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of laccase gene family in
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20R-7-F01, isolated from deep
sediment 2 km below the
seafloor
Xuan Liu, Muhammad Zain ul Arifeen, Yarong Xue1 and
Changhong Liu*

State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China

Laccases are ligninolytic enzymes that play a crucial role in various biological

processes of filamentous fungi, including fruiting-body formation and lignin

degradation. Lignin degradation is a complex process and its degradation

in Schizophyllum commune is greatly affected by the availability of oxygen.

Here, a total of six putative laccase genes (ScLAC) were identified from

the S. commune 20R-7-F01 genome. These genes, which include three

typical Cu-oxidase domains, can be classified into three groups based on

phylogenetic analysis. ScLAC showed distinct intron-exon structures and

conserved motifs, suggesting the conservation and diversity of ScLAC in gene

structures. Additionally, the number and type of cis-acting elements, such as

substrate utilization-, stress-, cell division- and transcription activation-related

cis-elements, varied between ScLAC genes, suggesting that the transcription

of laccase genes in S. commune 20R-7-F01 could be induced by different

substrates, stresses, or other factors. The SNP analysis of resequencing data

demonstrated that the ScLAC of S. commune inhabiting deep subseafloor

sediments were significantly different from those of S. commune inhabiting

terrestrial environments. Similarly, the large variation of conserved motifs

number and arrangement of laccase between subseafloor and terrestrial

strains indicated that ScLAC had a diverse structure. The expression of ScLAC5

and ScLAC6 genes was significantly up-regulated in lignin/lignite medium,

suggesting that these two laccase genes might be involved in fungal utilization

and degradation of lignite and lignin under anaerobic conditions. These

findings might help in understanding the function of laccase in white-rot

fungi and could provide a scientific basis for further exploring the relationship

between the LAC family and anaerobic degradation of lignin by S. commune.
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Introduction

Laccase (benzenediol: oxygen oxidoreductase, EC 1.10.3.2)
is a metalloprotein belonging to the group of polyphenol
oxidases containing copper atoms in the catalytic site and
therefore also called blue multicopper oxidases (Baldrian, 2006).
Laccase proteins have three conserved domains (Cu-oxidase,
Cu-oxidase_2, and Cu-oxidase_3) that are utilized to identify
canonical laccases (Bento et al., 2006; Kudanga et al., 2011). Such
an arrangement of copper atoms distributed in three domains is
present in most of the bacterial and fungal laccases. The catalytic
capacity of laccases is actually non-specific but, in most cases,
laccases oxidize a range of aromatic compounds, including
phenolic moieties typically found in lignin, aromatic amines,
benzenothiols, and hydroxyindols as well as non-aromatic
compounds, using molecular oxygen as an electron acceptor
(Shiba et al., 2000; Claus, 2004; Rodríguez and Toca Herrera,
2006; Chirivì et al., 2012). Laccases have been implicated in a
variety of physiological functions in living organisms due to
their non-specific catalytic abilities.

Laccase was initially discovered in the Japanese lacquer tree
by Yoshida (1883), and since then, it has been found in all
domains of life: higher plants, some insects, a few bacteria,
and fungi (Solomon et al., 1996; Alexandre and Zhulin, 2000;
Claus, 2003). Basic characteristics and functions of laccases
are diverse both within and across biological kingdoms. In
plants, laccases participate in the radical-based mechanisms
of lignin polymer formation (Berthet et al., 2011; Hu et al.,
2018), while in fungi, laccases are hypothesized to play a
variety of physiological roles, such as stress defense, melanin
synthesis (Hua et al., 2018), fruiting-body formation (Lettera
et al., 2010; Zhang et al., 2015), and lignin degradation (Singh
and Sharma, 2010; Coconi et al., 2018). Lignin degradation is
the most important function of fungal laccase. Laccases can
directly depolymerize the lignin macromolecule, either alone
or in combination with other enzymes. Laccases catalyze the
removal of an electron from natural lignin’s phenolic hydroxyl
groups, resulting in free phenoxy radicals, and further oxidizes
to quinones. Additionally, laccases decarboxylate phenolic and
methoxyphenolic acid structures of lignin and cause their
demethylation or demethoxylation (Leonowicz et al., 2001).
Laccases also are useful biocatalysts for a wide range of
biotechnological applications due to their high non-specific
oxidation capacity and the use of readily available molecular
oxygen as an electron acceptor (Mayer and Staples, 2002).
In addition, laccases have important application values in
various industrial processes, including textile refining, dye
decolorization, bioremediation, lignocellulose delignification,
organic synthesis, and food processing (Bilal et al., 2017; Mtibaà
et al., 2018; Zhang et al., 2018).

