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Abstract 

Outcomes following tumor resection vary dramatically among patients with pancreatic cancer. A 
challenge in defining predictive biomarkers is to discern within the complex tumor tissue the 
specific subpopulations and relationships that drive recurrence. Multiplexed 
immunofluorescence is valuable for such studies when supplied with markers of relevant 
subpopulations and analysis methods to sort out the intra-tumor relationships that are 
informative of tumor behavior. We hypothesized that the glycan biomarkers CA19-9 and STRA, 
which detect separate subpopulations of cancer cells, define intra-tumoral features associated 
with recurrence. We probed this question using automated signal thresholding and spatial 
cluster analysis applied to the immunofluorescence images of the STRA and CA19-9 glycan 
biomarkers in whole-block tumor sections. The tumors (N = 22) displayed extreme diversity 
between them in the amounts of the glycans and in the levels of spatial clustering, but neither 
the amounts nor the clusters of the individual and combined glycans associated with recurrence. 
The combined glycans, however, marked divergent types of spatial clusters, alternatively only 
STRA, only CA19-9, or both. The co-occurrence of more than one cluster type within a tumor 
associated significantly with disease recurrence, in contrast to the independent occurrence of 
each type of cluster. In addition, intra-tumoral regions with heterogeneity in biomarker clusters 
spatially aligned with pathology-confirmed cancer cells, whereas regions with homogeneous 
biomarker clusters aligned with various non-cancer cells. Thus, the STRA and CA19-9 glycans 
are markers of distinct and co-occurring subpopulations of cancer cells that in combination are 
associated with recurrence. Furthermore, automated signal thresholding and spatial clustering 
provides a tool for quantifying intra-tumoral subpopulations that are informative of outcome.  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2023.01.05.522607doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.05.522607
http://creativecommons.org/licenses/by-nd/4.0/


 

3 

1 Introduction 

Tumor behavior varies widely among patients with pancreatic ductal adenocarcinoma (PDAC). 
Among patients who are diagnosed with stage I/II cancer and undergo resection plus systemic 
gemcitabine, 20-35% can have durable survival out to >5 years from surgery, but nearly 40% 
experience disease recurrence within 1 year and 10-20% have overall survival (OS) of <1 year 
(1,2). Treatment with modified FOLFIRINIX gives longer responses for many patients—45-55% 
have OS >5 years—but ~30% have recurrence times and 5-10% have OS of <1 year (2,3). The 
source of the differences between patients is explained in part by tumor extent: patients with 
lymph node involvement, positive resection margins, and high tumor size fare worse than others 
(4,5). Cellular and histological features such as tumor grade and perineural invasion also predict 
worse outcomes (4,6,7). But such conventional measures of risk stratification do not provide 
enough accuracy to clearly guide selection of patients who will benefit from surgery (8).   

In the search for molecular markers to improve predictive accuracy, the complexity of the tumor 
microenvironment brings a challenge, as it has been to discern the specific features within the 
complexity that are driving progression. Bulk gene-expression methods uncovered subtypes of 
PDAC that partially explain differences between tumors (9–11). with the basal subtype showing 
worse outcomes that the classical subtype (6, 7). But tumors encompass a variable admixture of 
cells, including both non-cancer cells (10), cancer cells of more than one subtype (12,13), and 
cancers cells that are not easily classified by the established subtypes (14). Furthermore, cell 
states can interconvert based on outgrowths from progenitor populations (12), changes in 
microenvironment (15), or alterations in epigenetic drivers (16). To make progress in detecting 
predictive features considering the extreme intra-tumoral heterogeneity, methods are needed to 
detect specific subpopulations and the relationships between them.  

Multiplexed immunofluorescence could be valuable for this purpose because it yields both a 
high-resolution image of the biomarker locations within the tissue and a quantification of 
biomarker amounts. In fact, several studies have established that the combined analysis of 
biomarker amounts and spatial patterns provides useful information about tumor subtyping. For 
example, features of immune-cell density predicted response to anti-PDL1 therapy in melanoma 
patients (17) and in PDAC (18), and immune cell features correlate with clinical outcome (19). 
But the key component for such methods to be effective is markers to detect the individual 
subpopulations within a tumor that have relevance to tumor behavior. Furthermore, image-
analysis algorithms and software are needed to measure the levels and relationships between 
the markers that are informative.  

