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Abstract: Background and Objectives: Chronic lower back pain (LBP) is a common clinical disorder.
The early identification of patients who will develop chronic LBP would help develop preventive
measures and treatment. We aimed to develop machine learning models that can accurately predict
the risk of chronic LBP. Materials and Methods: Data from the Sixth Korea National Health and
Nutrition Examination Survey conducted in 2014 and 2015 (KNHANES VI-2, 3) were screened
for selecting patients with chronic LBP. LBP lasting >30 days in the past 3 months was defined as
chronic LBP in the survey. The following classification models with machine learning algorithms
were developed and validated to predict chronic LBP: logistic regression (LR), k-nearest neighbors
(KNN), naïve Bayes (NB), decision tree (DT), random forest (RF), gradient boosting machine (GBM),
support vector machine (SVM), and artificial neural network (ANN). The performance of these
models was compared with respect to the area under the receiver operating characteristic curve
(AUROC). Results: A total of 6119 patients were analyzed in this study, of which 1394 had LBP. The
feature selected data consisted of 13 variables. The LR, KNN, NB, DT, RF, GBM, SVM, and ANN
models showed performances (in terms of AUROCs) of 0.656, 0.656, 0.712, 0.671, 0.699, 0.660, 0.707,
and 0.716, respectively, with ten-fold cross-validation. Conclusions: In this study, the ANN model was
identified as the best machine learning classification model for predicting the occurrence of chronic
LBP. Therefore, machine learning could be effectively applied in the identification of populations at
high risk of chronic LBP.

Keywords: chronic lower back pain; machine learning; artificial neural network; logistic regression
k-nearest neighbors; naïve Bayes; decision tree; random forest; gradient boosting machine; support
vector machine; prediction

1. Introduction

Lower back pain (LBP) is one of the most common musculoskeletal disorders expe-
rienced by people of all ages [1]. Around 60–80% of the general population experiences
LBP at least once in their lifetime in the United States [2,3]. Globally, LBP is the leading
cause of years lived with disability, which had increased substantially in the Global Burden
of Disease, Injuries, and Risk Factors Study 2017 [4,5]. This causes significant personal
and social losses in terms of reduced productivity and increased costs of health care [6].
Although most acute LBP patients recover well within a few weeks or months, approxi-
mately one-quarter of the patients who present to primary care settings develop chronic
LBP (pain lasting for >3 months) [7]. Therefore, an understanding of the risk factors of
chronic LBP and the population with a potential for chronic LBP development can help in
identifying people who are at a high risk of LBP and implementing suitable preventive or
treatment measures.

Machine learning is a scientific discipline that uses computer algorithms to identify
patterns in large amounts of data, which can also be used to make predictions based on
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novel datasets [8]. Machine learning has shown excellent performance in improving the
predictive value of statistics in medical imaging and postoperative clinical outcomes [9–13].
Although there have been studies in the past attempting to predict LBP risk, previous
research had limitations, such as only applying the Cox proportional-hazards model or not
incorporating psychosocial factors and ergonomics-related variables [14].

Currently, there is no existing research on models that predict the occurrence of LBP
using machine learning. Therefore, we undertook this study to develop and validate a
selection of machine learning models to construct an LBP predictor.

2. Materials and Methods
2.1. Data Collection

Data from respondents who participated in the Korea National Health and Nutrition
Examination Surveys (KNHANES) VI-2 and VI-3 (2014–2015) were retrospectively ana-
lyzed. The KNHANES is a nationwide, cross-sectional study conducted annually by the
Korea Centers for Disease Control and Prevention using a nationwide, multistage, strati-
fied, clustered, random sampling method [15]. It evaluates demographic and clinical data,
including those of sex, geographic information, and age, in the Korean population [16].
In this study, data were collected to assess the health and nutritional status of Koreans.
Individuals under 50 years of age were excluded because the KNHANES IV-2 and IV-3 did
not evaluate or provide data related to LBP in this age group. Therefore, 6119 respondents
who participated in the chronic LBP examination survey, aged 50–89 years, were included
in the study.