Schizophyllum commune belongs to the white rot fungi
and is one of the most widely distributed mushrooms on
Earth. It is an effective wood-degrading basidiomycete that can

produce a large number of hydrolases such as xylanase (Gautam
et al., 2018), pectinase (Mehmood et al., 2019), cellulase
(Kumar B. et al., 2018), endoglucanase, glycoside hydrolase,
and oxidoreductase (Tovar-Herrera et al., 2018). Genome
sequencing of a terrestrial strain H4-8 revealed two laccase genes
and four genes encoding a distant relative of laccase (Ohm
et al., 2010). Our previous study indicated that S. commune
was the predominant fungal species in deep subseafloor coal-
bearing sediments ranging from ∼1.5 to ∼2.0 km below the
seafloor (kmbsf), and could grow under both anaerobic and
aerobic culture conditions (Liu et al., 2017; Zain Ul Arifeen
et al., 2020). Compared with other environmental isolates, strain
20R-7-F01 of S. commune isolated from ∼20-million-year-old
coal-bearing sediment at 1,966.3 kmbsf has a stronger ability
to adapt to in situ environmental conditions, including carbon
(energy) source, temperature, oxygen, and nitrogen source
(Zain Ul Arifeen et al., 2020).

Although laccases were identified and classified in various
S. commune strains (Kumar et al., 2015, Kumar V. P. et al., 2018;
Zhao et al., 2018; Kirtzel et al., 2019), an investigation of the
laccase gene family in S. commune at the whole-genome level
is yet to be conducted. In this study, we identified all possible
laccase-coding genes from the S. commune reference genome
(20R-7-F01). We then analyzed the physical and chemical
properties, gene structure, amino acid sequence, systematic
evolution, and expression patterns of the gene family in media
with or without lignin/lignite. The results could facilitate the
understanding of the laccase function in white-rot fungi and
provide a scientific basis for further exploring the relationship
between the LAC family and the anaerobic degradation of lignin
by S. commune.

Materials and methods

Strains and culture conditions

The fungal strains were isolated from subseafloor
sediment, which was collected by drilling vessel at Site
C0020 (41◦10.5983′N, 142◦12.0328′E) in the Pacific Plate off
the Shimokita Peninsula, Japan, during the IODP Expedition
337, at a water depth of 1,180 m (Inagaki et al., 2015; Liu et al.,
2017). Briefly, the sediment samples were ground into powder
in an anaerobic chamber with a flame-sterilized hammer,
placed evenly on three petri dishes containing specific media
that simulated to the in situ environmental conditions, and
incubated at 30◦C for 7∼14 days (Liu et al., 2017). S. commune
strains 6R-2-F01, 15R-5-F01, 20R-7-F01, and 24R-3-F01 were
obtained from the sediment samples at to 1,496; 1,924; 1,966,
and 1,993 mbsf, respectively. Two terrestrial strains CFCC_7252
and CFCC_86625 were purchased from China Forestry Culture
Collection Center, which were isolated from Populus wood in
Songshan, Beijing and Jurong, Jiangsu of China, respectively.
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Strain MCCC_3A00233 collected from marine sediment of
the Atlantic Ocean was purchased from Third Institute of
Oceanography, State Oceanic Administration, People’s Republic
of China. and the other five terrestrial strains (225DK, 227DK,
MF, Hom2-8, and 207) were obtained from NCBI and JGI
database. Details of the habitat and culture conditions of
S. commune strains have been described previously (Liu et al.,
2022). All the fungal strains were maintained on potato dextrose
agar (PDA) at 30◦C. For DNA and RNA isolations, the fresh
mycelia of S. commune were inoculated into a 250-ml conical
flask containing 150 ml PD (200 g/L potato, 20 g/L glucose) and
incubated in a shaking chamber at 30◦C, 200 rpm for 7 days.

