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Abstract

Background: As whole-genome sequencing is becoming a routine technique, it is important to identify a cost-
effective depth of sequencing for such studies. However, the relationship between sequencing depth and biological
results from the aspects of whole-genome coverage, variant discovery power and the quality of variants is unclear,
especially in pigs. We sequenced the genomes of three Yorkshire boars at an approximately 20X depth on the Illumina
HiSeq X Ten platform and downloaded whole-genome sequencing data for three Duroc and three Landrace pigs with
an approximately 20X depth for each individual. Then, we downsampled the deep genome data by extracting twelve
different proportions of 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 paired reads from the original bam files to
mimic the sequence data of the same individuals at sequencing depths of 1.09X, 2.18X, 3.26X, 4.35X, 6.53X, 8.70X,
10.88X, 13.05X, 15.22X, 17.40X, 19.57X and 21.75X to evaluate the influence of genome coverage, the variant discovery
rate and genotyping accuracy as a function of sequencing depth. In addition, SNP chip data for Yorkshire pigs were
used as a validation for the comparison of single-sample calling and multisample calling algorithms.

Results: Our results indicated that 10X is an ideal practical depth for achieving plateau coverage and discovering
accurate variants, which achieved greater than 99% genome coverage. The number of false-positive variants was
increased dramatically at a depth of less than 4X, which covered 95% of the whole genome. In addition, the
comparison of multi- and single-sample calling showed that multisample calling was more sensitive than single-
sample calling, especially at lower depths. The number of variants discovered under multisample calling was 13-fold
and 2-fold higher than that under single-sample calling at 1X and 22X, respectively. A large difference was observed
when the depth was less than 4.38X. However, more false-positive variants were detected under multisample calling.

Conclusions: Our research will inform important study design decisions regarding whole-genome sequencing depth.
Our results will be helpful for choosing the appropriate depth to achieve the same power for studies performed under
limited budgets.
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Background
Sequencing technologies have been widely used in many
fields, such as human medicine [1], evolutionary chemis-
try [2–5], microbial ecology [6], agriculture [7] and
animal breeding [8]. In sequencing, a key consideration
is the sequencing depth, which is defined as the ratio of
the total number of bases obtained by sequencing to the
size of the genome or the average number of times each

base is measured in the genome [9]. Sequencing cost is
the main concern in practice, which is mainly influenced
by the sequencing depth, sequencing technology and
sample size. Although the sequencing cost for a particu-
lar sample has decreased significantly in recent years, it
is still a great burden for large-scale applications.
Sequencing depth has a great impact not only on

sequencing cost but also on the biological results of se-
quencing data processing, e.g., the genomic assembly
completeness and accuracy of a de novo assembly [10],
the number of detected genes and expression levels in
RNA-Seq [11], the proportion of rare variants and SNVs
detected [12], and the accuracy of SNP calling and geno-
typing in whole-genome sequencing [13]. Therefore, it is
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particularly important to investigate sequencing depth to
achieve a higher accuracy at a lower cost and to identify
trade-offs between sequencing data quality and quantity.
Recently, there have been many studies on the impact

of sequencing depth in RNA-Seq that have aimed to find
the optimal sequencing depth for either de novo tran-
scriptome assembly through the comparison of different
nonmodel animals [14] or the study of gene expression
in RNA-Seq [11]. In addition, similar plant studies have
been carried out to investigate the optimal transcriptome
coverage in Hevea brasiliensis [15]. For DNA sequen-
cing, the research on sequencing depth has mainly fo-
cused on de novo genome assembly [10, 16] and genetic
association studies of complex traits [17, 18]. Addition-
ally, several studies have explored the recommended
coverage for reducing indel calling errors [19] and de-
tecting copy number variations [20] in sequencing data.
The impact of sequencing depth on single-cell sequen-
cing has also been explored recently [21, 22]. However,
most of the studies on sequencing depth conducted thus
far have focused on simulated data [18, 23] or real data-
sets from humans [13] or pilot animals with small ge-
nomes, such as E. coli, S. kudriavzevii and C. elegans
[10]; a limitation of simulated data is that mismapping
around short indels cannot be taken into account [17],
and these data cannot fully mimic the real situation in
sequencing. Such investigations have seldom been con-
ducted on animals with large genomes, such as pigs, and
this research is useful not only for humans but also for
livestock and other mammals.
In this study, we sequenced the whole genomes of

three Yorkshire boars at a sequencing depth of approxi-
mately 20X. In addition, whole-genome sequencing data
from three Landrace and three Duroc boars were down-
loaded from the NCBI SRA database to explore the rela-
tionship between sequencing depth and biological
results from the aspects of whole-genome coverage, the
variant discovery power and the quality of variants.