Biomarkers that are promising for the detection of complementary subpopulations of cancer 
cells are the glycans CA19-9 and STRA (17). CA19-9 is produced by cells of the classical, 
epithelial, and well-differentiated type, and STRA is produced by cells of both the classical and 
the basal, mesenchymal and poorly differentiated types (18). CA19-9 is useful as a marker of 
tumor burden but not as a predictor of response. STRA, in contrast, is a marker of biological 
subtype and resistance to chemotherapies (18). Previous studies of primary tissue showed that 
tumors variously produce CA19-9, STRA, or both (17,19). The previous studies, however, did 
not reveal information about the whether these markers can home in the specific subpopulations 
of cancer cells associated with cancer progression because image analysis methods were not 
applied to explore the relationships among the biomarkers within the specimens.   

Multiple software tools are available for analyzing multiplexed immunofluorescence images, but 
no particular method is established for defining cancer-cell patterns associated with outcome. 
The above-described studies relied on identification and annotation of histologic structures such 
as cell nuclei, tubules, and epithelial regions—a method known as segmentation. These 
methods identify cells based on color, texture, and shape based on pathologist-guided training. 
With proper training datasets, the methods work very well for identifying distinct cell populations. 
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Once the cells are identified, further analyses can be performed such as nearest neighbor or 
density analyses. Other methods that do not require pathologist review involve the deep 
learning methods (20). But a potential limitation of this approach with some biomarkers is that 
the biomarkers do not neatly fit into cells, or that the cells sometimes have very irregular 
characteristics. Another concern with training is that it requires a user-defined gold standard. 
Such a gold standard can be hard to define, given the immense heterogeneity and diversity 
between tumors and the variation between pathologists in determining certain cell types (21). 
Variation in tissue quality also presents a problem for training (21). A complementary approach 
to segmentation is to analyze biomarker amounts and organization without reference to pattern 
recognition, but rather based on intensity threshold. The challenge with this approach is the 
automated setting of the intensity threshold, which is an acknowledged difficulty in the field of 
digital pathology (22). We previously developed an algorithm and software package that 
automatically determines, without user intervention, the optimal intensity threshold for an 
immunofluorescence image and the quantification of signal and background pixels (23). The 
advantage of this method is that it gives a statistically based, unbiased, consistent analysis 
across all images, which in turn provides a key starting point for exploring complex biomarker 
associations.  

We hypothesized that automated threshold determination and signal identification provides a 
foundation for determining whether the specific subpopulations or patterns defined by the CA19-
9 and STRA glycans are associated with pancreatic cancer recurrence. We tested a method 
that operates without user selection of locations or settings for individual specimens, as needed 
for an unbiased, data-guided assessment of biomarker associations.    

2 Materials and Methods 

2.1 Study approval and sample acquisition 

The tissue samples were collected under a protocol approved by the Institutional Review Board 
at Duke University Medical Center. All subjects provided written, informed consent, and all 
methods were performed in accordance with an assurance filed with and approved by the U.S. 
Department of Health and Human Services. Tissue from tumor resections were formalin fixed 
and embedded into paraffin blocks according to standard procedures. The status, procedures, 
and outcomes of the patients were recorded for at least 3 years. 

2.2 Immunostaining and fluorescence imaging 

We performed immunofluorescence on 5 m thick sections cut from formalin-fixed, paraffin-
embedded blocks. Paraffin was removed from 5 µm thick FFPE sections using CitriSolv Hybrid 
(Decon Labs, King of Prussia, PA) containing d-limonene and isopropyl cumene, and the tissue 
was rehydrated through an ethanol gradient of 100%, 95%, and 70% followed by washing with 
PBS. Following rehydration, antigen retrieval was achieved through incubating slides in citrate 
buffer at 100 °C for 20 minutes. Slides were blocked in phosphate-buffered saline with 0.05% 
Tween-20 (PBST0.05) and 3% bovine serum albumin (BSA) for 1 hour at RT. Primary 
antibodies against CA19-9 (clone 9L426, US Biological Life Sciences) and TRA-1-60 (Novus 
Biologicals) were labeled for immunofluorescent staining with Sulfo-Cyanine5 NHS ester and 
Sulfo-Cyanine3 NHS ester respectively. After dialysis to remove unreacted conjugate, the 
antibodies were diluted into the same solution of PBST0.05 with 3% BSA to a final 
concentration of 10 µg/mL. Slides were incubated overnight with this solution at 4 °C in a 
humidified chamber. 