Identification of laccase gene family
members in Schizophyllum commune
20R-7-F01

The S. commune 20R-7-F01 genome was assembled using
SMRT Analysis and deposited in GenBank under the accession
number VCHW00000000. Laccase members contain Cu-
oxidase, Cu-oxidase_2, and Cu-oxidase_3 (PF00394, PF07731
and PF07732) domains. The three domains were searched in
the S. commune 20R-7-F01 genome using HAMMER software
(Finn et al., 2011), and protein sequences with three Cu-oxidase
domains in the LAC domain were recognized as members of the
LAC family. The laccase gene was named using the prefix Sc for
S. commune followed by the LAC gene family abbreviation and
numbered sequentially according to their position on unitigs.

Physical map of Schizophyllum
commune 20R-7-F01 laccase genes
and properties of laccase proteins

Using the S. commune 20R-7-F01 genome, the unitig length
and the starting position of genes on unitigs were obtained. After
statistical analysis, the physical distribution map of their unitigs
was visualized using Mapchart 2.32 software (Voorrips, 2002).
The theoretical isoelectric point (pI) and molecular weight
(MW) of ScLAC proteins were analyzed using the Compute
pI/MW tool on the ExPASy server1 (Wilkins et al., 1999).
Subcellular locations of the ScLAC members were determined
using the online software CELLO2 (Yu et al., 2006). Signal
peptides of each laccase were predicted using SignalP algorithm3

(Nielsen et al., 1997). Prediction of transmembrane regions was
performed with TMHMM Server4 (Krogh et al., 2001). The

1 http://web.expasy.org/

2 http://cello.life.nctu.edu.tw/

3 https://services.healthtech.dtu.dk/service.php?SignalP-5.0

4 https://services.healthtech.dtu.dk/service.php?TMHMM-2.0

glycosylation sites of the ScLAC members were predicted by
NetNGlyc 1.05 (Gupta and Brunak, 2002).

Analysis of gene structure and motif
composition

The sequence of laccase genes and their coding region
were first transformed into FASTA format then matched, and
intron/exon structure was determined by comparing the coding
sequence of each ScLAC gene with its genomic sequence using
the Gene Structure Display Server 2.06 (Hu B. et al., 2015).
In addition, the upstream regions (1.5 kb) of the ScLAC gene
sequences were extracted and used for the search of cis-elements
using YEASTRACT7 (Monteiro et al., 2020). Conserved motifs
of laccase proteins were identified statistically using MEME8

(Bailey et al., 2009), and the maximum number of motifs to find
was set at 10. Visualization of motif compositions was executed
with TBtools V1.09 (Chen et al., 2020).

Sequence alignment and phylogenetic
analysis

The identified ScLAC amino acid sequences were aligned
separately against each other using ClustalW in MEGA7.0
(Kumar et al., 2016). The conserved regions of ScLAC
were used to build the phylogenetic tree. The unrooted
phylogenetic tree was created using MEGA7.0 by a neighbor-
joining algorithm with bootstrap replication of 100 times. The
final phylogenetic tree was visualized and edited in iTOL9

(Letunic and Bork, 2016).

Genome resequencing and variant
calling

The genome resequencing and variant detection for
S. commune strains were carried out according to our previous
methods (Liu et al., 2022). Briefly, the genome DNA of
S. commune strains was extracted and fragmented to generate
an approximately 300 bp library insert size and sequenced on
an Illumina HiSeq 2500 platform at BGI Genomic (Shenzhen,
China). The filtered resequencing reads were mapped to the
reference genome of S. commune 20R-7-F01 for SNP and
variant detection.

5 https://services.healthtech.dtu.dk/service.php?NetNGlyc-1.0

6 http://gsds.gao-lab.org/index.php

7 http://www.yeastract.com/index.php

8 http://meme-suite.org/tools/meme

9 http://itol.embl.de/
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Transcriptome analysis