Methods
Animal ethics statement
Necessary permission was obtained from the owner of
the farm for collecting the samples and using in the next
study. All animal management and sample collection
procedures strictly followed the protocol approved by
the Institutional Animal Care and Use Ethics Committee
(IACUC) at the China Agriculture University. And the
IACUC of the China Agricultural University specifically
approved this study (Permit Number: DK996).

Whole-genome resequencing
Blood samples from three Yorkshire boars were
collected from a breeding farm in Beijing. Genomic
DNA was extracted from the blood samples by using a

TIANamp Blood DNA spin kit (DP348; Tiangen, Beijing)
following the manufacturer’s protocol. The quality of all
DNA samples was evaluated by agarose gel electrophor-
esis, and accurate quantification of DNA concentrations
was conducted with a Qubit 2.0 fluorometer. Whole-
genome sequencing was performed using the Illumina
HiSeq X Ten platform according to the manufacturer’s
standard protocols and produced 150-bp paired-end reads
in fastq format. Whole-genome sequencing data for three
Duroc and three Landrace pigs in sra format were down-
loaded from the NCBI SRR database and then converted
to fastq format by fastq-dump in the SRA Toolkit. All
individuals that we selected were unrelated to each other.

Sequencing quality control and NGS data processing
To avoid reads with artificial bias, quality control was
conducted by using the NGS QC Toolkit [24]. First,
IlluQC.pl with the default parameters was used to re-
move reads that contained more than 30% low-quality
(quality value ≤20) bases. Second, TrimmingReads.pl
was used to trim the 3′ end of fragments. Then, high-
quality paired-end reads were mapped to the pig refer-
ence genome sequence (Sscrofa11.1 http://hgdownload.
soe.ucsc.edu/goldenPath/susScr11/bigZips/) by the BWA
(Burrows-Wheeler Aligner) [25] with the command ‘bwa
men -M -R’.

SNP calling and filtering
The Genome Analysis Toolkit (GATK) [26] (version:
3.7) was used to call SNPs, following GATK best prac-
tices [27], in which realignment and recalibration were
included. SNP calling and genotyping were performed
by UnifiedGenotyper in GATK. Only SNPs on auto-
somes were used for the following analysis. Before SNP
calling, Picard SortSam and Picard MarkDuplicates
(http://broadinstitute.github.io/picard/) were used to sort
and mark potential PCR duplicates separately. After SNP
calling, hard filters were used to remove potential false-
positive SNPs and InDels. For SNPs, the following cri-
teria were used for filtering, as suggested by the GATK
documentation: “QD < 2.0 || FS > 60.0 || MQ < 40.0 ||
HaplotypeScore > 13.0 || MQRankSum < -12.5 || Read-
PosRankSum < -8.0”. For InDels, the criteria “QD < 2.0
|| FS > 200.0 || ReadPosRankSum < -20.0” were used for
filtering, also suggested by the GATK documentation.
Both single-sample calling and multisample calling
(three samples from each breed) implemented in the
GATK UnifiedGenotyper were used in our analysis.

Relationships
Principal component analysis (PCA) was performed via
GCTA(a tool for Genome-wide Complex Trait Analysis)
[28, 29] including all common SNPs in all individuals
after filtering by the minor allele frequency (MAF ≥ 0.05)
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and LD pruned (--indep-pairwise 100 50 0.5). The heat-
map of the genomic relationship between each individ-
ual was plotted by using a heatmap in R.

Construction of samples with different sequencing depths
Picard DownsampleSam was used to randomly down-
sample a bam file to construct different lower-depth
samples. In this way, mate-pair reads were either kept or
both discarded. Proportions of 0.05, 0.1, 0.15, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 were set in a chained strat-
egy for the raw mapped bam file, and average depths of
1.09X, 2.18X, 3.26X, 4.35X, 6.53X, 8.70X, 10.88X,
13.05X, 15.22X, 17.40X, 19.57X and 21.75X correspond-
ing to each proportion were produced. Together with
the original greatest depth for each individual, a total of
12 gradient depths for each sample were used for further
analysis. Figure 1 illustrates the workflow of next-
generation sequencing (NGS) data processing.