The following day, the antibody-containing solutions were decanted and the slides were washed 
twice in PBST0.05 and once in 1X PBS, each time for 3 minutes. The slides were dried via 
blotting and incubated with DAPI at 10 µg/mL in 1X PBS for 15 minutes at RT. Two five-minute 
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washes were performed in 1X PBS, and then slides were cover-slipped and scanned using a 
fluorescent microscope (AxioScan.Z1, Zeiss, Oberkochen, Germany). The microscope collected 
3 images at each field-of-view, each image corresponding to the emission maxima of Hoechst 
33258, Cy3, and Cy5. We next quenched the fluorescence using 6% H2O2 in 250 mM sodium 
bicarbonate (pH 9.5-10) and performed another round of immunofluorescence using two 
different antibodies. The subsequent incubations and scanning steps were as described above.  

Prior to the second round of detection with the TRA-1-60 antibody, we treated the slides with 
sialidase to remove terminal sialic acids. The slides were incubated with a 1:200 dilution (from a 
50,000 U/mL stock) of α2-3,6,8 Neuraminidase in 5 mM CaCl2, 50mM pH 5.5 sodium acetate 
overnight at 37 °C. The subsequent incubations and scanning steps were as described above. 
The hematoxylin and eosin (H&E) staining followed a standard protocol. 

2.3 Image processing and analysis 

All image data were quantified using SignalFinder. For each image, SignalFinder creates a map 
of the locations of pixels containing signal and computes various values for the output report, 
such as the percentage of tissue-containing pixels that have signal. This analysis required major 
computational resources, as each high-resolution image of the ~1.5 x 2.5 cm tissue comprises 
about 9 billion pixels at ~3000 pixels/mm resolution and ~500 GB file size. A 1-square-inch 
image at such resolution would scale to about 4000 square feet if changed to 72 pixels per inch 
as used for display.  

2.4 Software  

We developed the SignalFinder software using MATLAB, Java, and C++. We used Microsoft 
Excel and MATLAB for analyzing numerical output; GraphPad Prism, the R language, and 
Microsoft PowerPoint for the preparation of graphs; and Canvas XIV for the preparation of 
figures 

 

3 Results 

3.1 Automated signal quantification reveals diverse but non-predictive glycan patterns 

We analyzed whole-block tumor sections from 22 patients who underwent resection and 
adjuvant chemotherapy as curative treatment for PDAC (Table 1). We immunostained each 
specimen for the CA19-9 and STRA biomarkers and detected the biomarkers using multicolor 
fluorescence imaging (Fig. 1A). We then analyzed the fluorescence images by automated signal 
identification (23) to produce maps of the signal pixels (Fig. 1B), which we overlaid onto the 
brightfield images of the stained slides (Fig. 1B). This system enables a visualization of the 
locations of biomarker staining and of the histomorphologies of the cells producing the 
biomarkers (Fig. 1B). But more importantly for the investigations of biomarker features 
associated with outcomes, the method provided automated, objective signal identification and 
quantification for use in subsequent biomarker analyses. This foundation allowed us to ask 
whether we could achieve a fully data-guided method of ranking the likelihood of recurrence, 
that is, a method of classifying the tumors that does not involve user selections of locations or 
settings.   

The amounts of each biomarker—as determined by the number of signal pixels identified by 
SignalFinder normalized to the pixels in the tissue—were highly variable among the 22 subjects 
and between the biomarkers (Fig. 1C). The subjects had widely varying outcomes, with some 
exhibiting no evidence of disease after several years and others succumbing to recurrent 
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disease after less than one year (Table 1 and Supplementary Table 1). A group between these 
extremes had extended survival but struggled with recurrence and continued progression of the 
disease. The outcomes did not associate with any demographic factors or type of systemic 
therapy (Table 1). Neither the individual biomarkers (Fig. 1D) nor the combination of the two 
(not shown) was associated with outcome. An alternative way to quantify the signal using 
average intensities above a threshold gave different quantifications but also produced no 
associations with outcome (Supplementary Fig. 1).  