Total RNA was extracted from mycelia of strain 20R-
7-F01 that were cultured in bottles containing lignin and
lignite medium, and incubated under anaerobic (i.e., LigWO1-
3 and CoalWO1-3) and aerobic (i.e., LigO1-3 and CoalO1-3)
condition for seven days (30◦C), respectively. Each treatment
included three replicates. Lignite was collected from coal mine
in Xinjiang. It contains N 1.15%, C 68.7%, H 4.123%, S 1.642%,
organic component 98.17%, and inorganic component 1.83%,
and vitrinite reflectance was 0.49%. Lignin alkali was purchased
from Sigma (CAS# 8068-05-1), which contains 5% moisture.
After sampling, all mycelia were immediately frozen in a liquid
nitrogen tank and delivered to the Personal Biotechnology
Company (Shanghai, China) for mRNA extraction, cDNA
library construction, and sequencing. After trimming of low-
quality reads (Q < 20) and adapter contamination, the clean
reads were mapped to the assembled genome of strain 20R-7-
F01 using TopHat (Trapnell et al., 2009). Gene prediction was
performed using Cufflinks (Roberts et al., 2011). To compare
the gene expression level in different libraries, the transcript
level of each expressed gene was calculated and normalized
to the reads per kilobase of exon model per million mapped
reads (RPKM). We used DESeq software for differential analysis
of gene expression (Anders and Huber, 2010). Genes with
an adjusted p-value ≤0.01 and an absolute value of log2
(expression-fold change) ≥1 were deemed to be differentially
expressed (Hu L. et al., 2015). The Pheatmap software package in
R language was used to perform bidirectional cluster analysis of
differential genes and samples. Distances were calculated using
the Euclidean method and clustered by complete linkage.

Results

Laccase gene family of Schizophyllum
commune 20R-7-F01

To identify the laccase genes in S. commune 20R-7-F01,
we searched the genome with HAMMER software for Cu-
oxidase, Cu-oxidase_2, and Cu-oxidase_3 domains (PF00394,
PF07731, and PF07732). Six putative laccase genes (ScLAC1 to
ScLAC6) were identified (Table 1) and mapped to six of the
162 S. commune 20R-7-F01 unitigs (Figure 1), indicating that
the ScLAC gene family did not have the characteristics of tandem
replication or clustering.

ScLAC proteins

Basic information on all S. commune 20R-7-F01 laccases,
including gene name, physical location, amino acid length,
molecular weight, pI value, subcellular localization, signal

peptide and transmembrane topology, were presented in
Table 1. The length of laccase proteins ranged from 374 aa
(ScLAC6) to 1,137 aa (ScLAC3) residues, and the predicted
molecular weights were between 41.08 kDa (ScLAC6) and
125.25 kDa (ScLAC3). The predicted pI-values of the laccase
proteins were found to be in the range of 4.62 (ScLAC2)
to 6.56 (ScLAC6), indicating that they belonged to acidic
proteins. The predicted subcellular locations revealed that the
six laccase proteins were located in cytoplasm, nucleus, and
mitochondria, and were also found extracellularly. ScLAC1,
ScLAC4, and ScLAC6 were predicted to be localized only in
the extracellular space, whereas ScLAC3 was located either
in the nucleus or mitochondria, ScLAC2 was located in the
cytoplasm, and ScLAC5 was located in either the cytoplasm or
extracellular. ScLAC4–ScLAC6 were probably signal proteins,
while ScLAC1–ScLAC3 may not contain any signal regions.
ScLAC6 had transmembrane topology, while the other five
laccases did not contain transmembrane domains. Additionally,
variable N-glycosylation sites were predicted to be present in
all ScLAC proteins (Table 1), indicating that ScLAC family
exhibited potential post-translational modifications.

Gene structure, motif compositions,
and phylogeny of ScLAC

To reveal the structural diversity of S. commune 20R-7-F01
laccase genes, we constructed the exon/intron organization and
searched for conservative motifs based on the phylogenetic tree
of all S. commune 20R-7-F01 laccase alignments (Figure 2).
Phylogenomic analysis showed that the S. commune 20R-7-F01
laccase gene family was clustered into three branches, of which
ScLAC1 and ScLAC2 were one clade, ScLAC4 and ScLAC6 were
another clade, and ScLAC5 and ScLAC3 were the last clade
(Figure 2). In addition, to evaluate the number of laccase genes
in the genome of S. commune 20R-7-F01, the total number
of laccase genes was determined in other Agaricales. The total
number of laccase genes varied significantly among species,
ranging from 4 in Hebeloma cylindrosporum and Postia placenta
to 55 in Dendrothele bispora (Supplementary Figure 1). The
amount of laccase in Schizophyllaceae was relatively small
compared to other species. In addition, the total number of
laccases and protein-coding genes were normalized by genome
assembly (in Mb) to avoid potentially misleading comparisons
due to differences in genome size and total number of genes
among the investigated species. No positive correlation was
found between genome size or total number of predicted
genes and the number of laccase genes in the corresponding
genome (Supplementary Figure 1). For instance, D. bispora
showed the highest number of laccases (55), but Moniliophthora
perniciosa had the highest proportion of laccases per total
number of genes (0.22%).
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TABLE 1 Basic information of Schizophyllum commune laccases.