2.2. Clinical Data and Outcomes

We collected data on all patients’ demographic and clinical characteristics from the
KNHANES IV-2 and IV-3. Twenty-five predictor variables were collected and used in
our proposed models. Patient demographic variables included age, sex, body mass index
(BMI), occupation, education level, household income, and marital status. Comorbidity
variables included hypertension, diabetes mellitus, hyperlipidemia, ischemic heart disease,
cerebrovascular disease, osteoarthritis, and rheumatoid arthritis. Psychosocial variables
included depression symptoms, stress, sleep duration, smoking status, and alcohol intake
status. We also collected data on sitting time, physical activity, fasting blood glucose
levels, and chronic LBP were defined by a simple survey response to a question regarding
experiencing LBP lasting >30 days in the past 3 months. Sitting time was divided into
two categories: >7 h and <7 h based on the median (7 h). Physical activity was divided
into two categories based on the response “yes” to the question: “Does your job involve
medium-intensity physical activity that lasts for at least 10 min or makes your heart beats
slightly faster?”. Stress was divided into two categories based on responses to the question
“How much stress do you feel in your daily life?”. Smoking status and alcohol intake status
were divided into two categories, depending on whether the participants usually smoke
or drink.

2.3. Statistical Analyses

R software version 3.6.1 (R Development Core Team, Vienna, Austria) was used
for the analysis. The following packages for machine learning were used: Caret (https:
//CRAN.R-project.org/package=caret, accessed on 10 September 2021), Xgboost (https:
//CRAN.R-project.org/package=xgboost, accessed on 11 August 2021), and Keras (https:
//CRAN.R-project.org/package=keras, accessed on 11 August 2021). The Caret package
was used for logistic regression, k-nearest neighbor, naïve Bayes, decision tree, random
forest, and support vector machine. The Xgboost package was used for gradient boosting
machine. The Keras package was used for the artificial neural network (ANN). The entire
code of our machine learning algorithm (https://github.com/jgshim/chronicLBP, accessed
on 11 August 2021) is freely available.

https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=xgboost
https://CRAN.R-project.org/package=xgboost
https://CRAN.R-project.org/package=keras
https://CRAN.R-project.org/package=keras
https://github.com/jgshim/chronicLBP
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Before constructing the machine learning models, our collected data were randomly
segregated into training and test sets. Specifically, 70% of the data was used for training
the prediction models, and 30% was used as the test set for verification. A 10-fold cross-
validation approach was used to choose a set of optimal hyperparameters. The missing data
were estimated using a nearest neighbor imputation algorithm, which is a similarity-based
method to fill in missing data that relies on distance metrics [17]. The synthetic minority
oversampling technique, addressing imbalanced datasets, was used to oversample the
minority classes to overcome the low incidence of chronic LBP in the training set [18].

We identified 25 potential features, including demographic and clinical variables
from previous studies conducted to identify features that may potentially affect LBP risk.
Feature selection is the process of selecting features that contributes the most to the output
prediction for an efficient functioning of the machine learning algorithms [19,20]. In this
process, recursive feature elimination (RFE) was used as a wrapper-type feature selection
algorithm to help select features. RFE works by fitting the random forest function from the
Caret package in the core of the model, ranking features by importance, and removing the
least important features; a specified number of features remains, as seen in Figure 1. To
construct the machine learning model, we included only a subset of the available features
resulting from RFE.
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Figure 1. Schematic representation of recursive feature elimination (RFE) in random forest algorithm.

Model performance evaluation was conducted using the area under the receiver
operating characteristic curve (AUROC), accuracy, sensitivity, and specificity. The AUROC
from each machine learning model was plotted using the test dataset as a strong indicator of
performance for classifiers in imbalanced datasets [21,22]. Although our data come from a
nationwide study, nested cross-validation was used to estimate an unbiased generalization
performance in addition to simple cross-validation. Nested cross-validation consists of a
double loop. An inner loop serves for parameter selection over the validation set by fitting
a model to each training set. The outer layer will be used for estimating the generalization
error by averaging the test set scores over several dataset splits.

2.4. Ethics Statement

The VI-2 and VI-3 versions of the KNHANES were approved by the Institutional
Review Board of the Korea Centers for Disease Control and Prevention (approval no.
2013-12EXP-03-5C and 2015-01-02-6C) and complied with the Declaration of Helsinki. Each
participant voluntarily provided written informed consent before participating in this
study. Additionally, the Institutional Review Board of Kangbuk Samsung Hospital waived
the need for approval because the KNHANES survey data are openly published (approval
no. KBSMC 2020-07-001).