Variant annotation
ANNOVAR [30] was used to annotate the variants with
the dbSNP database. Following Ai et al. [4], those vari-
ants that met one of the following criteria were defined
as potential loss-of-function (LoF) variants: (1) a SNP or
small Indel within a coding region causing a frameshift
of the open reading frame (ORF); (2) a SNP or small

indel at a splice site; and (3) a SNP or small indel within
a coding region resulting in a stopgain or stoploss.

Comparison of data with different depths
After variant calling and filtering, we compared data
with different depths from the following aspects: (1)
whole-genome coverage; (2) the number of SNPs discov-
ered; (3) the discovery power for variants; and (4) the
quality of variants evaluated by the novel rate and transi-
tion/transversion ratio.
The discovery power for each subsample is the ratio of

variants in downsampled data to that in the original
deep sequencing data.
The novel rate represents the proportion of variants

not available in the dbSNP database to the total variants,
as we defined the variants that were not included in the
dbSNP database as novel variants. Here, we used the pig
dbSNP database (Build ID: 150).
The transition/transversion ratio (Ti/Tv ratio) is the

proportion of the variants observed as transitions (be-
tween purines, or between pyrimidines) versus transver-
sions (between purines and pyrimidines). The Ti/Tv
ratio is particularly useful for assessing the quality of sin-
gle nucleotide polymorphisms inferred from sequencing
data [31, 32]. A higher ratio generally indicates higher
accuracy [27].

Fig. 1 Data processing pipeline. Our pipeline was identical for each sample. Original aligned bam files were mapped with clean fastq data. Then,
we extracted different proportions of paired reads randomly from the original bam files to build samples with different depths. Markduplicates,
Indel realignment and Base recalibration were applied for all bam files and the same procedures were used for SNP calling and filtering
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GATK DepthOfCoverage was used to compute the
whole-genome coverage, and GATK VariantEval and R
[33] were used to extract summary statistics from the re-
sults and for further analysis.

BeadChip validation
To further evaluate the accuracy of SNP calling, all
samples of Yorkshire boars were genotyped with the
PorcineSNP80K BeadChip (Illumina, San Diego, CA,
USA), including 68,528 SNPs covering the whole gen-
ome. Genotype quality control was carried out with
PLINK1.9 [34], in which SNPs with call rates less than
95% and nonchromosomal SNPs were excluded. The
common sites between each subdepth and beadchip
dataset were counted, which were defined as common
sites on the beadchip. The discordance rate for each
sample and genotype caller was calculated for single-
sample calling, which was defined as the fraction of the
number of common sites for the sample between the
PorcineSNP80K BeadChip and the whole-genome se-
quencing data processed by the genotype caller accord-
ing to the number of genotypes that mismatched the
chip genotype. For comparison between single-sample
calling and multisample calling, the discordance rate for
multisample calling was calculated, defined as the
proportion of the number of genotype discordance sites
to the common sites of the sample between the Porci-
neSNP80K BeadChip and whole-genome sequencing
SNPs containing at least one nonreference allele.

Results
Summary of whole-genome sequencing and subsampling
A summary of the sequencing data for three Yorkshire
boars, three Duroc boars and three Landrace boars is
shown in Table 1. The sequence data for each individual
reached a depth of greater than 20-fold and covered
more than 99% of the whole genome. Furthermore, mul-
tisample calling of the three individuals of each breed
was implemented to perform a comparison of the SNP
differences between the Duroc, Landrace and Yorkshire

