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Abstract

Choice of one method over another for MHC-II binding peptide prediction is typically based on published reports of their
estimated performance on standard benchmark datasets. We show that several standard benchmark datasets of unique
peptides used in such studies contain a substantial number of peptides that share a high degree of sequence identity with
one or more other peptide sequences in the same dataset. Thus, in a standard cross-validation setup, the test set and the
training set are likely to contain sequences that share a high degree of sequence identity with each other, leading to overly
optimistic estimates of performance. Hence, to more rigorously assess the relative performance of different prediction
methods, we explore the use of similarity-reduced datasets. We introduce three similarity-reduced MHC-II benchmark
datasets derived from MHCPEP, MHCBN, and IEDB databases. The results of our comparison of the performance of three
MHC-II binding peptide prediction methods estimated using datasets of unique peptides with that obtained using their
similarity-reduced counterparts shows that the former can be rather optimistic relative to the performance of the same
methods on similarity-reduced counterparts of the same datasets. Furthermore, our results demonstrate that conclusions
regarding the superiority of one method over another drawn on the basis of performance estimates obtained using
commonly used datasets of unique peptides are often contradicted by the observed performance of the methods on the
similarity-reduced versions of the same datasets. These results underscore the importance of using similarity-reduced
datasets in rigorously comparing the performance of alternative MHC-II peptide prediction methods.
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Introduction

T-cells epitopes are short linear peptides generated by cleavage

of antigenic proteins. The identification of T-cell epitopes in

protein sequences is important for understanding disease patho-

genesis, identifying potential autoantigens, and designing vaccines

and immune-based cancer therapies. A major step in identifying

potential T-cell epitopes involves identifying the peptides that bind

to a target major histocompatibility complex (MHC) molecule.

Because of the high cost of experimental identification of such

peptides, there is an urgent need for reliable computational

methods for predicting MHC binding peptides [1].

There are two major classes of MHC molecules: MHC class I

(MHC-I) molecules characterized by short binding peptides,

usually consisting of nine residues; and MHC class II (MHC-II)

molecules with binding peptides that range from 11 to 30 residues

in length, although shorter and longer peptide lengths are not

uncommon [2]. The binding groove of MHC-II molecules is open

at both ends, allowing peptides longer than 9-mers to bind.

However, it has been reported that a 9-mer core region is essential

for MHC-II binding [2,3]. Because the precise location of the 9-

mer core region of MHC-II binding peptides is unknown,

predicting MHC-II binding peptides tends to be more challenging

than predicting MHC-I binding peptides.

Despite the high degree of variability in the length of MHC-II

binding peptides, most existing computational methods for

predicting MHC-II binding peptides focus on identifying a 9-

mer core peptide. Computational approaches available for

predicting MHC-II binding peptides from amino acid sequences

include: (i) Motif-based methods such as methods that use a

position weight matrix (PWM) to model an ungapped multiple

sequence alignment of MHC binding peptides [4–8], and a

statistical approach based on Hidden Markov Models (HMMs)

[9,10]; (ii) Machine learning methods based on Artificial Neural

Networks (ANN) [6,11–13] and Support Vector Machines (SVMs)

[14–17]; (iii) Semi-supervised machine learning methods [18,19].

The choice of one method over another for MHC-II binding

peptide prediction requires reliable assessment of their perfor-

mance relative to each other. Such assessments usually rely on

estimates of their performance on standard benchmark datasets

(typically obtained using cross-validation). Several studies [5,15–

17,19] have reported the performance of MHC-II binding peptide

prediction methods using datasets of unique peptides. Such datasets

can in fact contain peptide sequences that share a high degree of

sequence similarity with other peptide sequences in the dataset.

Hence, several authors [6,7,10,20] have proposed methods for

eliminating redundant sequences. However, because MHC-II

peptides have lengths that vary over a broad range, similarity

reduction of MHC-II peptides is not a straightforward task [7].

Consequently, standard cross-validation based estimates of

performance obtained using such datasets are likely to be overly

optimistic because the test set is likely to contain sequences that
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share significant sequence similarity with one or more sequences in

the training set.

In order to obtain more realistic estimates of performance of

MHC-II binding peptide prediction methods, we explored several

methods for constructing similarity-reduced MHC-II datasets. We

constructed similarity-reduced MHC-II benchmark datasets, derived

from MHCPEP [21], MHCBN [22], and IEDB [23] databases,

using several approaches to reduce the degree of pair-wise

sequence similarity shared by sequences in the resulting datasets.

The similarity reduction procedures were applied separately to

binders and non-binders. Details of the similarity reduction

methods are provided in the Materials and Methods Section.

Specifically, we generated:

i. Datasets of unique peptides MHCPEP-UPDS, MHCBN-

UPDS, and IEDB-UPDS extracted from MHCPEP,

MHCBN, and IEDB, respectively.

ii. Datasets of similarity-reduced peptides, MHCPEP-SRDS1,

MHCBN-SRDS1, and IEDB-SRDS1 derived from the

corresponding UPDS datasets using a similarity reduction

procedure which ensures that no two peptides in the resulting

dataset share a 9-mer subsequence.

iii. Datasets of similarity-reduced peptides, MHCPEP-SRDS2,

MHCBN-SRDS2, and IEDB-SRDS2, extracted

MHCPEP-SRDS1, MHCBN-SRDS1, and IEDB-SRDS1

respectively by filtering the binders and non-binders in

SRDS1 such that the sequence identity between any pair of

peptides is less than 80%.

iv. Datasets of similarity-reduced peptides, MHCPEP-SRDS3,

MHCBN-SRDS3, and IEDB-SRDS3, derived from the

corresponding UPDS datasets using the similarity reduction

procedure introduced by Raghava and previously used to

construct the MHCBench dataset [20].

v. Datasets of weighted unique peptides, MHCPEP-WUPDS,

MHCBN-WUPDS, and IEDB-WUPDS, derived from the

corresponding UPDS datasets (where the weight assigned to

a peptide is inversely proportional to the number of peptides

that are similar to it).

We then used the resulting similarity-reduced benchmark datasets

to explore the effect of similarity reduction on the performance of

different MHC-II binding peptide prediction methods and, more

importantly, to rigorously compare the performance of the

different prediction methods.

Our experiments focused on two state-of-the-art methods for

training MHC-II binding peptide predictors using variable-length

MHC-II peptides and a third method that is designed to exploit

the sequence similarity between a test peptide sequence and the

peptide sequences in the training set (and is hence likely to perform

well on non similarity-reduced datasets but poorly on the similarity-

reduced datasets).

Specifically, we compared: (i) An approach [16] that maps each

variable-length peptide into a fixed-length feature vector (the so-

called composition-transition distribution or CTD) consisting of

sequence-derived structural features and physicochemical proper-

ties of the input peptide sequence; (ii) An approach [17] that uses a

local alignment (LA) kernel that defines the similarity between two

variable-length peptides as the average of all possible local

alignments between the two peptides; (iii) An approach that uses

the k-spectrum kernel [24] with k = 5.

Because neither the programs used to calculate secondary

structure and solvent accessibility of peptides used for generating

the CTD representation [16] nor the precise choices of parameters

used for training the LA kernel based classifier [17] were available

to us, we used in our experiments, our own implementations of the

corresponding methods. Hence, the results of our experiments

should not be viewed as providing direct assessment of

performance of the exact implementations of the CTD and LA

methods developed by the original authors and used in studies

reported in [16,17]. However, it is worth noting that, the broad

conclusions of our study are largely independent of the specific

machine learning methods or data transformations.

Our results demonstrate that, regardless of the similarity

reduction method employed, a substantial drop in performance

of classifiers is observed compared to their reported performance

on benchmark datasets of unique peptide sequences. Our results

also demonstrate that conclusions regarding the superiority of one

prediction method over another can be misleading when they are

based on evaluations using benchmark datasets with a high degree

of sequence similarity (e.g., the benchmark dataset of unique

peptide sequences). These results underscore the importance of

using similarity-reduced datasets in evaluating and comparing

alternative MHC-II peptide prediction methods.