3. Results
3.1. Patients’ Characteristics

We analyzed the data of 6119 patients who participated in the KNHANES IV-2 and
IV-3 from 1 January 2014 to 31 December 2015. A total of 1394 patients (22.8%) experienced
chronic LBP. The demographic and patient characteristics of the complete dataset are
summarized in Table 1.
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Table 1. Demographic data and variable features of the included population.

Variables All Cases (n = 6119) No Lower Back Pain
(n = 4725)

Lower Back Pain
(n = 1394) p-Value

Age (years) 64 (56–72) 62 (56–70) 69 (60–76) <0.001

Sex (female) 3511 (57.4%) 2464 (52.1%) 1047 (75.1%) <0.001

BMI (kg/cm2) 23.9 (22.0–26.0) 23.9 (22.0–25.9) 24.1 (21.9–26.4) 0.001

Comorbidities (n)

Hypertension 3006 (49.1%) 2249 (47.6%) 757 (54.3%) <0.001

Diabetes mellitus 1020 (16.7%) 747 (15.8%) 273 (19.6%) <0.001

Hyperlipidemia 1449 (23.7%) 1027 (21.7%) 422 (30.3%) <0.001

Ischemic heart disease 280 (4.6%) 182 (3.8%) 98 (7.0%) <0.001

Cerebrovascular accident 253 (4.1%) 161 (3.4%) 92 (6.6%) <0.001

Osteoarthritis 1294 (21.1%) 736 (15.6%) 558 (40.0%) <0.001

Rheumatoid arthritis 163 (2.7%) 106 (2.2%) 57 (4.1%) <0.001

Education (n) 878 (14.3%) 773 (16.4%) 105 (7.5%) <0.001

Marital status (n) 6045 (98.8%) 4666 (98.8%) 1379 (98.9%) 0.70

Household income (n) 2636 (43.1%) 2238 (47.4%) 398 (28.6%) <0.001

Occupation (n) <0.001

Managers, experts 330 (5.4%) 295 (6.2%) 35 (2.5%)

Office work 213 (3.5%) 185 (3.9%) 28 (2.0%)

Sales and services 599 (9.8%) 490 (10.4%) 109 (7.8%)

Agriculture, forestry,
and fishery 493 (8.1%) 370 (7.8%) 123 (8.8%)

Machine fitting 509 (8.3%) 448 (9.5%) 61 (4.4%)

Simple labor 672 (11.0%) 531 (11.2%) 141 (10.1%)

Unemployed (student,
housewife, etc.) 3303 (54.0%) 2406 (50.9%) 897 (64.3%)

Sitting time (n) 2845 (46.5%) 2110 (44.7%) 735 (52.7%) <0.001

Duration of sleep (n) 3210 (52.5%) 2548 (53.9%) 662 (47.5%) <0.001

Smoking (n) 2402 (39.3%) 2022 (42.8%) 380 (27.3%) <0.001

Alcohol intake (n) 4940 (80.7%) 3928 (83.1%) 1012 (72.6%) <0.001

Depressive symptom (n) 364 (6.0%) 206 (4.4%) 158 (11.3%) <0.001

Stress (n) 4633 (75.7%) 3515 (74.4%) 1118 (80.2%) <0.001

Physical activity (n) 437 (7.1%) 297 (6.3%) 140 (10.0%) <0.001

Fasting blood glucose
(mg/dL) 99 (92–110) 99 (92–110) 99 (92–109) 0.69

KNHANES, The Korea National Health and Nutrition Examination Survey; BMI, body mass index. The data are presented as medians
(interquartile ranges) or numbers (%).

