 2021, 11, 1–10. [CrossRef]

8. Barrett, F.S.; Carbonaro, T.M.; Hurwitz, E.; Johnson, M.W.; Griffiths, R.R. Double-blind comparison of the two hallucinogens
psilocybin and dextromethorphan: Effects on cognition. Psychopharmacologia 2018, 235, 2915–2927. [CrossRef]

9. Bravermanová, A.; Viktorinová, M.; Tylš, F.; Novák, T.; Androvičová, R.; Korčák, J.; Horáček, J.; Balíková, M.; Griškova-Bulanova,
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