Results

Limitations of the unique peptides MHC-II data
Tables 1–3 show that MHC-II datasets derived from

MHCPEP, MHCBN, and IEDB databases have a large number

of highly similar peptides: the number of peptides in the similarity-

reduced versions in the three benchmark datasets is <50% of the

original number. In each case, the estimated performance of the

Table 1. Number of binding peptides in MHCPEP benchmark
dataset.

Allele UPDS SRDS1 SRDS2 SRDS3

HLA-DQ2 113 67 32 39

HLA-DQ4 97 84 79 82

HLA-DQ7 135 73 65 75

HLA-DR1 703 336 242 278

HLA-DR2 315 148 104 134

HLA-DR3 192 81 69 73

HLA-DR4 1085 439 298 353

HLA-DR5 189 92 61 75

HLA-DR7 341 137 87 101

HLA-DR8 125 47 46 54

HLA-DR9 94 41 34 37

HLA-DR11 473 160 100 103

HLA-DR13 121 68 34 36

HLA-DR15 121 48 36 49

HLA-DR17 158 82 40 45

HLA-DR51 115 45 39 55

I-Ab 136 62 51 61

I-Ad 415 168 101 135

I-Ag7 157 62 53 81

I-Ak 254 96 67 85

I-Ed 294 188 68 76

I-Ek 334 204 64 78

UPDS refers to datasets of non-redundant peptides. The last three columns
refer to similarity-reduced datasets (see text for details).
doi:10.1371/journal.pone.0003268.t001
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prediction methods evaluated on similarity-reduced datasets is

substantially worse than that estimated using the datasets of

unique peptides. This finding is especially significant in light of the

fact that MHCPEP and MHCBN datasets have been used for

comparing alternative MHC-II peptide prediction methods in

most of the published studies [5,6,15–19,25].

For the sake of brevity, we focus discussion here on the results of

two representative examples of datasets extracted from the

MHCPEP and MHCBN benchmarks and provide the complete

set of results in the supplementary materials (Data S1).

As shown in Table 4, for the MHCPEP benchmark, we focus on

the results on the data for HLA-DR4, which has the largest

number of unique binders. On the MHCPEP-UPDS version of the

HLA-DR4 dataset, the 5-spectrum kernel outperforms the other

two prediction methods and CTD outperforms the LA kernel. We

notice a substantial drop in the observed performance of the three

prediction methods on the similarity-reduced and weighted datasets

relative to that on their UPDS counterpart.

In the case of the MHCBN benchmark, we focus on the results

on the HLA-DRB1*0301 data (Table 5) because it has been used

in a number of recent studies of MHC-II binding peptide

prediction methods [16,17,25]. Most MHCBN allele-specific

datasets are unbalanced, i.e., the numbers of binding peptides in

the datasets are larger (typically by a factor of 2 to 4) than the

corresponding numbers of non-binding peptides (see Table 2). On

such unbalanced datasets, classification accuracy can be mislead-

ing in terms of providing a reliable and useful assessment of the

performance of the classifier. A classifier that simply returns the

label of the majority class as the predicted label for each instance

to be classified can achieve a rather high accuracy; However such

Table 2. Number of binding/non-binding peptides in MHCBN
benchmark dataset.

Allele UPDS SRDS1 SRDS2 SRDS3

HLA-DR1 636/180 328/111 223/106 259/130

HLA-DR2 416/168 197/124 153/123 232/149

HLA-DR5 218/173 111/131 80/129 100/154

HLA-DRB10101 531/127 325/88 279/76 390/112

HLA-DRB10301 261/230 137/150 127/145 175/215

HLA-DRB10401 805/201 471/136 404/119 543/174

HLA-DRB10701 292/107 179/68 152/66 213/92

HLA-DRB11101 352/137 213/87 182/87 239/131

UPDS refers to datasets of non-redundant peptides. The last three columns
refer to similarity-reduced datasets (see text for details).
doi:10.1371/journal.pone.0003268.t002

Table 3. Number of binding/non-binding peptides in IEDB
benchmark dataset.

Allele UPDS SRDS1 SRDS2 SRDS3

HLA-DRB1-0101 1105/432 645/268 623/261 938/365

HLA-DRB1-0301 135/556 78/292 69/276 81/396

HLA-DRB1-0401 317/412 197/262 176/255 215/340

HLA-DRB1-0404 113/132 69/100 62/98 74/109

HLA-DRB1-0405 113/119 74/85 70/84 81/89

HLA-DRB1-0701 228/302 147/203 137/202 173/274

HLA-DRB1-0802 65/120 46/101 46/100 49/108

HLA-DRB1-1101 197/411 122/218 111/212 139/328

HLA-DRB1-1302 152/103 105/81 97/81 110/92

HLA-DRB1-1501 269/283 165/176 142/174 185/260

HLA-DRB4-0101 92/215 64/120 63/119 85/200

HLA-DRB5-0101 215/377 123/201 113/194 147/309

UPDS refers to datasets of non-redundant peptides. The last three columns
refer to similarity-reduced datasets (see text for details).
doi:10.1371/journal.pone.0003268.t003

Table 4. Performance of prediction methods on MHCPEP
HLA-DR4 unique, similarity-reduced, and weighted datasets
using 5-fold cross-validation test.

Dataset Method ACC Sn Sp CC AUC

UPDS CTD 86.59 73.36 99.82 0.759 0.906

LA 77.10 71.71 82.49 0.545 0.862

5-spectrum 90.55 81.29 99.82 0.825 0.917

SRDS1 CTD 69.93 66.06 73.80 0.400 0.723

LA 68.56 63.78 73.35 0.373 0.751

5-spectrum 70.96 43.28 98.63 0.503 0.710

SRDS2 CTD 64.77 60.40 69.13 0.296 0.692

LA 64.43 65.10 63.76 0.289 0.711

5-spectrum 56.04 33.22 78.86 0.136 0.578

SRDS3 CTD 65.01 61.47 68.56 0.301 0.695

LA 64.02 62.89 65.16 0.281 0.717

5-spectrum 68.56 38.81 98.30 0.462 0.679

WUPDS CTD 85.41 31.98 99.91 0.516 0.730

LA 79.38 22.50 94.81 0.249 0.723

5-spectrum 87.14 42.14 99.35 0.580 0.723

doi:10.1371/journal.pone.0003268.t004

Table 5. Performance of prediction methods on MHCBN HLA-
DRB1*0301 unique, similarity-reduced, and weighted datasets
using 5-fold cross-validation test.

Dataset Method ACC Sn Sp CC AUC

UPDS CTD 72.51 73.95 70.87 0.448 0.787

LA 71.89 73.56 70.00 0.436 0.795

5-spectrum 70.26 82.76 56.09 0.405 0.770

SRDS1 CTD 63.41 64.23 62.67 0.269 0.661

LA 58.54 59.85 57.33 0.172 0.617

5-spectrum 42.16 63.50 22.67 20.152 0.323

SRDS2 CTD 59.93 59.06 60.69 0.197 0.628

LA 55.88 54.33 57.24 0.116 0.563

5-spectrum 35.29 37.01 33.79 20.292 0.273

SRDS3 CTD 64.62 60.57 67.91 0.285 0.675

LA 67.18 61.14 72.09 0.334 0.736

5-spectrum 63.08 49.71 73.95 0.244 0.678

WUPDS CTD 65.27 61.04 68.88 0.300 0.678

LA 66.66 64.47 68.53 0.330 0.710

5-spectrum 59.97 58.70 61.04 0.197 0.648

doi:10.1371/journal.pone.0003268.t005
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a classifier is rather useless in reliably identifying members of the

minority class. Hence, in the case of unbalanced datasets, the

correlation coefficient (CC) or the area under the Receiver

Operating Characteristic (ROC) curve (AUC) provide more useful

measures than accuracy in assessing the performance of the

classifiers [26]. As shown in Table 5, the observed performance of

the three prediction methods on HLA-DRB1*0301 MHCBN-

UPDS version of this dataset appears to be overly optimistic

relative to that on its similarity-reduced and weighted counterparts.