3.2 Spatial clustering shows divergent types and amounts of glycan clusters  

To gain insights into the sources of variability between the specimens, we examined the images 
of the whole-block sections (Fig. 2). At the microscopic level, we observed extreme diversity 
within and between tumors in the biomarker locations and amounts. The biomarker staining 
occurred primarily in epithelial and glandular areas—a potentially useful trait for assessing 
adenocarcinoma—but it also occurred in varying degrees among both benign and cancerous 
glands and some non-epithelial area. For example, specimen 17-213 showed CA19-9 staining 
in ampullary glands and low-grade PanIN and STRA staining in poorly differentiated carcinoma 
and focally in PanIN, but in another section (16-570), both STRA and CA19-9 were together in 
varying relative amounts in cancer glands. STRA staining appeared in some small-intestinal 
mucosa that was at the edge of the section. STRA also appeared alone or together with CA19-9 
in cancer glands in a specimen (18-371). We also observed occasional CA19-9 staining of 
macrophages (16-570a) and red blood cells (18-371a) and STRA staining of stroma (17-213a). 
Such diversity appeared in the remainder of the specimens (Supplementary Fig. 2). The above 
observations indicated that simple quantifications of signal amount or intensity across entire 
sections would include large areas with low or zero biomarker production, as well as signals 
from both benign and cancerous glands.  

To quantify features that potentially are more specific to tumor assessment, we tallied the signal 
only where it is part of a cluster of biomarker production (Fig. 3A). Starting with the pixel maps 
of signal from the SignalFinder output, we produced a sum of signal abundance within a pixel-
by-pixel moving box (Fig. 3B). The number of regions with spatial concentrations above various 
thresholds provided the amount of clustering for each biomarker (Fig. 3B).   

We first asked whether this mode of quantification provides distinct information, or alternative 
whether it simply reflects random clustering that correlates with total signal amount. A view of 
cluster amounts with respect to signal amounts or intensities showed only weak correlation (Fig. 
3C). In some cases, the signals were highly clustered, such as the CA19-9 data in patient 15-
658, and in other cases, the signals were more evenly distributed, as with the CA19-9 data in 
patient 19-296 (Fig. 3D). This finding indicates that the level of clustering is distinct from total 
biomarker amount and that specimens have diversity between them in the amount of biomarker 
clustering.  

The quantifications of clustered signal, however, did not associate with recurrence to a greater 
degree than signal amount (Fig. 3E). A survey of the histological features of regions with high or 
low spatial concentrations gave insights into the tumor characteristics identified by this method 
of quantification (Fig. 3F). The areas with higher spatial concentrations aligned with greater 
cellularity, and the areas with very low spatial concentrations were frequently free of epithelia, 
but areas with both high and low spatial concentration contained various levels of cancer and 
benign cells. These observations indicated that spatial concentration specifically quantifies the 
glandular-epithelial biomarker production but does not, by itself, distinguish types of 
histomorphology.   

Given the varied relationship between the glycans (Fig. 2), we next asked whether the 
combined CA19-9 and STRA provide unique information about the biomarker clusters. We used 
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the maps of the individual biomarker clusters to define the overlap between the glycan-defined 
clusters and to identify the regions that were exclusively STRA, exclusively CA19-9, or both 
(Fig. 4A, referred to as STRA-only, CA199-only, and dual). We then separately quantified the 
amount of each type of cluster to examine whether the overlap was simply a random event 
correlated with total signal amounts. Some of the tumors just had the STRA-only or the CA199-
only clusters (Fig. 4B and Supplementary Fig. 3), and the amounts of clusters containing both 
markers were not correlated with the sums of the signal amounts (Fig. 4B). For example, 
subject 15-658 had a low amount of the biomarkers but proportionally high clusters; subject 17-
213 largely had the STRA-only clusters, and 18-137 had high amounts and clusters (Fig. 
4B). Maps of the three cluster types confirm such various levels of heterogeneity and showed 
that the different types of clusters can either appear near each other or occupy separate regions 
(Fig. 4D).   

Given that the dual clusters were not resulting just from a mass-driven overlap of unrelated 
signals, we concluded that the combined glycans provide distinct information about the 
biomarker clusters. Furthermore, the specimens vary greatly in the types of clusters they exhibit. 
Specimens exist that are either relatively homogeneous in the types of clusters they contain or 
are heterogeneous with various relative proportions of the STRA-only, CA19-9-only, or dual 
clusters (Fig. 4C).  