pigs, as shown in Table 2. A total of 10.26, 12.24, and
12.89 million variants were discovered for the Duroc,
Landrace and Yorkshire pigs, respectively. Figure 2
shows the overlap of the variants discovered in each
breed. A total of 5.57, 5.76, and 7.42 million common
variants were discovered between Duroc-Landrace,
Duroc-Yorkshire, and Landrace-Yorkshire, respectively,
and 3.98 million common variants were discovered in all
three breeds. Among the three pig breeds, Duroc pre-
sented the smallest number of SNPs, which was not
surprising because the Sus scrofa reference genome
comes from the Duroc breed. In addition, as shown in
Table 2, when the variants were compared to the pig
dbSNP database, a total of 8.67, 10.47 and 11.21 million
variants were included in the dbSNP database, account-
ing for 84.50, 85.53 and 86.99% of the total variants of
Duroc, Landrace and Yorkshire, respectively. ANNOVA
annotation revealed 68,313, 78,968 and 85,372 variants
in exon regions, among which there were 28,193, 31,980
and 33,538 loss-of-function (LoF) variants in Duroc,
Landrace and Yorkshire, respectively. The transition/
transversion ratios for Duroc, Landrace and Yorkshire
were 2.24, 2.25 and 2.34, respectively. The detailed infor-
mation for each individual is shown in Table 3.
The population structure was demonstrated through

principal component analysis (PCA) (Fig. 3a) using 1.37
billion SNPs. Figure 3a shows that the Duroc, Yorkshire
and Landrace breeds were distinctly separated from each
other. The heatmap of the genomic relationships between
each individual shown in Fig. 3b indicated that the three
individuals of each breed were clustered together and they
were unrelated individuals to each other.

The impact of depth on the coverage
The coverage of the genome at each depth is illustrated
in Fig. 4. All of the individuals from the three pig breeds
presented almost the same trend, as the curves for all
individuals nearly completely overlapped, and the cover-
age of each individual at a given depth was nearly the
same. These results indicated that there was no breed or

Table 1 Summary statistics for the whole genome sequencing of data

Sample Depth Coverage Map Ratio Breed Sex SRA project

S403505 24.40 99.41% 99.30% Yorkshire male

S474607 22.31 99.39% 99.53% Yorkshire male

S494203 21.79 99.32% 98.76% Yorkshire male

SAMN05791661 22.65 99.44% 99.50% Duroc male PRJNA343658

SAMN05791665 21.72 99.46% 99.57% Duroc male PRJNA343658

SAMN05791663 23.90 99.57% 99.50% Duroc male PRJNA343658

SAMN05791650 19.89 99.30% 99.47% Landrace male PRJNA343658

SAMN05791651 22.56 99.39% 99.57% Landrace male PRJNA343658

SAMN05791660 19.36 99.38% 99.73% Landrace male PRJNA343658
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individual specificity for the relationship of coverage and
sequencing depth. In general, the coverage increased
with the depth, but not linearly; there was a rapid in-
crease in coverage from 61.17 to 95.42% when the depth
was increased from 1.08X to 4.35X, after which the
coverage increased relatively slowly from 95.42 to 99%
when the depth was increased from 5X to 10X and plat-
eaued at a depth of 10X (at a proportion of 0.5 on aver-
age), which covered ~ 99% of the whole genome and was
very close to the coverage achieved at depths of 13.05X,
15.22X, 17.40X, 19.57X and 21.75X of 99.21, 99.29,
99.34, 99.37 and 99.40% of the whole genome, respect-
ively (Fig. 4). According to the curve presented in Fig. 4,
a depth of 4.35X (at a proportion of 0.2 on average) was
the inflection point, at which the coverage increased ex-
ponentially (< 4.35X) and the increase ratio then de-
creased slightly. At the inflection point, ~ 95.42% of the
genome was covered.

Discovery of variants and quality of variants
The total variants discovered at each depth for each
sample are shown in Fig. 5a. The largest number of
variants was discovered in Yorkshire, followed by Land-
race and Duroc, similar to the results in Table 1, and the
total variants for individuals within the same breed
varied as well. The discovery power for all individuals
(the proportion of variants in a downsampled individual
to the greatest depth for the same individual) was also
slightly different across breeds (Fig. 5b). The discovery
power for variants exhibited a similar tendency to gen-
ome coverage, as shown in Fig. 4, which increased with
depth, and a similar tendency was demonstrated across
individuals. As expected, the number of variants discov-
ered increased rapidly when the depth was less than
10X, which was the point at which the coverage plat-
eaued, after which the rate of increase slowed. At a
depth of 10X, approximately 4.62 million SNPs were de-
tected, accounting for 84.42% of the variants obtained
from the deepest genome (21.75X in this study). The
variant discovery power was increased by 15.58% on
average when the depth was increased from 10.88X to
21.75X, but it increased by 80.40% on average when the
depth was increased from 1.09X to 10.88X, accounting
for 4.02 and 84.42% of the variants, respectively. At
4.35X, which was the inflection point of the function of
coverage with depth, 45.36% (2.55 million) SNPs were
detected.
The accuracy of SNP calling and genotyping was eval-