Interestingly, the 5-spectrum kernel is competitive with CTD and

LA on the MHCBN-UPDS dataset, whereas its performance on

MHCBN-SRDS1 and MHCBN-SRDS2 is much worse than that

of the CTD and the LA classifiers.

Our results also demonstrate that conclusions of superior

performance of one method relative to another that are based

on estimates of performance obtained using UPDS versions of

MHC-II benchmark datasets can be misleading. For example,

from results shown in Tables 4 and 5, one might be tempted to

conclude that predictors that use the 5-spectrum kernel are

competitive with those that use CTD representation and the LA

kernel. However, the 5-spectrum kernel is outperformed by CTD

and LA on the similarity-reduced datasets. Similarly, conclusions

drawn from experiments using the UPDS datasets (Tables 4 and 5)

regarding the performance of the CTD and the LA kernel

classifiers are contradicted by the their observed performance on

the corresponding similarity-reduced datasets SRDS1 and SRDS2.

Limitations of the MHCBench benchmark data
Comparison of SRDS1, SRDS2, and SRDS3 versions of the

datasets used in this study reveals an important limitation of the

MHCBench dataset which is a widely used benchmark for

comparing MHC-II binding peptide prediction methods.

Recall that the SRDS3 versions of our datasets are derived using

the same procedure that was used in MHCBench to generate

similarity-reduced datasets. It is clear from the data summarized in

Tables 1–3 that the size of a SRDS3 version of a dataset is: often

larger than the size of its SRDS2 counterpart, and sometimes

larger than the size of its SRDS1 counterpart. Closer examination

of the peptides in SRDS3 datasets reveals that SRDS3 datasets

may contain several highly similar peptides (e.g., peptides with

more than 80% sequence similarity). This is illustrated by the

example shown in Figure 1: the two peptides in the SRDS3

version of the HLA-DRB1*0301 dataset share overall sequence

similarity of 85.71%. However, the procedure used to construct

similarity-reduced MHCBench dataset will keep both of these

peptides in the resulting dataset because the computed percent

identity (PID) between the two peptides is only 7.7%, well below

the threshold of 80% PID used to identify similar peptides in

MHCBench [20]. Thus, the similarity reduction procedure used in

MHCBench dataset (which relies on a strict gapless alignment)

may not eliminate all highly similar peptides.

The preceding observation explains why the number of peptides

in the SRDS3 versions of the datasets is usually greater than that

in SRDS1 and SRDS2 datasets (see Tables 1–3). More

importantly, because of the presence of a number of highly

similar peptides in some SRDS3 datasets, the observed perfor-

mance of the three prediction methods on the SRDS3 datasets

may be overly optimistic relative to that estimated from their

SRDS1 and SRDS2 counterparts. Because the classifier using the

5-spectrum kernel in fact relies on the degree of (gapless) match

between a sequence pattern present in one or more training

sequences and a test sequence, it benefits from the presence of a

high degree of similarity between a test sequence and one or more

training sequences in ways that the other two classifiers do not.

Consequently classifiers that use the 5-spectrum kernel can appear

to be competitive with, and perhaps even outperform those that

use the CTD representation or the LA kernel when their

performance is compared using SRDS3 datasets (and for similar

reasons, the MHCBench benchmark data).

Comparison of the CTD, LA, and the k-spectrum kernel
methods

In machine learning and bioinformatics literature, claims of

superiority of one method over another are often based on the

outcome of suitable statistical tests. Hence it is interesting to examine

the differences in the conclusions obtained when statistical tests are

used to compare the performance of prediction methods based on

the empirical estimates of their performance on the UPDS, SRDS1,

SRDS2, SRDS3, and WPDS versions of the datasets.

Several non-parametric statistical tests [27,28] have been

recently recommended for comparing different classifiers on

multiple datasets (accounting for the effects of multiple compar-

isons) [29]. In our analysis, we apply a three-step procedure

proposed by Demšar [29]. First, the classifiers to be compared are

ranked on the basis of their observed performance (e.g., AUC) on

each dataset. Second, the Friedman test is applied to determine

whether the measured average ranks are significantly different

from the mean rank under the null hypothesis. Third, if the null

hypothesis can be rejected at a significance level of 0.05, the

Nemenyi test is used to determine whether significant differences

exist between any given pair of classifiers.

Statistical analysis of results on the MHCPEP datasets
Tables 6–10 compare the AUC of the three prediction methods

on the five versions of the MHCPEP datasets. For each dataset, the

rank of each classifier is shown in parentheses. The last row in each

table summarizes the average AUC and rank for each classifier.

Demšar [29] has suggested that the average ranks by themselves

provide a reasonably fair comparison of classifiers. Interestingly, the

LA kernel has the worst rank among the three methods when the

comparison is based on the observed performance on the UPDS

datasets, whereas it has the best rank among the three methods when

Figure 1. Example of two peptides from MHCBN-SRDS3 HLA-DRB1*0301 dataset. Although the two peptides share 85.71% sequence
similarity, the computed percent identity (PID) used to define the similarity between these two peptides in MHCBench benchmark is only 7.7%.
doi:10.1371/journal.pone.0003268.g001
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the comparison is based on the similarity-reduced or the weighted

datasets. Tables 6–10 also show that the rank of the 5-spectrum

kernel is competitive with that of CTD on UPDS and SRDS3. This

observation is consistent with the presence of a number of highly

similar sequences in SRDS3 datasets.

To determine whether the differences in average ranks are

statistically significant, we applied the Friedman test [29] to the rank

data in Tables 6–10. At significance level of 0.05, the Friedman test

did not indicate a statistically significant difference between the

methods on the UPDS and WUPDS datasets. However, in the case

of the similarity-reduced datasets, the Friedman test indicated

statistically significant differences between the methods being

compared. Thus, we conclude that the three methods are

competitive with each other on the UPDS and WUPDS datasets,

and that there is at least one pair of classifiers with significant

difference in performance on the three versions of similarity-reduced

datasets. Furthermore, for each version of MHCPEP similarity-reduced

datasets, the Nemenyi test was applied to determine whether

significant differences exist between any given pair of classifiers.

Figure 2 summarizes the results of the pair-wise comparisons

performed using the Nemenyi test. We find that on the SRDS1

versions of the datasets, both the LA and the CTD methods

significantly outperform the 5-spectrum kernel and that there are no

statistically significant differences between the LA kernel and the

CTD classifier. On SRDS2 datasets, we find that, the performance

of each of the three methods is significantly different from that of the

other two methods, with the LA and the CTD methods ranked first

and second, respectively. On SRDS3 datasets, we observe that the

performance of the LA kernel is significantly better than that of the

CTD and the 5-spectrum classifiers, with no significant differences

between the CTD and the 5-spectrum classifiers.

Statistical analysis of results on the MHCBN and the IEDB
datasets

We summarize the results of applying Demšar’s three-step

procedure to the results obtained on the five versions of MHCBN

and IEDB datasets, respectively. In the case of the MHCBN datasets,

Tables 11–15 show the estimated AUC and rank of each classifier on

each dataset. The results of the Freidman test (at a significance level

of 0.05) applied to the results in each table did not indicate significant

differences in performance among the CTD, the LA, and the 5-

spectrum kernel classifiers on the UPDS dataset. However, the test

indicated statistically significant differences among the methods in

the case of the SRDS1, SRDS2, SRDS3, and the WUPDS datasets.