3.3 Heterogeneity in cluster types is associated with outcome  

The above findings suggested that a combined evaluation of the distinct cluster types may 
provide value for tumor assessment. An alignment of the individual biomarker amounts and 
clusters by subject showed the diversity between subjects (Fig. 5A), both for subjects with and 
without recurrence of disease after 3 years. It also showed the lack of correspondence between 
the two methods of quantification, as with subject 19-296, who had a high amount but low 
clusters of CA19-9. None of the individual biomarker clusters was significantly associated with 
outcome (Fig. 5B), prompting us to ask whether certain combinations of clusters have stronger 
associations with outcome than others. To categorize the subjects based on combined 
biomarker amounts or clusters, we dichotomized the presence or absence of each biomarker 
using cutoffs determined from receiver-operator-characteristic analysis (Supplementary Table 
2). The resulting values illustrated the prominence of only one cluster type in certain tumors and 
two or more in others (Fig. 5C). Furthermore, it was evident that the co-occurrence of multiple 
cluster types was a dominant feature of the recurrent specimens. Accordingly, the occurrence of 
more than one type of cluster was significantly greater in the cases than in controls (11/13 
cases vs. 2/8 controls, c2 = 7.5, p = 0.006). The improved classification accuracy resulted from 
the identification of heterogeneity in biomarker clusters in cases where biomarker amounts were 
not heterogeneous. For example, subject 18-371 had high biomarker amounts only of CA19-9 
but high clusters of all three types (Fig. 5C). An equivalent approach applied to the marker 
amounts resulted in no significant difference (Fig. 5D).   

We further tested this relationship using Cox Proportional Hazards models for continuous 
analysis of survival with respect to spatial cluster abundance (Fig. 5E). Because p values are 
unstable for survival analysis using small sample sizes, we utilized explained randomness in 

proportional hazard models of Xu and O’Quigley (𝜌𝑋𝑂𝑄
2 ) (27). A model using all the spatial 

cluster abundances indicates improved explanation of survival probability (𝜌𝑋𝑂𝑄
2 0.52 compared 

to 0.10, 0.04, and 0.38 for STRA, CA19-9 and Dual, respectively). The explained survival 

probability surpasses that of the total biomarker amounts (𝜌𝑋𝑂𝑄
2  0.16) and average intensities of 

90th percentile (𝜌𝑋𝑂𝑄
2  0.10) as well as the individual spatial clusters (non-exclusive 𝜌𝑋𝑂𝑄

2  0.28). 

Because the quantifications of clusters and amounts start from the same SignalFinder output, 
this result indicates that biomarker clusters are more informative for outcomes than biomarker 
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amounts and that heterogeneity in biomarker clusters is an indicator of rapid progression in 
PDAC.   

We tested the reproducibility of these results for 5 new tissue specimens that were cut from the 
same blocks as used in the above analysis but separated in the block by 10-20 mm. The 
quantifications of clusters correlated positively between the first and second runs, and after 
applying thresholds to classify each case, the classifications matched exactly (Supplementary 
Figure 4). We concluded that for these sections, the types of biomarker clusters are consistent 
between different sections of a tumor block within moderate variation.   

3.4 Regional cluster heterogeneity aligns with pathology-confirmed cancer in recurrent 
tumors   

The association of cluster heterogeneity with recurrence suggests that the co-occurrence of 
divergent clusters identifies a subset of cancer cells. We therefore investigated whether areas 
with biomarker cluster heterogeneity are more associated with the presence of cancer cells than 
areas without cluster heterogeneity. We performed intra-tumoral comparisons of 
histomorphology in 4 specimens with heterogeneity in clusters but not in amounts and in 1 
specimen with heterogeneity in both clusters and amounts (Fig. 6). For each, we identified 
regions containing more than one cluster type and regions containing just one cluster type 
within regions-of-interest (~3 mm) three times the size of the region used in calculating spatial 
concentrations (~1 mm, Fig. 3B). We then identified by surgical pathology review the regions 
containing cancer glands and compared the overlap with the clusters. At the macroscopic level, 
the areas with heterogeneous clusters corresponded well with the locations identified by 
surgical pathology as containing cancer cells (Fig. 6A). In three subjects (16-250, 15-658, and 
18-371), the identifications were equivalent, but in the others, cluster heterogeneity occurred in 
some regions not identified by surgical pathology. In all, cluster heterogeneity identified areas 
containing cancer cells in 28 out of 32 (88%) instances. The matched regions-of-interest taken 
from areas containing only 1 cluster type overlapped with cancer-cell-containing regions in 2 of 
17 (11.7%) instances. This result indicates that heterogeneity in biomarker clusters 
preferentially identifies regions containing cancer cells, in contrast with the individual 
biomarkers.   