uated based on the novel rate and the transition/trans-
version ratio, as illustrated in Fig. 5c and Fig. 5d. The
novel rate decreased with increasing sequencing depth
(Fig. 5c), showing that the greater the depth of sequen-
cing, the greater the number of reliable variants discov-
ered. However, a large differences were observed
between Duroc, Yorkshire, and Landrace. The sharpest
decrease in the novel rate occurred in Yorkshire when
the depth increased from 1.10X to 4.38X, accounting for
16.99 and 13.45% of the variants in the dbSNP database,
respectively, and then remaining basically unchanged,
with a ratio of ~ 13.2%, when the depth was greater than
4.38X, which may indicate that more false-positive vari-
ants were discovered when the depth was less than
4.38X. However, for Duroc and Yorkshire, the decline in

Table 2 Summary statistics of variants discovered for three pig breeds, Duroc, Landrace and Yorkshire

Sample Mean Depth Total Variants %variants in dbSNP Ti/Tv Ratio Exons LoF

3DD-sample 22.76 10,260,949 84.50 2.24 68,313 28,193

3LL-sample 20.60 12,239,211 85.53 2.25 78,968 31,980

3YY-sample 21.88 12,887,321 86.99 2.34 85,372 33,538

Mean Depth the sequencing depth for each breed on average, TotalVariants the number of SNPs discovered for each breed by 3 sample multisample calling,
%variants in dbSNP the number of SNPs in the dbSNP database, Ti/Tv Ratio the proportion of the SNPs observed as transitions (between purines or between
pyrimidines) versus transversions (between purines and pyrimidines), Exons the number of SNPs in exons, LoF the number of loss-of-function variants

Fig. 2 The Venn diagram shows the variants discovered in each
breed. The Venn diagram shows the overlap of the variants
discovered in each breed. A total of 10,260,949, 12,239,211 and
12,887,321 SNPs were discovered in Duroc, Landrace and Yorkshire,
respectively. A total of 3,982,539 common variants were discovered
in all three breeds, while 5,572,905, 5,757,560 and 7,419,981 common
variants were discovered between Duroc-Landrace, Duroc-Yorkshire,
and Landrace-Yorkshire, respectively
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the novel rate was slow when the depth was increased
from 1X to 22X.
The Ti/Tv ratios for each depth in all samples ranged

from 1.99 to 2.34.
as shown in Fig. 5d; Yorkshires presented higher Ti/Tv

ratios than Durocs and Landraces, and the Ti/Tv ratios
for Durocs and Landraces were similar. In general, the
variation of the Ti/Tv ratio was not large; when the se-
quencing depth was increased from ~1X to ~21X, the
ranges of the Ti/Tv ratio were 2.00~2.21, 2.01~2.21, and
2.31~2.30 for Duroc, Yorkshire and Landrace, respect-
ively. Only the Ti/Tv ratios for Duroc and Landrace

increased with depth, indicating higher accuracy of SNP
calling. However, the Ti/Tv ratio basically remained un-
changed for Yorkshire.

BeadChip validation
A total of 56,963 SNPs from the PorcineSNP80K
BeadChip data remained after quality control. Figure 6
shows the common sites between each depth and
beadchip dataset. These results showed that more
common variants were discovered as the depth in-
creased, and multisample calling revealed more vari-
ants than single-sample calling both for all variants

Table 3 Summary statistics of variants discovered for each individual

Breed Sample Total Variants %variants in dbSNP Ti/Tv Ratio Exons LoF

DD SAMN05791661 4,361,699 83.84 2.18 28,321 11,783

DD SAMN05791665 4,720,118 84.00 2.20 31,091 13,272

DD SAMN05791663 4,761,804 85.38 2.26 29,916 11,992

LL SAMN05791650 4,664,664 84.42 2.16 29,287 12,430

LL SAMN05791651 5,255,293 85.29 2.21 33,575 13,768

LL SAMN05791660 5,433,413 86.27 2.25 35,521 14,111

YY S494203 5,730,270 86.99 2.31 39,094 15,304

YY S409308 5,528,070 86.74 2.30 38,986 15,630

YY S474607 6,047,346 86.81 2.28 38,828 15,482

TotalVariants the number of SNPs discovered for each individual by single-sample calling, %variants in the dbSNP databbase the number of SNPs in the dbSNP
database, Ti/Tv Ratio the proportion of the SNPs observed as transitions (between purines, or between pyrimidines) to transversions (between purines and
pyrimidines), Exons the number of SNPs on exons, LoF the number of loss-of-function variants