Gene name Gene ID Physical location AAL (aa) MW (D) pI SL SP TR N-Glyc

ScLAC1 unitig_8.g1172 3898655–3900801 565 62,635.26 4.81 Extracellular N N 7

ScLAC2 unitig_405.g35 137770–140761 511 56,942.17 4.62 Cytoplasmic N N 4

ScLAC3 unitig_432.g31 101263–107421 1,137 125,249.48 6.55 Nuclear, mitochondrial N N 6

ScLAC4 unitig_430.g21 92411–94931 564 61,367.09 5.62 Extracellular Y N 5

ScLAC5 unitig_21.g21 70020–72642 651 71,418.18 4.89 Cytoplasmic, extracellular Y N 10

ScLAC6 unitig_35.g69 325705–328463 374 41,084.33 6.56 Extracellular Y Y 4

FIGURE 1

Physical map of the Schizophyllum commune 20R-7-F01 laccase genes.

FIGURE 2

Phylogenetic relationships, gene structure, and motif compositions of the Schizophyllum commune 20R-7-F01 laccase gene family. (A) A
neighbor-joining tree of six ScLAC protein sequences constructed using MEGA v7.0. (B) The structure of the six ScLAC genes. Red squares
correspond to exons and shrinked green lines indicate introns. (C) Schematic motif composition of six ScLAC genes. The colored boxes
represent the different motifs, indicated in the top right-hand corner. The scales at the bottom of the image indicate the estimated exon/intron
and motif length in kb.

The number of introns of ScLAC family members varied
from 8 to 15. Surprisingly, nearly all of the closest genes on the
phylogenetic tree showed remarkably different gene structures.
For instance, the introns and exons of ScLAC5 were most
closely arranged, whereas its nearby paralogous gene ScLAC3
had the longest intron, although their evolutionary relationship
reached a 100% bootstrap value. Additionally, ScLAC6 had
the most introns; its coding sequences were divided into 15

parts by introns. In short, ScLAC3, ScLAC5, and ScLAC6 were
more complicated than the other laccase genes with respect to
their structure.

To further reveal the conserved motifs of the ScLAC
proteins, we analyzed six ScLAC proteins and identified 10
motifs using the MEME program (Figure 2). As expected,
the motif compositions of peer groups had different structures
and organizations, which indicated the possibility of functional
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divergence among those proteins. Although 10 motifs were
found in every ScLAC protein, there were some differences
in the number of occurrences. For instance, motif-4 was
repeated three and six times in ScLAC5 and ScLAC3,
respectively. This difference in motif number across ScLAC
proteins indicated that different ScLAC proteins may have
different functions.

Cis-regulatory elements predicted in
the ScLAC promoters

To obtain further insights into the possible regulatory
patterns of ScLAC, we analyzed the cis-acting elements of the
1.5 kb regulatory sequence upstream of the six ScLAC gene
sequences using the Yeastract database. The promoter regions

of ScLAC1–ScLAC6 included various functional cis-acting
elements (Figure 3 and Supplementary Table 1) associated
with substrate utilization, stress, cell division, and transcription
activation. Among them, ScLAC6 had the most cis-elements,
including 16 stress-related, 15 substrate utilization-related,
nine cell division-related, and eight amino acid transcription-
related cis-elements. In addition, these laccases also contained
specific cis-elements; for example, ScLAC2 contained one
specific cis-element, named Nrg2p, which mediated glucose
repression and negatively regulated filamentous growth, while
ScLAC3 contained four specific cis-elements, which negatively
regulated nitrogen catabolic gene expression and were involved
in induction of CLN3 transcription in response to glucose
(Supplementary Figure 2 and Supplementary Table 1). The
differences in the number and types of cis-acting elements
in S. commune 20R-7-F01 suggested that the transcription

FIGURE 3

Phylogenetic and motif compositions of the Schizophyllum commune population laccase gene family. (A–F) Represent neighbor-joining tree of
ScLAC1-ScLAC6 protein sequences in S. commune population constructed using MEGA v7.0, and schematic motif composition of
ScLAC1-ScLAC6 genes in S. commune population. The colored boxes represent the different motifs, indicated in the top right-hand corner. The
scales at the bottom of the image indicate the motif length in kb.
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of laccase genes may be regulated by substrates, stresses,
or other factors.