Given that cluster heterogeneity associated with recurrence, we further examined the 
histological differences between the recurrent and non-recurrent specimens. By surgical 
pathology, no systematic differences were evident between the patients with recurrence and 
without recurrence, nor between the patients with cluster heterogeneity and without cluster 
heterogeneity (Table 2). We concluded therefore that heterogeneity in biomarker clusters 
provides information about cancer-containing regions that is not discernable from 
histopathological review, in particular as a quantifiable feature of tumors with high likelihood of 
recurrence.  

4 Discussion 

The keys to uncovering accurate predictors of outcome are markers of the individual, relevant 
subpopulations and a method to quantify the relationships within a tumor that are informative of 
tumor behavior. Here we demonstrate that two glycan biomarkers – CA19-9 and STRA – are 
predictive of outcome when detected in a particular intra-tumoral relationship. Using a new 
approach to analyze and quantify biomarker patterns in multiplexed immunofluorescence data, 
we found that simple quantifications of biomarker amounts were not sufficiently informative of 
recurrence. But by quantifying the spatial clusters of the combined biomarkers, we found that 
the co-occurrence of more than one type of biomarker cluster within a tumor associated with 
recurrence, in contrast to the individual biomarker clusters or glycan levels. These results 
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demonstrate the value of the CA19-9 and STRA glycans for assessing tumors, and they present 
a new method for quantifying features within tumors that are indicative of tumor behavior. 

A plausible interpretation of the relationship found here is that CA19-9 and STRA in combination 
are markers of clonal heterogeneity of cancer cells. This interpretation concords with previous 
findings that the two glycans could identify both a stem-like founder population (marked by 
STRA) and another more-differentiated population (marked by CA19-9) (24). This link also 
concords with previous studies demonstrating the aggressive nature of clonal heterogeneity in 
tumors. Heterogeneity in cancer cells, which potentially reflects the plasticity and outgrowth of 
stem-like cancer cells (12,25), likely provides cells greater ability to adapt, produce diverse 
subpopulations, and survive. Consistent with these concepts, mouse pancreatic cancer cells 
gaining plasticity through GATA6 loss increased their chemoresistance and ability to escape 
immune elimination (26), and tumors able to switch subtypes through the expression of the GLI2 
transcription factor have shorter survival and higher tumor growth rates (27). Cancer 
progression could be further aided not just by heterogeneity in the cancer cells, but also in the 
tissue microenvironment as defined by fibroblast differentiation, immune activation, and cancer-
cell markers (28).  

Additional markers could potentially provide new biological information or predictive capability, 
such as markers of cancer subtypes. For example, GATA6 expression marks the classical type 
(29,30) and is suppressed in the basal type (26), and a TP63 isoform called deltaN-P63 is 
suppressed in the classical PDAC transcriptional program (31,32) and could mark a subset of 
basal-like cancer cells. Neutrophil infiltration (33), epigenetics traits, and metabolites 
(9,26,34,35) also mark subtypes of cancer. Greater value could be derived through linking with 
spatial transcriptomics methods. Such methods are powerful for uncovering biological functions 
and biomarkers (36,37) and, if coupled with the precision and resolution of 
immunofluorescence, would provide more information about the cells that produce each 
biomarker.  

The current study has several limitations and areas for further development. In the first place, 
the sample set is small. Future validation studies should be designed with larger cohorts and 
blinded outcomes that are revealed after analyses are complete. A second limitation and goal 
for future research is that we did not account for microenvironment. Future studies should 
include immune cell and fibroblast markers that potentially mark the sub-TMEs (28) or subtypes 
of stroma found by gene-expression profiling (10). Third, we did not perform a full exploration of 
the algorithms and parameter space for defining spatial clusters and heterogeneity, owing to the 
scale of such an undertaking. Here we demonstrated one method that showed the value of the 
approach, and several of the parameters should be further optimized. In addition, other software 
programs potentially could examine these questions from other angles, especially those that 
offer segmentation for the counting of cells. Certain morphological features of PDAC cells 
associated with subtypes and outcomes (38), suggesting that segmentation methods to identify 
such feature could augment biomarker discovery algorithms. Many other spatial clustering 
approaches are available to examine aggregation of particular cell types (39). Such approaches 
would provide additional layers of interpretation. 