Figure 3 summarizes the results of the pair-wise comparisons using

the Nemenyi test. In the case of the SRDS1 and the SRDS2 datasets,

we find that the performance of both the LA kernel and the CTD

classifiers is significantly better than that of the 5-spectrum kernel

classifier and that there are no significant differences between the LA

kernel and the CTD classifiers. In the case of the SRDS3 datasets, we

find that the performance of the LA kernel classifier is significantly

better than that of the CTD and the 5-spectrum classifiers, and that

no significant differences exist between the CTD and the 5-spectrum

classifiers. In the case of the WUPDS datasets, we find that the LA

kernel classifier significantly outperforms the 5-spectrun kernel and

Table 6. AUC values for the three methods evaluated on
MHCPEP-UPDS datasets.

Allele 5-spectrum LA CTD

HLA-DQ2 0.908(2) 0.905(3) 0.939(1)

HLA-DQ4 0.628(3) 0.903(2) 0.934(1)

HLA-DQ7 0.856(2) 0.860(1) 0.853(3)

HLA-DR1 0.883(1) 0.872(2) 0.863(3)

HLA-DR2 0.884(1) 0.866(2) 0.829(3)

HLA-DR3 0.854(3) 0.869(1) 0.862(2)

HLA-DR4 0.917(1) 0.862(3) 0.906(2)

HLA-DR5 0.905(1) 0.864(3) 0.887(2)

HLA-DR7 0.916(1) 0.858(3) 0.904(2)

HLA-DR8 0.894(3) 0.896(2) 0.903(1)

HLA-DR9 0.836(3) 0.880(2) 0.913(1)

HLA-DR11 0.910(3) 0.938(2) 0.958(1)

HLA-DR13 0.875(3) 0.905(2) 0.920(1)

HLA-DR15 0.887(1) 0.829(3) 0.867(2)

HLA-DR17 0.907(2) 0.907(2) 0.934(1)

HLA-DR51 0.924(1) 0.891(2) 0.886(3)

I-Ab 0.865(2) 0.855(3) 0.875(1)

I-Ad 0.942(1) 0.898(3) 0.902(2)

I-Ag7 0.916(1) 0.896(2) 0.887(3)

I-Ak 0.909(1) 0.872(3) 0.881(2)

I-Ed 0.918(3) 0.921(2) 0.936(1)

I-Ek 0.934(3) 0.940(2) 0.951(1)

Average 0.885(1.91) 0.886(2.27) 0.900(1.77)

For each dataset, the rank of each classifier is shown in parentheses.
doi:10.1371/journal.pone.0003268.t006

Table 7. AUC values for the three methods evaluated on
MHCPEP-SRDS1 datasets.

Allele 5-spectrum LA CTD

HLA-DQ2 0.789(3) 0.852(2) 0.853(1)

HLA-DQ4 0.544(3) 0.854(2) 0.881(1)

HLA-DQ7 0.677(3) 0.799(1) 0.726(2)

HLA-DR1 0.662(3) 0.801(1) 0.744(2)

HLA-DR2 0.694(3) 0.795(1) 0.781(2)

HLA-DR3 0.603(2) 0.678(1) 0.572(3)

HLA-DR4 0.710(3) 0.751(1) 0.723(2)

HLA-DR5 0.691(3) 0.776(2) 0.784(1)

HLA-DR7 0.721(2) 0.702(3) 0.732(1)

HLA-DR8 0.552(3) 0.625(2) 0.694(1)

HLA-DR9 0.620(3) 0.746(1) 0.721(2)

HLA-DR11 0.703(3) 0.912(1) 0.890(2)

HLA-DR13 0.746(3) 0.827(2) 0.837(1)

HLA-DR15 0.711(2) 0.718(1) 0.667(3)

HLA-DR17 0.789(3) 0.806(2) 0.876(1)

HLA-DR51 0.651(2) 0.788(1) 0.603(3)

I-Ab 0.620(3) 0.705(1) 0.680(2)

I-Ad 0.787(3) 0.818(1) 0.804(2)

I-Ag7 0.718(2) 0.778(1) 0.702(3)

I-Ak 0.761(3) 0.800(1) 0.796(2)

I-Ed 0.826(3) 0.903(2) 0.932(1)

I-Ek 0.874(3) 0.913(2) 0.941(1)

Average 0.702(2.77) 0.789(1.45) 0.770(1.77)

For each dataset, the rank of each classifier is shown in parentheses.
doi:10.1371/journal.pone.0003268.t007
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that there are no significant differences between the LA and the

CTD and between the CTD and the 5-spectrum classifiers.

Results of Demšar’s statistical test applied to the IEDB datasets

are shown in Tables S46–S50 (Data S1 in supporting information)

and Figure 4. As in the case of MHCPEP and MHCBN, we see no

significant differences in the performance of different classifiers on

IEDB-UPDS datasets. However, in the case of the other datasets,

we find at least one pair of classifiers with significant differences in

performance. As shown in Figure 4, both the LA and the CTD

classifiers significantly outperform the 5-spectrum classifier on the

SRDS1 and the SRDS2 versions of the IEDB datasets. However,

no significant differences are observed between the CTD and the

5-spectrum methods on the SRDS3 and WUPDS versions of the

IEDB datasets.

Performance on the blind test set
The results summarized above underscore the importance of

similarity-reduced MHC-II datasets for obtaining a realistic estima-

tion of the classifier performance and avoiding misleading

conclusions. However, one might argue that in practice, when

developers of MHC-II binding peptide prediction methods make

an implementation of their methods publicly available (e.g., as an

online web server or as a web service), it might be better to utilize

as much of the available data as possible to train the predictor.

Hence, it is interesting to explore whether the UPDS datasets

should be preferred over the similarity-reduced counterparts to avoid

any potential loss of useful information due to the elimination of

highly similar peptides in a setting where the goal is to optimize the

predictive performance of the classifier on novel peptides. In what

follows, we attempt to answer this question using five allele-specific

blind test sets [30] to evaluate the performance of the three

prediction methods trained on the unique, similarity-reduced, and

weighted versions of the MHCBN data for the corresponding alleles.

Table 16 shows that the 5-spectrum kernel classifier consistently

performs poorly (AUC<0.5) on the allele-specific blind test sets

regardless of the version of the MHCBN dataset used for training

the classifier. This finding is consistent with the cross-validation

performance estimates obtained on the MHCBN SRDS1 and

SRDS2 datasets (see Tables 12 and 13).

Table 17 shows the performance on the blind test sets of the

CTD classifiers trained on different versions of MHCBN datasets.

Interestingly, the CTD classifiers appear to be relatively insensitive

to the choice of the specific version of the MHCBN dataset on

which they were trained, with an average AUC<0.66 in each case.

Finally, Table 18 summarizes the performance on the blind test

sets of the LA classifiers trained on the different versions of

MHCBN datasets. Interestingly, the best performance (on four out

of the five allele-specific blind test sets) is observed in the case of

the LA classifiers trained on the SRDS2 versions of the

corresponding allele-specific datasets.

In summary, our results show that MHC-II predictors trained on

the similarity reduced versions of the dataset generally outperform

those trained on the UPDS dataset. This suggests that similarity

reduction contributes to improved generalization on blind dataset.

Table 8. AUC values for the three methods evaluated on
MHCPEP-SRDS2 datasets.