Laccase differences between
subseafloor and terrestrial
environments

To understand the evolutionary relationships between
subseafloor and terrestrial laccase genes, five subseafloor and
eight terrestrial strains were re-sequenced. Phylogenetic analysis
based on SNP mutation sites showed that the ScLAC of
S. commune strains inhabiting deep subseafloor sediments
differed significantly from that of S. commune strains inhabiting
terrestrial environments (Figure 3). The average number of
SNP mutation sites of the five ScLAC in the terrestrial
strains was greater than those in subseafloor strains, with the
exception of ScLAC3, although it contained the most SNP
mutation sites (Supplementary Tables 2, 3). In addition, the
number and arrangement of conserved motifs in laccases
between subseafloor and terrestrial strains also showed various
differences, suggesting that ScLAC possessed a diverse structure.
Among them, the conserved domains of ScLAC2–ScLAC4 were
different in both subseafloor and terrestrial strains, indicating
that the evolution of these three laccase genes was not only
related to habitat but also related to strains (Figure 3).

Transcriptome analysis of six putative
laccase in lignite/lignin degradation

RNA-seq analysis of strain 20R-7-F01 cultured in
lignin/lignite-containing medium under aerobic and anaerobic
conditions at 30◦C for 7 days showed that the six laccase genes
could be classified into three groups (I, II, and III) (Figure 4).
The relative expression levels of ScLAC1 and ScLAC4 were lower
under anaerobic conditions than under aerobic conditions. In
contrast, the laccase genes of group II (ScLAC2 and ScLAC3)
and group III (ScLAC5 and ScLAC6) tended to be induced
by anaerobic conditions (Figure 4). Additionally, compared
with aerobic condition, the expression of ScLAC5 and ScLAC6
genes was upregulated by 2.48- and 2.10-fold in the anaerobic
conditions (Supplementary Table 4), suggesting that these
two laccase genes may be involved in anaerobic utilization and
degradation of lignite and lignin by fungi.

Discussion

Laccases as ligninolytic enzymes play important roles
in various biological processes of fungi, including lignin
degradation and fruiting-body formation, are typically
encoded by gene families (Vasina et al., 2015). Through

FIGURE 4

Heatmap of the expression profiles of laccase genes from
Schizophyllum commune 20R-7-F01 in various carbon sources
with or without oxygen. The heatmaps with hierarchical
clustering were visualized using the software heatmap2 and the
values were log2-transformed with normalization. The blue and
red elements indicate low and high relative expression levels,
respectively.

genome-sequencing analysis, we identified six laccase genes
in subseafloor S. commune 20R-7-F01, all of which contained
three conserved Cu-oxidase domains. However, significant
differences were found among these six genes; for instance,
very few amino acid sequence similarities were found, and their
exon-intron structures were diversified. This suggests that the
laccase genes of subseafloor S. commune have vast evolutional
and functional diversity.

The subcellular localization of proteins is invaluable
for understanding their functions and interactions with
other proteins (Peng and Gao, 2014). Based on subcellular
localization analysis, we found that the ScLAC were located
in extracellular, cytoplasmic and nuclear, and mitochondrial.
The wide distribution of ScLAC in S. commune indicated that
these enzymes might have distinct roles in response to various
environments (Yang et al., 2021).

The amino acid sequence of fungal laccase generally
contains a signal peptide sequence at the N-terminus to
guide transmembrane transfer (Jiao et al., 2018). However,
some fungal strains have no signal peptide sequence in
the laccase gene. For instance, LeLAC3 of Lentinula edodes
contained a signal peptide sequence in strain D703PP-9, but
was absent in strain W1-26 (Sakamoto et al., 2015; Yan
et al., 2019). The deficiency of signal peptide sequence was
also reported in Flammulina velutipes and Setosphaeria turcica
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(Wang et al., 2015; Liu et al., 2019), as well as in plants (Xu
et al., 2019). Our study also proved that ScLAC4–ScLAC6
in subseafloor S. commune 20R-7-F01 possessed the signal
peptide, while ScLAC1–ScLAC3 did not. These data suggest
that the laccase genes differ not only between species but
also within species.