Fig. 3 Population structure of sequenced individuals. (a) Principle component analysis (PCA) of individuals. Different symbols and colors indicated
the different pigs by breed. PC1: first principal component; PC2: second principal component. (b) Heatmap of all 9 sequenced individuals using
the molecular relationship matrix. The exact genomic relationship between two individuals is shown in each small lattice
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and for only variants with at least one nonreference
allele considered. The numbers of variants discovered
via multisample calling were 2 times and 1.5 times
greater than those obtained via single-sample calling
at the greatest depth when all variant sites or only al-
ternative reference sites were considered, respectively.
The difference of the total variants discovered for
multisample calling compared to single-sample calling
increased as the sequencing depth decreased, as
shown in Fig. 7a, especially when the depth was less
than 4.38X.
Figure 7b shows the discordance rate with the SNP

panel for Yorkshire under two scenarios of multisam-
ple and single-sample calling strategies. As expected,
the discordance rate decreased with increasing depth.
The two SNP calling strategies showed different per-
formances. For single-sample calling, the discordance
rate decreased slightly to 3.22% from 4.48% when the
depth was increased from 1.10X to 21.88X, while
multisample calling yielded a much higher discord-
ance rate of 27.16% at a depth of 1.10X, which
sharply decreased with increasing depth, then stabi-
lized, with the discordance rate reaching 2.96% at a
depth of 21.88X.

Discussion
In this study, we aimed to provide a comprehensive un-
derstanding of the relationship between data quality and
the quantity of SNP calling and genotyping in pig
whole-genome sequencing. Three popular pig breeds,
Duroc, Yorkshire and Landrace, were examined, and
three boars from each breed were sequenced at approxi-
mately 20X depth. To the best of our knowledge, there
have been no similar studies in other livestock, such as
cattle or poultry. Our findings can therefore serve as a
general guide for researchers to choose an optimal se-
quencing depth. We extracted paired read randomly
from the original bam files at proportions of 0.05, 0.1,
0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 to mimic
twelve different depths of genome sequencing data. Our
results showed that the higher the depth of sequencing,
the more novel variants were found, and the rate of
false-positive variants was increased dramatically when
the depth was lower than ~4X, especially when the
depth was less than 2X. Additionally, the genome cover-
age of sequencing increased with depth, and a sequencing
depth of 10X achieved 99% genome coverage (Fig. 4) and
ensured high-quality genotyping for pigs (Fig. 5c; Fig. 5d;
Fig. 7b). According to our findings, a depth of 10X was

Fig. 4 Coverage with sequencing depth for each downsampled genome. Whole-genome coverage as a function of sequencing depth for each
downsampled genome
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not only the point at which saturation was achieved for
the function of coverage with depth (Fig. 4) but also the
point at which the increase ratio for the total variants dis-
covered slowed (Fig. 5b) and a plateau of discordance with
the beadchip data was observed for multisample calling
(Fig. 7b). More than 95% of the genome was covered at
4.35X, which is consistent with other investigations. Rash-
kin et al. [12] reported that 5-10X was a sufficient sequen-
cing depth to detect common variants and identify
associations for a fixed sequencing capacity in simulated
data and human datasets. Although sequencing with
greater depth can offer more information, many studies
have indicated that low-coverage sequencing of large sam-
ples is much more cost-effective and powerful than the
deep sequencing of fewer individuals. Li et al. [17] re-
ported that when the frequency of variants is greater than
0.2%, only approximately 20% of the effort is needed to se-
quence 3000 individuals at 4X depth while achieving simi-
lar power to the sequencing of > 2000 individuals at 30X
depth. Additionally, Keel’s research showed that sequen-
cing a large number of individuals at 4-6X provides higher