Allele 5-spectrum LA CTD

HLA-DQ2 0.566(3) 0.678(1) 0.573(2)

HLA-DQ4 0.590(3) 0.954(1) 0.817(2)

HLA-DQ7 0.616(3) 0.713(1) 0.709(2)

HLA-DR1 0.562(3) 0.715(1) 0.711(2)

HLA-DR2 0.548(3) 0.633(1) 0.614(2)

HLA-DR3 0.514(3) 0.602(1) 0.572(2)

HLA-DR4 0.578(3) 0.711(1) 0.692(2)

HLA-DR5 0.583(3) 0.622(2) 0.625(1)

HLA-DR7 0.562(3) 0.622(1) 0.599(2)

HLA-DR8 0.526(3) 0.717(1) 0.680(2)

HLA-DR9 0.488(3) 0.754(1) 0.690(2)

HLA-DR11 0.528(3) 0.810(1) 0.792(2)

HLA-DR13 0.518(3) 0.827(1) 0.587(2)

HLA-DR15 0.592(3) 0.698(1) 0.689(2)

HLA-DR17 0.568(2) 0.612(1) 0.550(3)

HLA-DR51 0.578(3) 0.664(1) 0.595(2)

I-Ab 0.570(3) 0.624(2) 0.638(1)

I-Ad 0.623(2) 0.700(1) 0.618(3)

I-Ag7 0.713(2) 0.756(1) 0.632(3)

I-Ak 0.586(3) 0.664(1) 0.661(2)

I-Ed 0.645(3) 0.760(1) 0.744(2)

I-Ek 0.606(3) 0.756(1) 0.703(2)

Average 0.575(2.86) 0.709(1.09) 0.659(2.05)

For each dataset, the rank of each classifier is shown in parentheses.
doi:10.1371/journal.pone.0003268.t008

Table 9. AUC values for the three methods evaluated on
MHCPEP-SRDS3 datasets.

Allele 5-spectrum LA CTD

HLA-DQ2 0.663(2) 0.655(3) 0.754(1)

HLA-DQ4 0.608(3) 0.900(1) 0.900(1)

HLA-DQ7 0.699(3) 0.757(1) 0.706(2)

HLA-DR1 0.676(3) 0.747(1) 0.720(2)

HLA-DR2 0.724(2) 0.736(1) 0.686(3)

HLA-DR3 0.623(2) 0.657(1) 0.532(3)

HLA-DR4 0.679(3) 0.717(1) 0.695(2)

HLA-DR5 0.719(2) 0.723(1) 0.617(3)

HLA-DR7 0.631(2) 0.765(1) 0.613(3)

HLA-DR8 0.608(3) 0.732(1) 0.714(2)

HLA-DR9 0.520(3) 0.779(2) 0.792(1)

HLA-DR11 0.544(3) 0.854(1) 0.850(2)

HLA-DR13 0.563(3) 0.623(2) 0.630(1)

HLA-DR15 0.805(1) 0.713(2) 0.663(3)

HLA-DR17 0.629(3) 0.769(1) 0.682(2)

HLA-DR51 0.800(1) 0.780(2) 0.672(3)

I-Ab 0.606(3) 0.611(2) 0.618(1)

I-Ad 0.821(1) 0.785(2) 0.676(3)

I-Ag7 0.823(1) 0.804(2) 0.757(3)

I-Ak 0.768(1) 0.766(2) 0.691(3)

I-Ed 0.828(2) 0.852(1) 0.787(3)

I-Ek 0.714(2) 0.789(1) 0.699(3)

Average 0.684(2.23) 0.751(1.45) 0.702(2.27)

For each dataset, the rank of each classifier is shown in parentheses.
doi:10.1371/journal.pone.0003268.t009
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Discussion

Related work
Several previous studies have considered the importance of

similarity reduction in datasets of MHC-II peptides. MHCBench

[20] is a benchmark of eight HLA-DRB1*0401 datasets representing

a set of unique peptides (Set1), a dataset of natural peptides (Set2,

derived from Set1 by removing peptides with .75% Alanine

residues), two non-redundant datasets (Set3a and Set3b derived from

Set1 and Set2, respectively), two balanced datasets (Set4a and Set4b

derived from Set1 and Set2 by randomly selecting equal numbers of

binding and non-binding peptides), and two recent datasets of ligands

(Set5a and Set5b, derived from Set1 and Set2 by considering only the

most recently reported peptides). However, this benchmark considers

only a single MHC-II allele, namely, HLA-DR4 (B1*0401). More

importantly, as shown by our analysis of SRDS3 datasets, the

similarity reduction procedure used in MHCBench is not stringent

enough to ensure elimination of highly similar peptides.

Nielsen et al. [6] and Murugan et al. [18] trained their classifiers

using data extracted from MHCPEP and SYFPETHI databases and

evaluated the classifiers using ten test sets, from which peptides

similar to peptides in the training datasets had been removed.

Recently, Nielsen et al. [7] presented an MHC-II benchmarking

dataset for regression tasks: each peptide is labeled with a real value

indicating the binding affinity of the peptide. In this benchmark

dataset, each set of allele-specific data had been partitioned into five

subsets with minimal sequence overlap. However, neither of these

studies explicitly examined the limitations of widely used benchmark

datasets or the full implications of using MHC-II datasets of unique

peptides in evaluating alternative methods.

Mallios [31] compared three HLA-DRB1*0101 and HLA-

DRB1*0401 prediction tools using an independent test set of two

proteins. A consensus approach combining the predictions of the

three methods was shown to be superior to the three methods.

However, the significance of this result is limited by the small

dataset utilized in this study.

Two recent studies [30,32] have pointed out some of the

limitations of existing MHC-II prediction methods in identifying

potential MHC-II binding peptides. Gowthaman et al. [32] used

179 peptides derived from eight antigens and covering seven

MHC-II alleles to evaluate the performance of six commonly used

MHC-II prediction methods and concluded that none of these

methods can reliably identify potential MHC-II binding peptides.

Wang et al. [30] introduced a large benchmark dataset of

previously unpublished peptides and used it to assess the

performance of nine publicly available MHC-II binding peptide

prediction methods. Both studies showed that the predictive

performance of existing MHC-II prediction tools on independent

blind test sets is substantially worse than the performance of these

tools reported by their developers. Our work complements these

studies by providing a plausible explanation of this result.

We have shown that the previously reported similarity reduction

methods may not eliminate highly similar peptides, i.e., peptides

that share .80% sequence identity still pass the similarity test. We

have proposed a two-step similarity reduction procedure that is

much more stringent than those currently in use for similarity

reduction with MHC-II benchmark datasets. We have used the

similarity reduction method used in MHCBench, as well as our

proposed 2-stage method to derive similarity-reduced MHC-II

benchmark datasets based on peptides retrieved from MHCPEP

and MHCBN databases. Comparison of the similarity-reduced

versions of MHCPEP, MHCBN, and IEDB datasets with their

original UPDS counterparts showed that nearly 50% of the

peptides in the UPDS datasets are, in fact, highly similar.

Extensions to multi-class and multi-label prediction
problems

Our description of the proposed similarity reduction procedure

assumes a 2-class prediction problem. However, our proposed

approach can easily be adapted to multi-class prediction (wherein

an instance has associated with one of several mutually exclusive

labels). One can simply apply the similarity reduction procedure

separately to data from each class.

A more interesting setting is that of multi-label prediction

(wherein each instance is associated with a subset of a set of

candidate labels). Consider for example, the problem of predicting

promiscuous MHC binding peptides [33], where each peptide can

bind to multiple HLA molecules. Current methods for multi-label

prediction typically reduce the multi-label prediction task to a

collection of binary prediction tasks [34]. Hence, the similarity

reduction methods proposed in this paper can be directly applied

to the binary labeled datasets resulting from such a reduction.

Implications for rigorous assessment of MHC-II binding
peptide prediction methods

The results of our study show that the observed performance of

some of the methods (e.g., the CTD and the LA kernels) on

benchmark datasets of unique peptides can be rather optimistic

relative to the performance of the same methods on similarity-reduced

counterparts of the same datasets or on blind test sets. This suggests

that the performance of existing MHC-II prediction methods, when

Table 10. AUC values for the three methods evaluated on
MHCPEP-WUPDS datasets.