Another goal for future work is to broaden the application beyond patients who had resection 
specimens available. Samples that are available before surgery include biopsy material and 
peripheral blood. Both types of samples could be amenable to the methods demonstrated here. 
Biopsy specimens likely would contain the heterogeneous biomarker types within one or more 
samples, considering that the distinct types of biomarker clusters appeared together within 
common regions of the tissue (Fig. 6). Blood specimens also could contain the information of 
cluster heterogeneity, as PDAC cells secrete multiple types of biomarkers into the blood, such 
as genomic DNA, extracellular vesicles, proteins, metabolites, and others. Glycans in particular 
have value as markers of cell type that appear both on cell surfaces and in secretions (40,41). 
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In future research, the tissue analysis method demonstrated here could identify the biomarker 
combinations that are useful for patient evaluation and that could constitute clinical assays using 
either biopsy or blood specimens. If validated, the method and findings presented here could 
help to stratify patients by likelihood of recurrence. The tumors in such subtypes could be 
analyzed for differential responses to the great range in drug options now available or used in 
the development of patient-derived organoids to identify effective treatments through high-
throughput screening (12,42)    
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4.1 Tables 

4.2 Table 1. Cohort information.    

Group  Total  
 Recurrence

   
No Recurrence  

Total Samples  21  13  8  

    Avg. Age  68.2  65.5  68.3  

    Percent Male  42.9%  38.5%  50.0%  

Outlook/Outcome        

Recurrence < 1 year, N (%)  7 (33.3)  7 (33.3)  -  

Recurrence < 2 years, N (%)  11 (52.4)  11 (52.4)  -  

Recurrence < 3 years, N (%)  12 (57.1)  12 (57.1)  -  

Survival < 1 year, N (%)  3 (14.3)  3 (14.3)  -  

Survival < 2 years, N (%)  5 (23.8)  5 (23.8)  -  

Survival < 3 years, N (%)  6 (28.6)  6 (28.6)  -  

Treatments        

    Gem, N (%)  14 (66.7)  12 (92.3)  2 (25.0)  

    FOLFIRINOX, N (%)  11 (52.4)  6 (46.2)  5 (62.5)  

    Abraxane, N (%)  8 (38.1)  8 (61.5)  -  

    FOLFOX, N (%)  2 (9.5)  2 (15.4)  -  

    Xeloda, N (%)  6 (28.6)  6 (46.2)  2 (25.0)  

    Olaparib, N (%)  1 (4.8)  1 (7.7)  -  

    Radiation, N (%)  4 (19.0)  2 (15.4)  2 (25.0)  

   

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 6, 2023. ; https://doi.org/10.1101/2023.01.05.522607doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.05.522607
http://creativecommons.org/licenses/by-nd/4.0/


 

12 

4.3 Table 2. Comparison with surgical pathology. Outcome is the case/control status from 
Table 1. *Cluster types refers to the number of different types of clusters (from Figure 5D). 
Shaded cells are those with <2 cluster types.   

 