power than sequencing a smaller number of individuals at
a great depth for rare variant detection [35]. The sequen-
cing cost of the latter approach is much higher than that
of the former. Therefore, considering the sequencing cost
and convenience, a 4X depth is necessary to achieve more
accurate genotyping of pigs since the number of false-
positive variants increases dramatically when the depth is
less than 4X. According to the related literature, 4X is also
the depth used in the 1000 Genomes Project for the dis-
covery of disease-associated variants associated with com-
plex diseases in humans [36], and a 10X or greater depth
has been used for the assessment of genome-wide genetic
variation [37, 38] in a pig population or the detection of
selection signatures [39, 40]. In general, 4X is an appropri-
ate depth for genome-wide association studies, and 10X is
an appropriate depth for accurate genotyping and popula-
tion genetic studies.
To evaluate variant quality for each downsampled gen-

ome, the criteria of the novel rate, Ti/Tv ratio, and geno-
type concordance to the greatest depth (21.75X) were
investigated. The novel rate gave us a general idea of the

Fig. 5 Discovery power and accuracy of SNP calling. (a) The number of total variants (only SNPs) discovered for each downsampled dataset. (b)
Total variant discovery power. We refer to the variants associated with the greatest depth as true variants for each sample and calculate the
discovery power for each subdepth, which is the proportion of variants discovered at each depth among the total variants at the greatest depth
for each sample. (c) Novel rate. The proportion of variants present in the dbSNP database among the total variants. (d) Ti/Tv ratio. The proportion
of the variants observed as transitions (between purines or between pyrimidines) to transversions (between purines and pyrimidines)
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accuracy of variant calling and genotyping. The Ti/Tv
ratio is an important criterion for assessing the quality
of SNP calling [27], which is expected to be 2.1~2.2 for
whole-genome variants [41]. Furthermore, a higher Ti/
Tv ratio usually indicates higher accuracy of SNP calling

[31, 41, 42]. Our results regarding the Ti/Tv ratio were
in agreement with the expected ratio. Compared with
Duroc and Landrace, Yorkshire presented a higher Ti/
Tv. Low-coverage sequencing always introduces false-
positive variants in NGS data analysis, but how low this

Fig. 6 Common sites among Beadchip data. The common sites between each depth and beadchip dataset for single-sample calling (s-calling)
and multisample calling (m-calling-all, m-calling-Alt). The number of common SNPs among the beadchip data (s-calling) was the average value
for all three Yorkshire pigs for each depth. The multisample calling of all sites or only the sites with at least one nonreference allele is represented
as m-calling-all and m-calling-Alt, respectively

Fig. 7 Fold change between multisample and single-sample calling and the quality of variants. (a) Fold change between multisample and single-
sample calling. The ratio of common variants detected in multisample calling to that in single-sample calling. The statistics for multisample calling
of all sites (m-calling-all) or only the sites with at least one nonreference allele (m-calling-Alt) are indicated separately. (b) Discordance rate with
Beadchip data. Single-sample and multisample calling was compared to PorcineSNP80K BeadChip data for each Yorkshire subsample. For the
comparison between single-sample calling and multisample calling, only the common sites of the samples between the PorcineSNP80K
BeadChip and whole-genome sequencing SNPs that contained at least one nonreference allele were calculated
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coverage is remains unclear. Our results showed that the
false-positive rate was increased significantly when the
sequencing depth was less than ~4X (Fig. 4c; Fig. 5),
while the novel rate was extremely high, and the Ti/Tv
ratio and the concordance rate were also low, indicating
that resequencing at depths lower than 4X could provide
inaccurate variants. Moreover, the novel rate increased
sharply when the depth was greater than 2.18X (Fig. 4c),
which indicated that more false-positive variants were
discovered when the depth was less than ~2X. With fur-
ther decreases in sequencing depth, 2X is the lower
boundary to ensure the quality and coverage of sequen-
cing. This conclusion is in agreement with the simula-
tion study by Fumagalli [23] showing that 2X is the
minimum sequencing depth for obtaining accurate esti-
mates of allele frequencies and identifying polymorphic
sites. For the comparison of SNP calling across the three
pig breeds, the coverage and concordance with the
greatest depth as a function of depth showed no differ-
ence across breeds; however, the novel rate and Ti/Tv
ratio as a function of depth differed between Yorkshire
and the other two breeds (Duroc and Landrace). Ac-
cording to B. N. Keel et al. [41], the average Ti/Tv ratios
were 2.183, 2.206 and 2.243 for 12 Duroc, 12 Landrace
and 48 Yorkshire-Landrace composite sows based on
Illumina HiSeq 2500 technology and alignment to the
Sscrofa10.2 reference genome, resulting in a mean of
6.1-fold coverage per genome. In addition, the Ti/Tv ra-
tio varies greatly by genome region and function [31];
the Ti/Tv ratio is generally approximately 3.0 for exome
sequencing data and approximately 2.0 outside of exome
regions [43]. To our knowledge, it is most likely that
biological factors lead to the differences in the Ti/Tv ra-
tio across breeds.
Genotype imputation is widely used in whole-genome