In fungi, laccase genes differentiate into many paralogous
genes and perform various functions throughout the fungal life
cycle (Kumar et al., 2003). They are usually clustered in the
form of scaffolds; for instance, the 12 laccase genes in Pleurotus
ostreatus and 13 laccase genes in L. edodes were mapped into
six and seven scaffolds, respectively (Sakamoto et al., 2015; Jiao
et al., 2018). Here, we identified six laccase genes scattered in six
unitigs, which were thought to be only specific to S. commune
20R-7-F01 genome; similarly, six laccase genes were distributed
on five scaffolds of S. commune strain H4-8 genome. Therefore,
we inferred that this difference might be related to species and
strain differences.

Gene structure and protein motif analyses can provide a
theoretical basis for the function and classification of laccase
family genes (Wang et al., 2019). In general, genes in the
same group and subgroup should have a similar conserved
domain and motif distribution with closely related members
in the phylogenetic tree, revealing the functional similarity
between proteins in the same subgroup proteins (Yang et al.,
2021). Inconsistent with the results of previous studies, we
found that the most closely related members of laccase genes
in the phylogenetic tree of S. commune had highly diverse
motif compositions, and that the conserved motifs of laccases
between subseafloor and terrestrial strains were highly diverse.
The number and length of introns and exons in ScLAC genes
were significantly different. In general, groups B and C had
more exons and introns than group A (Figure 2). A small
number of introns in a gene usually are the result of genetic
evolution, which can rapidly regulate genes in response to stress
(Stival Sena et al., 2014). Introns are another source of sequence
variation (Jacob and Smith, 2017; Naro and Sette, 2017), and
intron retention may increase the diversity of proteins and the
complexity of genes expression (Zhang et al., 2004).

Cis-elements play significant roles in the regulatory process
to respond to multiple abiotic stresses (Feng et al., 2016).
The various cis-elements found in the promoter regions
of ScLAC genes were classified into four major groups:
substrate utilization-related, stress-related, cell division-related,
and amino acid transcription-related cis-elements. These cis-
elements may be recognized by some transcription factors
and were thus involved in the regulation and expression of
ScLAC genes. The presence of multiple cis-elements suggests
that ScLAC genes could be involved in fungal response to
multiple stresses. Laccases are thought to play an important role
in fruiting-body formation (Lettera et al., 2010; Zhang et al.,
2015) and our recent investigation found that the biosynthesis
of amino acids also helps in the formation of fruiting bodies

(Zain Ul Arifeen et al., 2021). Thus, the activation of amino acid
transcription-related cis-elements in ScLAC genes could explain
the possible role of ScLAC genes in fruiting-body formation.

Lignocellulose degradation by S. commune is an important
but complex process, which needs to be thoroughly understood.
S. commune utilizes more than 150 genera of woody plants
and can also colonize softwood and grass silage (Ohm
et al., 2010). As a model mushroom, S. commune H4-8 has
complete genome sequence and annotation, and possesses the
most extensive polysaccharide decomposition mechanism. The
genome of strain H4-8 is rich in the glycoside hydrolase family
(hemicellulose and pectin degradation) and polysaccharide lyase
family (pectin degradation), which enables it to degrade all
plant cell wall components, including lignin (Ohm et al.,
2010; Sornlake et al., 2017). Fungi are known to possess
a variety of lignin degrading enzymes including lignin
peroxidase, manganese peroxidase, dye decolorizing peroxidase,
multifunctional peroxidase, and laccase (Floudas et al., 2012).
Among these enzymes, laccases are the primary tool lignin
degradation in most basidiomycetes (white-rot fungi) and litter-
decomposing saprotrophic fungi (Janusz et al., 2020). Laccase
catalyzes the one-electron oxidation of substituted phenols,
aniline, and aromatic thiols to corresponding free radicals,
and reduces molecular oxygen to water (Qi et al., 2015). The
broad substrate specificities of laccases, coupled with their
use of molecular oxygen as the final electron acceptor rather
than the hydrogen peroxide used by ligninolytic peroxidases,
makes these enzymes suitable for lignin degradation. However,
laccase can only directly degrade phenolic compounds with
low-redox-potential, but cannot oxidize the most recalcitrant
aromatic hydrocarbons. Nevertheless, some low-molecular-
weight compounds produced by fungal degradation of lignin
can act as redox mediators to promote the oxidation of
refractory substrates (e.g., the non-phenolic lignin moiety) by
laccases (Eggert et al., 1996; Camarero et al., 2005).