3.2. Feature Selection

The input variables after RFE included age, sex, BMI, household income, diabetes
mellitus, hyperlipidemia, ischemic heart disease, osteoarthritis, depression symptoms,
smoking status, physical activity, sitting time, and fasting blood glucose levels. The
13 features following final feature selection were used as input variables in creating the
machine learning models for predicting the occurrence of chronic LBP. Correlation analyses
showed a weak positive correlation between age, osteoarthritis, and chronic LBP (Figure 2).
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3.3. Model Performance

After applying the test dataset for all machine learning techniques for predicting
chronic LBP, the AUROCs calculated were 0.656 (95% CI, 0.634–0.678) for logistic regres-
sion, 0.656 (95% CI, 0.628–0.685) for k-nearest neighbor, 0.712 (95% CI, 0.685–0.740) for
naïve Bayes, 0.671 (95% CI, 0.643–0.698) for decision tree, 0.699 (95% CI, 0.671–0.728) for
random forest, 0.660 (95% CI, 0.631–0.690) for gradient boosting machines, 0.707 (95% CI,
0.678–0.735) for support vector machine, and 0.716 (95% CI, 0.689–0.744) for ANN, as seen
in Table 2. The ANN method achieved the best performance in terms of AUROCs, as well
as accuracy, sensitivity, and specificity (Figure 3). Results of nested cross validation are
shown in Table 3.

Table 2. Performance of all machine learning models.

Model AUROC
(95% CI)

Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

LR 0.656
(0.634–0.678)

0.608
(0.582–0.634)

0.82
(0.79–0.84)

0.36
(0.32–0.40)

KNN 0.656
(0.628–0.685)

0.631
(0.608–0.653)

0.83
(0.81–0.85)

0.35
(0.32–0.39)

NB 0.712
(0.685–0.740)

0.713
(0.692–0.733)

0.84
(0.82–0.86)

0.43
(0.39–0.47)

DT 0.671
(0.643–0.698)

0.665
(0.643–0.687)

0.85
(0.83–0.87)

0.39
(0.35–0.42)

RF 0.699
(0.671–0.728)

0.701
(0.680–0.722)

0.84
(0.81–0.86)

0.42
(0.38–0.46)
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Table 2. Cont.

Model AUROC
(95% CI)

Accuracy
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

GBM 0.660
(0.631–0.690)

0.689
(0.667- 0.710)

0.82
(0.80–0.84)

0.39
(0.35–0.43)

SVM 0.707
(0.678–0.735)

0.677
(0.656–0.699)

0.85
(0.83–0.87)

0.40
(0.36–0.44)

ANN 0.716
(0.689–0.744)

0.717
(0.696–0.734)

0.84
(0.82–0.86)

0.44
(0.40–0.48)

AUROC, area under the receiver operating characteristic curve; CI, confidence interval; LR, logistic regression;
KNN, k-nearest neighbors; NB, naïve Bayes; DT, decision tree; RF, random forest; GBM, gradient boosting
machine; SVM support vector machine; ANN, artificial neural network.
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Table 3. Nested cross validation results of all machine learning models.

Model AUROC
(k = 1)

AUROC
(k = 2)

AUROC
(k = 3)

AUROC
(k = 4)

AUROC
(k = 5)

AUROC
(mean + SD)

LR 0.690 0.607 0.679 0.637 0.651 0.653 ± 0.033

KNN 0.612 0.676 0.604 0.626 0.579 0.619 ± 0.036

NB 0.610 0.649 0.602 0.671 0.671 0.641 ± 0.033

DT 0.636 0.710 0.579 0.669 0.597 0.638 ± 0.053

RF 0.654 0.714 0.677 0.633 0.636 0.663 ± 0.034

GBM 0.538 0.612 0.661 0.637 0.628 0.615 ± 0.047

SVM 0.700 0.665 0.674 0.726 0.691 0.691 ± 0.024

ANN 0.728 0.718 0.739 0.662 0.724 0.714 ± 0.030
AUROC, area under the receiver operating characteristic curve; LR, logistic regression; KNN, k-nearest neighbors;
NB, naïve Bayes; DT, decision tree; RF, random forest; GBM, gradient boosting machine; SVM support vector
machine; ANN, artificial neural network; k, number of folds in the outer loop of nested cross-validation; SD,
standard deviation.
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4. Discussion

Previous reports have highlighted a lack of well-validated models for predicting
LBP [23]. Well-verified risk prediction models help in the identification of patients at a
high risk of disease and help in the implementation of preventive measures in advance.
The objective of this study was to demonstrate that machine learning algorithms could
accurately predict the occurrence of chronic LBP.