Allele 5-spectrum LA CTD

HLA-DQ2 0.717(3) 0.738(2) 0.772(1)

HLA-DQ4 0.543(3) 0.882(2) 0.925(1)

HLA-DQ7 0.716(3) 0.786(2) 0.812(1)

HLA-DR1 0.696(3) 0.710(1) 0.699(2)

HLA-DR2 0.682(2) 0.688(1) 0.617(3)

HLA-DR3 0.612(3) 0.678(1) 0.614(2)

HLA-DR4 0.723(2.5) 0.723(2.5) 0.730(1)

HLA-DR5 0.765(1) 0.709(3) 0.733(2)

HLA-DR7 0.714(1) 0.599(3) 0.632(2)

HLA-DR8 0.796(3) 0.810(1) 0.802(2)

HLA-DR9 0.806(2) 0.819(1) 0.738(3)

HLA-DR11 0.612(3) 0.798(2) 0.830(1)

HLA-DR13 0.620(2) 0.714(1) 0.605(3)

HLA-DR15 0.760(1) 0.627(2) 0.587(3)

HLA-DR17 0.747(2) 0.760(1) 0.679(3)

HLA-DR51 0.838(1) 0.786(2) 0.718(3)

I-Ab 0.650(2) 0.669(1) 0.636(3)

I-Ad 0.815(1) 0.740(2) 0.707(3)

I-Ag7 0.820(1) 0.797(2) 0.700(3)

I-Ak 0.778(1) 0.684(2) 0.680(3)

I-Ed 0.742(3) 0.760(2) 0.805(1)

I-Ek 0.734(3) 0.824(1) 0.805(2)

Average 0.722(2.11) 0.741(1.7) 0.719(2.18)

For each dataset, the rank of each classifier is shown in parentheses.
doi:10.1371/journal.pone.0003268.t010
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applied to novel peptide sequences, may turn out to be less

satisfactory than one might have been led to believe based on the

reported performance of such methods on some of the widely used

benchmark. Moreover, the conclusions based on observed perfor-

mance on datasets of unique peptides regarding the superior

performance of one method relative to another can be highly

unreliable in more realistic settings e.g., predictions of novel peptides.

These results underscore the importance of rigorous comparative

evaluation of a broad range of existing methods for MHC-II binding

peptides prediction methods using similarity-reduced datasets. We

expect that such studies are likely to show much greater room for

improvement over the state-of-the-art MHC-II prediction tools than

one might be led to believe based on reported performance on the

widely-used benchmark datasets and motivate the research commu-

nity to develop improved methods for this important task. We hope

that such comparisons will be facilitated by the availability of the

similarity-reduced versions of MHCPEP, MHCBN, and IEDB datasets

used in our experiments. These datasets (Datasets S1, S2 and S3),

Java source code implementation of the similarity reduction and

weighting procedures (Code S1), and the supplementary materials

(Data S1) have been made freely available (see Supporting

Information).

Materials and Methods

The datasets used in this study are derived from MHCPEP [21],

MHCBN [22], and IEDB [23], which are manually curated

repositories of MHC binding peptides reported in the literature.

We extracted 22 MHC-II allele datasets (each with at least 100

binders) from the MHCPEP database. Because MHCPEP contains

only MHC-II binding peptides (‘‘positive examples’’), for each allele,

we generated an equal number of non-binders (‘‘negative examples’’)

by randomly extracting protein fragments from SwissProt [35]

protein sequences such that: (i) The length distribution of negative

examples is identical to that of the positive examples; (ii) None of the

non-binding peptides appear in the set of binders.

Unlike MHCPEP, MHCBN is a database of binding and non-

binding MHC peptides. MHCBN version 4.0 has 35 MHC-II

alleles with at least 100 binders. Out of these 35 alleles, only eight

alleles have at least 100 non-binders. We extracted the MHCBN

benchmark dataset used in this study from the alleles for which at

least 100 binders and non-binders peptides are available in

MHCBN.

The Immune Epitope Database and Analysis Resource (IEDB)

[23] is a rich resource of MHC binding data curated from the

literature or submitted by immunologists. For each reported

peptide, IEDB provides qualitative (i.e., Negative or Positive) and

quantitative (i.e., IC50) measurements whenever available. We

used both qualitative and quantitative measurements for con-

structing 12 HLA binary labeled datasets as follows:

N Peptides with no reported quantitative measurements are

discarded.

N Peptides with ‘‘Positive’’ qualitative measurement and quan-

titative measurement less than 500 nM are classified as

binders.

Figure 2. Pair-wise comparisons of classifiers with the Nemenyi test applied to results on a) MHCPEP-SRDS1, b) MHCPEP-SRDS2,
and c) MHCPEP-SRDS3. Classifiers that are not significantly different (at p-value = 0.05) are connected.
doi:10.1371/journal.pone.0003268.g002
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N Peptides with ‘‘Positive’’ qualitative measurement and quan-

titative measurement greater than or equal 500 nM are

classified as non-binders.

N Peptides with ‘‘Negative’’ qualitative measurement and

quantitative measurement greater than or equal 500 nM are

classified as non-binders.

N Peptides with ‘‘Negative’’ qualitative measurement and

quantitative measurement less than 500 nM are discarded.

The reported MHC binding sites are typically identified using

truncation, substitution, or mutations in a base peptide [36].

Because different reported MHC-II binding peptides might

actually correspond to experimental manipulation of the same

MHC-II binding region using different experimental techniques or

different choices of amino acids targeted for truncation, substitu-

tion, or mutation, it is not surprising that that MHC databases

contain a significant number of highly similar peptides. Hence, we

used several similarity reduction methods to extract several

different versions of the dataset from each set of sequences.

It should be noted that the existence of highly similar peptides

belonging to the same category may result in an over-optimistic

estimation of the classifier performance. Therefore, we applied the

similarity reduction procedures separately to the set of binders and

non-binders in each dataset. The following sections describe the

similarity reduction procedures and the resulting similarity-reduced

datasets.

Table 11. AUC values for the three methods evaluated on
MHCBN-UPDS datasets.

Allele 5-spectrum LA CTD

HLA-DR1 0.747(3) 0.768(2) 0.789(1)

HLA-DR2 0.806(1) 0.771(3) 0.786(2)

HLA-DR5 0.743(3) 0.748(2) 0.752(1)

HLA-DRB10101 0.758(3) 0.799(2) 0.804(1)

HLA-DRB10301 0.770(3) 0.795(1) 0.787(2)

HLA-DRB10401 0.705(3) 0.780(1) 0.721(2)

HLA-DRB10701 0.778(2) 0.842(1) 0.732(3)

HLA-DRB11101 0.754(3) 0.874(1) 0.832(2)

Average 0.758(2.63) 0.797(1.63) 0.775(1.75)

For each dataset, the rank of each classifier is shown in parentheses.
doi:10.1371/journal.pone.0003268.t011

Table 12. AUC values for the three methods evaluated on
MHCBN-SRDS1 datasets.

Allele 5-spectrum LA CTD

HLA-DR1 0.545(3) 0.784(1) 0.738(2)

HLA-DR2 0.456(3) 0.707(2) 0.750(1)

HLA-DR5 0.533(3) 0.657(2) 0.692(1)

HLA-DRB10101 0.456(3) 0.690(2) 0.748(1)

HLA-DRB10301 0.323(3) 0.617(2) 0.661(1)

HLA-DRB10401 0.381(3) 0.676(1) 0.655(2)

HLA-DRB10701 0.424(3) 0.665(2) 0.748(1)

HLA-DRB11101 0.493(3) 0.776(1) 0.759(2)

Average 0.451(3.00) 0.697(1.63) 0.719(1.38)

For each dataset, the rank of each classifier is shown in parentheses.
doi:10.1371/journal.pone.0003268.t012

Table 13. AUC values for the three methods evaluated on
MHCBN-SRDS2 datasets.