Basically, laccase use molecular oxygen as the final electron
acceptor, and its activity is driven by the concentration of
available oxygen (Qi et al., 2015). However, it has been
proved that laccase can also oxidize catechol, o-aminophenol,
p-aminophenol, o-phenylenediamine, and p-phenylenediamine
under anaerobic conditions, with activities of 0.978, 0.707,
0.437, 3.603, and 1.039 mg µmol−1 min−1, respectively (Xie
et al., 1999). Shleev et al. (2005) observed direct electron
transfer (DET) between the gold electrode and the laccase of
Trametes hirsuta under anaerobic conditions. Our previous
study also proved that laccase may be involved in the anaerobic
degradation of phenanthrene by S. commune 20R-7-F01 (Zain
Ul Arifeen et al., 2022). Based on the transcriptome analysis
of S. commune 20R-7-F01 during lignin/lignite degradation,
we found for the first time that the expression of ScLAC1
was significantly downregulated under anaerobic conditions,
while the expression of ScLAC5 and ScLAC6 was significantly
up-regulated, compared with that under aerobic conditions
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(Figure 4 and Supplementary Table 4). These data suggested
that ScLAC5 and ScLAC6 may play an important role in the
utilization of lignite/lignin and other carbon sources by fungi
in anaerobic environment. However, the anaerobic catalytic
mechanism of laccase and its effect on fungi to obtain nutrition
and energy in the anaerobic subseafloor environments need to
be further studied.

Conclusion

A total of six putative laccase genes (ScLAC) with three
typical Cu-oxidase domains were identified in S. commune
20R-7-F01 genome. The physical locations of these genes were
mapped in six of 162 unitigs of S. commune 20R-7-F01. The
theoretical pI of deduced ScLAC proteins widely ranged from
4.62 to 6.56. The MW of the ScLAC proteins ranged from
41.08 to 125.25 kDa and the length varied between 374 and
1,137 amino acids. Based on phylogenetic analysis, the six
ScLAC genes were classified into three groups with distinct
intron-exon structures and conserved motif. All of the ScLAC
had cis-elements related to substrate utilization, stress, cell
division, and activates transcription of amino acid in the
promoter regions, while the number and type of cis-elements
had difference between each other. The phylogenetic tree of
resequencing data shows that there are many differences in
the number and arrangement of conserved motifs between
the ScLAC gene of S. commune strains inhabiting deep
subseafloor sediments and the ScLAC gene of strains inhabiting
terrestrial environments. The expressions of ScLAC5 and
ScLAC6 genes were significantly upregulation under anaerobic
conditions, implying that these two laccase genes might be
involved in anaerobic utilization and degradation of lignite and
lignin by fungi.

In summary, we identified all possible laccase-coding genes
from the S. commune reference genome (20R-7-F01) and
analyzed the physical and chemical properties, gene structure,
amino acid sequence, and systematic evolution, also studied
the expression patterns of the gene family under anaerobic
and aerobic by growing in lignin/lignite medium. Our data
and analysis could facilitate the understanding of the laccase
function of white-rot fungi and provide a scientific basis
for further exploring the relationship between the ScLAC
genes family and the anaerobic degradation of lignin by
S. commune.
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Comparative analysis of the total number of laccases genes and their
distribution across the different subclades in the genome of Agaricales.
Percentage of laccases in total number of genes was calculated as
following: (total number of laccases/total number of predicted genes in
the genome) ×100. Genome size and number of predicted genes were
retrieved from NCBI or JGI and refer to the current version of the
assembled genome of each species.

SUPPLEMENTARY FIGURE 2

Venn analysis of predicted cis-elements in the promoter regions of
laccase genes from Schizophyllum commune 20R-7-F01.
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