ID Outcome 
Cluster 
types* 

Site Grade Margins Invasion 
Lymph 
nodes 

Peri-
neural 

T N M 

17213 Case 1 Head 
Poorly 

Differentiated 
Positive Positive Positive ND 3 1 1 

20272 Case 3 Tail 
Moderately 

Differentiated 
Negative Positive Negative Positive 2 0 X 

18760 Case 3 Head 
Moderately 

Differentiated 
Negative Positive Positive Positive 2 2 X 

16496 Case 1 Head 
Moderately 

Differentiated 
Negative Positive Positive Positive 3 1 X 

18137 Case 3 Tail 
Moderately 

Differentiated 
Positive Positive Negative Positive 3 0 X 

19167 Case 2 Tail 
Moderately 

Differentiated 
Positive Positive Positive Positive 2 1 X 

18371 Case 3 Tail 
Moderately 

Differentiated 
Negative Negative Negative Positive 1 0 X 

1596 Case 3 Tail 
Moderately 

Differentiated 
Negative Positive Negative Positive 2 0 X 

20333 Case 3 Head 
Moderately 

Differentiated 
Negative Positive Negative Positive 2 0 X 

19451 Case 2 Head 
Moderately 

Differentiated 
Negative Positive Positive Positive 3 2 X 

16250 Case 2 Head 
Moderately 

Differentiated 
Positive Positive Negative 

Negativ
e 

3 1 X 

17543 Case 3 Head 
Moderately 

Differentiated 
Negative Positive Positive Positive 3 1 X 

15658 Case 3 Head 
Moderately 

Differentiated 
Positive Positive Positive 

Negativ
e 

3 1 X 

20281 Control 3 Head 
Well 

Differentiated 
Negative Positive Positive Positive 2 1 X 

19637 Control 1 Head 
Poorly 

Differentiated 
Negative Negative Positive Positive 2 1 X 

19296 Control 0 Tail 
Moderately 

Differentiated 
Negative Positive Positive Positive 2 1 X 

19115 Control 1 Head 
Moderately 

Differentiated 
Negative Negative Negative Positive 2 0 X 

18460 Control 0 Tail 
Moderately 

Differentiated 
Negative Negative Negative 

Negativ
e 

2 0 X 

16763 Control 1 Tail 
Moderately 

Differentiated 
Negative Positive Positive 

Negativ
e 

3 0 X 

14767 Control 1 Head 
Moderately 

Differentiated 
Negative Positive Positive Positive 3 1 X 

16570 Control 3 Head 
Moderately 

Differentiated 
Negative Positive Positive Positive 3 1 X 

20282 Unknown 2 Head 
Moderately 

Differentiated 
Positive Positive Positive Positive 1 2 X 
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10 Figures and Legends  

 

Figure 1. Automated quantification of multiplexed immunofluorescence in whole-block 
tumor sections. (A) Method of data acquisition. CA19-9 is detected in the first round of 
staining, and STRA is detected in the second round using the TRA-1-60 antibody post-sialidase. 
(B) Data processing. The raw fluorescence (left) is processed by SignalFinder to identify signal 
pixels (middle), which are then assigned colors and overlaid on the H&E brightfield image 
(right). The percentages are the amount of each signal relative to tissue area. (C) STRA signal 
amount with respect to CA19-9 amount. Each point is a whole-block tissue specimen. (D) 
Kaplan-Meier associations of CA19-9 and STRA with time to recurrence. The median value of 
each defined the cutoff between high and low.  
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Figure 2. Within-tumor and between-tumor diversity. Medium and tight zoomed regions are 
shown. The histomorphology shows low grade PanINs (17-213, b and d); benign pancreas (18-
371, a); invasive carcinoma (17-213, c; 16-570, a-d; 18-371, b-d); and ampullary glands (17-
213, a).  
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Figure 3. Identification of spatial clusters. (A) Types of relationships between signal amount 
and clusters. (B) Method of analysis. (C) Relationship between CA19-9 clusters and amounts. 
Each point represents a specimen. (D) Examples of punctate (19-296) and broad (15-658) 
clusters. (E) Kaplan-Meier associations of CA19-9 and STRA clusters with time to recurrence. 
The median value of each defined the cutoff between high and low. (F) Histomorphology in 
regions defined by spatial concentrations. The left image shows the spatial concentrations of 
CA19-9. The right panels are corresponding H&E images for the indicated regions, showing 
invasive carcinoma (panels 1, 3, 5), invasive carcinoma with abundant necrosis (panel 2), 
benign pancreas (panels 4 and 5), and stroma (panel 6).   
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Figure 4. Spatial clusters with distinct biomarker production. (A) Method of identification. 
The maps of clusters for the two biomarkers were compared to identify the ones high in only 
one biomarker or in both. (B) Quantification of CA199-only clusters relative to STRA-only 
clusters (left) and dual clusters relative to sum of signal amount from STRA and CA19-9 (right). 
(C) Types of cluster compositions in tissue. (D) Visualization of moderate (15-658), high (18-
137), and low (17-213) heterogeneity in cluster types.  
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Figure 5. Associations with outcome. (A) Alignments of signal amounts and clusters of each 
biomarker and cluster type. (B) Associations of single cluster types. (C) Thresholded values and 
assignment of case status based on >1 biomarker or cluster type. (D) Assignment accuracy 
using clusters or amounts. (E) Recurrence and survival comparison of subjects with ≥2 cluster 
types to patients with ≤1 cluster type. 
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Figure 6. Comparison to histopathology. (A) General localization of cancer-container areas. 
The white boxes indicate regions of tissue with >1 cluster type within areas of pathology-
confirmed cancer; the red boxes indicate similar areas outside of pathology-confirmed cancer; 
and the dashed boxes indicate regions with <2 cluster types. The yellow lines indicate regions 
as broadly containing cancer cells. (B) Microscopic-level comparison of regions identified by 
cluster heterogeneity and histopathological review.  
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