Allele 5-spectrum LA CTD

HLA-DR1 0.448(3) 0.717(1) 0.698(2)

HLA-DR2 0.374(3) 0.665(2) 0.716(1)

HLA-DR5 0.369(3) 0.459(2) 0.588(1)

HLA-DRB10101 0.351(3) 0.705(1) 0.683(2)

HLA-DRB10301 0.273(3) 0.563(2) 0.628(1)

HLA-DRB10401 0.261(3) 0.658(1) 0.620(2)

HLA-DRB10701 0.414(3) 0.617(2) 0.696(1)

HLA-DRB11101 0.386(3) 0.705(2) 0.757(1)

Average 0.360(3.00) 0.636(1.63) 0.673(1.38)

For each dataset, the rank of each classifier is shown in parentheses.
doi:10.1371/journal.pone.0003268.t013

Table 14. AUC values for the three methods evaluated on
MHCBN-SRDS3 datasets.

Allele 5-spectrum LA CTD

HLA-DR1 0.685(3) 0.768(1) 0.743(2)

HLA-DR2 0.709(3) 0.741(1) 0.719(2)

HLA-DR5 0.557(3) 0.616(1) 0.608(2)

HLA-DRB10101 0.691(3) 0.819(1) 0.725(2)

HLA-DRB10301 0.678(2) 0.736(1) 0.675(3)

HLA-DRB10401 0.624(3) 0.760(1) 0.710(2)

HLA-DRB10701 0.737(2) 0.794(1) 0.671(3)

HLA-DRB11101 0.755(3) 0.816(1) 0.775(2)

Average 0.680(2.75) 0.756(1.00) 0.703(2.25)

For each dataset, the rank of each classifier is shown in parentheses.
doi:10.1371/journal.pone.0003268.t014

Table 15. AUC values for the three methods evaluated on
MHCBN-WUPDS datasets.

Allele 5-spectrum LA CTD

HLA-DR1 0.655(3) 0.747(1) 0.732(2)

HLA-DR2 0.636(3) 0.717(2) 0.740(1)

HLA-DR5 0.518(3) 0.594(1) 0.543(2)

HLA-DRB10101 0.535(3) 0.672(1) 0.666(2)

HLA-DRB10301 0.648(3) 0.710(1) 0.678(2)

HLA-DRB10401 0.536(3) 0.757(1) 0.701(2)

HLA-DRB10701 0.667(3) 0.724(1) 0.702(2)

HLA-DRB11101 0.676(3) 0.820(1) 0.789(2)

Average 0.609(3) 0.718(1.13) 0.694(1.88)

For each dataset, the rank of each classifier is shown in parentheses.
doi:10.1371/journal.pone.0003268.t015
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Similarity reduction procedures
An example of two different types of similar peptides that

frequently occur in MHC peptides databases is shown in Figure 5.

In type I, two peptides differ from each other in terms of only one

or two amino acids (see Figure 5A). Such highly similar peptides

are likely to have come from different mutation experiments

targeting different sites of the same MHC-II binding peptide. For

example, Garcia et al. [37] report an HLA-DRB1*0401 binding

peptide (WGENDTDVFVLNNTR) and 12 additional binding

peptides derived from that peptide by replacing one of the amino

acid in (WGENDTDVFVLNNTR) sequence with Glycine and

experimentally determining the binding affinity of the new

peptide. In type II, we find that a shorter peptide in one allele

dataset corresponds to a sub-sequence of a longer one that is also

in the allele dataset (see Figure 5B).

Standard approaches to identifying similar peptide sequences rely

on the use of a sequence similarity threshold. Sequences that are

within a certain predetermined similarity threshold relative to a

target sequence are eliminated from the dataset. However, the use of

such a simple approach to obtaining a similarity reduced dataset is

complicated by the high degree of variability in the length of MHC-

II peptides. Using a single fixed similarity cutoff value (e.g. 80%)

might not be effective in eliminating type II similar peptides. On the

other hand, an attempt to eliminate one of the two such similar

sequences by using of a more stringent similarity threshold could

result in elimination of most of the dataset.

To address this problem, we used a two-step similarity reduction

procedure to eliminate similar peptides of types I and II:

N Step 1 eliminates similar peptides based on a criterion

proposed by Nielsen et al. [7]. Two peptides are considered

similar if they share a 9-mer subsequence. This step will

eliminate all similar peptides of type II but is not guaranteed to

remove all similar peptides of Type I. For example, this

method will not eliminate one of the two peptides in Figure 5A

although they share 84.6% sequence similarity.

N Step 2 filters the dataset using an 80% similarity threshold to

eliminate any sequence that has a similarity of 80% or greater

with one or more sequences in the dataset.

In addition, we also used a procedure proposed by Raghava [20]

for similarity reduction of MHCBench benchmark datasets. Briefly,

given two peptides p1 and p2 of lengths l1 and l2 such that l1#l2, we

compare p1 with each l1-length subpeptide in p2. If the percent

Figure 3. Pair-wise comparisons of classifiers with the Nemenyi test applied to results on a) MHCBN-SRDS1, b) MHCBN-SRDS2, c)
MHCBN-SRDS3, and d) MHCBN-WUPDS. Classifiers that are not significantly different (at p-value = 0.05) are connected.
doi:10.1371/journal.pone.0003268.g003

Binding Peptide Predictors

PLoS ONE | www.plosone.org 10 September 2008 | Volume 3 | Issue 9 | e3268



identity (PID) between p1 and any subpeptide in p2 is greater than

80%, then the two peptides are deemed to be similar. For example,

to compute the PID between (ACDEFGHIKLMNPQRST) and

(DEFGGIKLMN), we compare (DEFGGIKLMN) with (ACDEF-

GHIKL), (CDEFGHIKLM), …, (IKLMNPQRST). The PID

between (DEFGGIKLMN) and (DEFGHIKLMN) is 90% since

nine out of 10 residues are identical.

Finally, we explored a method for assigning weights to similar

peptides as opposed to eliminating similar peptides from the

dataset. Specifically, the peptides within the binders category that

are similar to each other (i.e., share a 9-mer subsequence or have

Figure 4. Pair-wise comparisons of classifiers with the Nemenyi test applied to results on a) IEDB-SRDS1, b) IEDB-SRDS2, c) IEDB-
SRDS3, and d) IEDB-WUPDS. Classifiers that are not significantly different (at p-value = 0.05) are connected.
doi:10.1371/journal.pone.0003268.g004

Table 16. AUC values for 5-spectrum based classifiers trained
using MHCBN- UPDS, SRDS1, SRDS2, SRDS3, and WUPDS
datasets and evaluated on the blind test sets of Wang et al.
[30].

Allele UPDS SRDS1 SRDS2 SRDS3 WUPDS

HLA-DRB1-0101 0.505 0.503 0.504 0.506 0.505

HLA-DRB1-0301 0.518 0.515 0.515 0.516 0.518

HLA-DRB1-0401 0.504 0.500 0.500 0.501 0.487

HLA-DRB1-0701 0.500 0.500 0.500 0.500 0.496

HLA-DRB1-1101 0.500 0.500 0.500 0.500 0.496

Average 0.505 0.504 0.504 0.505 0.500

doi:10.1371/journal.pone.0003268.t016

Table 17. AUC values for CTD classifiers trained using
MHCBN- UPDS, SRDS1, SRDS2, SRDS3, and WUPDS datasets
and evaluated on the blind test sets of Wang et al. [30].