association studies and genomic prediction/selection,
where a number of individuals are sequenced at a great
depth as a reference panel, after which the imputation of
individuals on the basis of SNP chip data or low-depth
sequencing would be cost efficient. Sequencing data are
becoming increasingly important for purposes such as
association studies, genomic selection, etc., in which
large samples are essential. Thus, to balance sequencing
cost and efficiency, the sequencing strategy should be
taken into account in practice. Two-stage sequencing
has been suggested as a strategy in which some portion
of a sample is first sequenced at high coverage as a refer-
ence panel, after which the larger sample is sequenced at
low coverage, which has proved to be powerful, effective
and practical approach [18]. Moreover, STITCH [44],
which is a method that was developed for the imput-
ation of genotypes based on sequencing data without the
use of additional reference panel or array data, achieves
a high imputation accuracy for ultralow-coverage

sequencing. The approach resulted in accuracy values of
0.948 and 0.922 for sequencing data for outbred mice
(0.15X) and Han Chinese people (1.7X), respectively.
Furthermore, GeneImp [45] was developed for the im-
putation of ultralow-coverage sequencing data (<1X)
with a reference panel, which achieved an even higher
accuracy of 0.9. With the development of algorithms
and software for low-coverage sequencing or even
ultralow-coverage sequencing, additional applications of
low-coverage sequencing may be developed, and our re-
search can provide basic guidance for such applications.
In this study, we also compared single-sample calling

and multisample calling algorithms. The single-sample
calling algorithms were simple, making use solely of
reads collected at a single genome position for that
sample. However, the multisample calling algorithm in-
cluded all sample information for a single site. Accord-
ing to our results, multisample calling revealed more
variants than single-sample calling, and the lower depth
of sequencing, the greater the difference was, with 13-
fold and two-fold differences in the numbers of variants
discovered via multisample calling compared to single-
sample calling when sequencing was performed at 1X
and 22X, respectively. Additionally, multisample calling
produced more false-positive variants than single-sample
calling when the depth was less than 10X. Similar results
were found in Bizon’s research [46] and Liu’s research
[47] conducted in a Native American population and an-
other human dataset, respectively. Our results further
confirmed the marginally lower nonreference discrep-
ancy value observed for identified single-sample variants
than variants obtained via the multi-sample method in
sequence data from 65 cattle [48]. Our results suggested
that stricter quality control parameters should be imple-
mented in multisample calling, especially when the
depth is less than 10X.

Conclusion
In this study, we explored the relationship between se-
quencing depth and whole-genome coverage, discovery
power, and the accuracy of SNP calling across three pig
breeds, Duroc, Landrace and Yorkshire. The genotyping
accuracy of the sequencing data was validated with Por-
cineSNP80K BeadChip data for Yorkshire pigs as well.
In addition, multisample and single-sample strategies for
SNP calling were compared. Our results showed that a
depth of 10X was the point at which saturation was
reached for the function of coverage, covering 99% of
the whole pig genome, accounting for 84.42% of the var-
iants obtained from the deepest genome coverage
(21.75X in this study), ensuring good quality of variants
from the aspects of the novel rate, Ti/Tv ratio, and bead-
chip validation. Additionally, more false-positive variants
were detected when the depth was less than 4X,
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suggesting that 4X is the low boundary for reasonable
sequencing quality. Compared to single-sample calling,
multisample calling was more sensitive, especially at
lower depths, and more false-positive variants were de-
tected as well; stricter quality control parameters should
be implemented in multisample calling.
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