Feature selection is an important concept in machine learning, especially when dealing
with a dataset that contains numerous features. This type of dataset is referred to as a
high-dimensional dataset, with a multitude of problems, including a long training time for
a machine learning model. The objective of feature selection is to improve the prediction
performance of predictors and aid better understanding of the underlying principle in
the dataset. In our study, analysis and modeling with RFE facilitated the identification
of patients at a high risk of LBP and the determination of clinical factors associated with
chronic LBP. A previous study employed the Cox proportional-hazards model to identify
patients at a high risk of LBP [14,24]. However, only one model’s performance was obtained,
and it was impossible to compare the various models. Another previous study applied
stepwise logistic regression analysis to predict whether a patient with a recent new episode
of LBP would develop persistent pain [25]. Stepwise methods have well-known limitations,
such as unstable variable selection and biased coefficient estimation. In this study, we
developed and validated our models by performing feature selection, cross-validation,
and testing using different machine learning algorithms. Thus, we anticipate that the
effective implementation of machine learning methods in clinical settings may facilitate the
provision of personalized medicine to patients with chronic LBP in the future.

The handling of missing data is a major concern in machine learning and different ap-
plication domains, including medical areas. In this study, we applied the nearest neighbor
imputation algorithm for extrapolating the missing data rather than deletion. However,
different methods exists for imputing missing data. Recently, oversampling methods
have been proposed to impute missing data or generate valid synthetic instances to train
classifiers in the case of extreme scarcity of training data. Izonin et al. showed the high
accurate prediction using data augmentation procedure and support vector regression [26].
Additionally, Salazar et al. proposed a new method using generative adversarial networks
and vector Markov random field to effectively improve the classifier performance [27].

Each machine learning algorithm has its own hyperparameters, such as the number
of hidden layers in ANN or number of features available for splitting at each tree node
in a random forest [11]. It is a parameter that is set before the learning process begins.
In our study, we found that the optimal ANN, specifically multilayer perceptron, was
composed of two hidden layers to predict the occurrence of chronic LBP. In the ANN
model, the first and second hidden layers included 20 and 10 nodes, respectively, which
were interconnected. Since the most optimal hyperparameters should often be specified by
the researcher or set using heuristics to construct the ANN model, we obtained the suitable
hyperparameters empirically, as seen in Appendix A. The hyperparameters found in this
study could be useful for further research using the ANN method.

This study had certain limitations. The study used data from a cross-sectional survey
that involved looking at data from a population at one specific point in time. Thus, it is not
guaranteed to be representative, and the temporal relationship between predictor variables
and chronic LBP cannot be determined. In addition, the prediction model in our study
was based on a Korean population that is over 50 years of age. Thus, it may be difficult
to generalize our study to different age groups considering the unique characteristics of
Korean culture, such as sitting posture and high-intensity working hours. Clinically, it is
meaningful to show an accuracy of 71.7% in prediction, but it still requires further research.
It is doubtful that demographic data and clinical information are enough to accurately
predict chronic LBP. Model alterations are most likely necessary for better predictive model.
One possible region of our interest includes the lumbar spine X-ray, computed tomography,
or magnetic resonance imaging.
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5. Conclusions

This study is important because it promotes the identification of patients at high risk
of chronic LBP in a population of Koreans over 50 years of age using machine learning.
Among the machine learning models that were developed and validated, the ANN model
was found to be the best machine learning classification model for predicting the occurrence
of chronic LBP.
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Appendix A

Table A1. Optimal Hyperparameters of All Machine Learning Models.

Model Optimal Hyperparameters

LR nIter = 21

KNN k = 7

NB usekernal, Laplace = 0, Adjust = 1

DT Maximum depth = 5
Criterion = Gini index

RF Mtry * = 3

GBM
Maximum depth = 3

Number of estimators = 50,
Gamma = 0

SVM degree = 3, scale = 0.1 and C = 1.0

ANN Number of hidden layers = 2
Number of nodes in a layer = 20, 10

LR, logistic regression; KNN, k-nearest neighbors; NB, naïve Bayes; DT, decision tree; RF, random forest; GBM,
gradient boosting machine; SVM, support vector machine; ANN, artificial neural networks. * mtry indicates the
number of variables available for splitting at each tree node.
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