Allele UPDS SRDS1 SRDS2 SRDS3 WUPDS

HLA-DRB1-0101 0.689 0.707 0.684 0.714 0.629

HLA-DRB1-0301 0.595 0.589 0.597 0.596 0.585

HLA-DRB1-0401 0.605 0.584 0.611 0.633 0.601

HLA-DRB1-0701 0.675 0.711 0.699 0.684 0.694

HLA-DRB1-1101 0.732 0.701 0.719 0.713 0.735

Average 0.659 0.658 0.662 0.668 0.649

doi:10.1371/journal.pone.0003268.t017
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sequence similarity of 80% or greater) are clustered together. Each

peptide that is assigned to a cluster is similar to at least one other

peptide within the cluster, and no two similar peptides are assigned

to different clusters. Each peptide in a cluster is assigned a weight

of 1=n, where n is the number of peptides assigned to the cluster.

The process is repeated with peptides in the non-binders category.

The result is a dataset of weighted instances.

Thus, from each MHC-II benchmark dataset, we generated five

versions summarized below:

N Three datasets of unique peptides, MHCPEP-UPDS, MHCBN-

UPDS, and IEDB-UPDS extracted from MHCPEP,

MHCBN, and IEDB, respectively after eliminating short

peptides consisting of fewer than 9 residues, unnatural

peptides, peptides with greater than 75% Alanine residues,

and duplicated peptides.

N Three datasets of similarity-reduced peptides, MHCPEP-SRDS1,

MHCBN-SRDS1, and IEDB-SRDS1 derived from the

corresponding UPDS datasets described above using only step

1 of the two-step similarity reduction procedure described

above which ensures that no two peptides in the resulting

datasets of binders or non binders share a 9-mer subsequence.

N Three datasets of similarity-reduced peptides, MHCPEP-SRDS2,

MHCBN-SRDS2, and IEDB-SRDS2, extracted MHCPEP-

SRDS1, MHCBN-SRDS1, and IEDB-SRDS1 respectively by

filtering the binders and non-binders in SRDS1 such that the

sequence identity between any pair of peptides in the binders

category or in the non-binders category is less than 80%.

N Three datasets of similarity-reduced peptides, MHCPEP-SRDS3,

MHCBN-SRDS3, and IEDB-SRDS3, derived from the

corresponding UPDS datasets by applying the similarity

reduction procedure introduced by Raghava which has been

used to construct the MHCBench dataset [20].

N Three weighted unique peptide datasets, MHCPEP-WUPDS,

MHCBN-WUPDS, and IEDB-WUPDS, derived from the

corresponding UPDS datasets by applying the peptide

weighting method described above.

The procedure used to generate the five different versions of each

allele-specific dataset using the different similarity reduction methods

and the peptide weighting method described above is shown in

Figure 6. Note that UPDS can contain similar peptides of both types

I and II; SRDS1 can contain similar peptides of type I; SRDS2 is free

from both type I and type II similar peptides; SRDS3 simulates

similarity-reduced datasets using the method employed with

MHCBench; WUPDS is a weighted version of the UPDS dataset

where similar peptides are grouped into disjoint clusters and the

weight of each peptide is set to one over the size of its cluster.

Summary of the datasets
Datasets derived from MHCPEP. Table 1 summarizes the

number of binders in each unique peptides dataset, MHCPEP-

UPDS, and the corresponding three similarity-reduced datasets,

MHCPEP-SRDS1, MHCPEP-SRDS2, and MHCPEP-SRDS3.

Note that on average, the number of binders in the similarity-reduced

datasets, MHCPEP-SRDS1, MHCPEP-SRDS2, and MHCPEP-

SRDS3, is reduced to 48%, 33%, and 39%, respectively, of the

number of binders in MHCPEP-UPDS datasets.

Datasets derived from MHCBN. Table 2 summarizes the

number of binders and non-binders in MHCBN-UPDS, MHCBN-

SRDS1, MHCBN-SRDS2 and MHCBN-SRDS3 datasets derived

for each of the eight MHCBN alleles satisfying our selection criteria.

Note that the average number of binders in similarity-reduced datasets,

MHCBN-SRDS1, MHCBN-SRDS2, and MHCBN-SRDS3, is

reduced to 55.48%, 45.46%, and 61.39%, respectively, of the

number of binders in MHCBN-UPDS datasets. Similarly, the

average number of non-binders in similarity-reduced datasets,

MHCBN-SRDS1, MHCBN-SRDS2, and MHCBN-SRDS3, is

reduced to 67.55%, 64.24%, and 87.47%, respectively, of the

number of non-binders in MHCBN-UPDS datasets.

Datasets derived from IEDB. Table 3 summarizes the

number of binders and non-binders in IEDB-UPDS, IEDB-

SRDS1, IEDB-SRDS2, and IEDB-SRDS3 datasets derived for 12

HLA alleles. We observed that the average number of binders in

similarity-reduced datasets, IEDB-SRDS1, IEDB-SRDS2, and IEDB-

SRDS3, is reduced to 51.17%, 47.66%, and 63.5%, respectively, of

the number of binders in MHCBN-UPDS datasets. Similarly, the

average number of non-binders in similarity-reduced datasets, IEDB-

SRDS1, IEDB-SRDS2, and IEDB-SRDS3, is reduced to 60.86%,

59.38%, and 82.9%, respectively, of the number of non-binders in

MHCBN-UPDS datasets.

Independent blind set
Recently, Wang et al. [30] introduced a comprehensive dataset

of previously unpublished MHC-II peptide binding affinities and

utilized it to assessing the performance of nine publicly available

MHC-II prediction methods. The dataset covers 14 HLA alleles

Table 18. AUC values for LA classifiers trained using MHCBN-
UPDS, SRDS1, SRDS2, SRDS3, and WUPDS datasets and
evaluated on the blind test sets of Wang et al. [30].

Allele UPDS SRDS1 SRDS2 SRDS3 WUPDS

HLA-DRB1-0101 0.675 0.650 0.756 0.736 0.703

HLA-DRB1-0301 0.604 0.647 0.651 0.637 0.604

HLA-DRB1-0401 0.554 0.548 0.610 0.595 0.573

HLA-DRB1-0701 0.627 0.692 0.692 0.677 0.627

HLA-DRB1-1101 0.775 0.722 0.701 0.730 0.775

Average 0.647 0.652 0.682 0.675 0.656

doi:10.1371/journal.pone.0003268.t018

Figure 5. Two types of similar peptides that frequently appear in MHC databases.
doi:10.1371/journal.pone.0003268.g005
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and two Mouse alleles. Out of the 14 HLA allele-specific datasets,

five datasets are used in our experiments as independent blind test

data to evaluate the performance of the classifiers trained using the

corresponding MHCBN allele-specific datasets. Table 19 shows

the number of test peptides in each allele-specific dataset and the

number of binders and non-binders obtained using an IC50 cutoff

of 500 nM employed to categorize peptides into binders and non-

binders [7].

Prediction methods
Our experiments focused on two approaches for training MHC-

II binding peptide predictors from variable-length MHC-II

peptides have been recently proposed in [16,17] and a method

based on k-spectrum kernel [24] that is designed to rely on the

presence of high degree of sequence similarity between training

and test peptides (and hence is expected to perform well on

redundant datasets but poorly on similarity-reduced datasets). We

Eliminate similar peptides 
using the procedure used 
with MHCBench dataset. 

Apply weighting method 
described in the text. 

Eliminate peptides that 
share 9-mer subsequence. 

     UPDS

Remove short, unnatural, 
and duplicated peptides. 

     SRDS3      SRDS1     WUPDS 

Eliminate peptides that 
share 9-mer subsequence. 

     SRDS2

Allele-specific set of peptides retrieved 
from MHCPEP, MHCBN, or IEDB 
databases. 

Figure 6. An overview of the process used for generating five different versions of each allele dataset using the different similarity-
reduction methods described in the text.
doi:10.1371/journal.pone.0003268.g006
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implemented the three methods in java using Weka machine

learning workbench [38]. Brief descriptions of each of the three

prediction methods are included below.

Composition-Transition-Distribution (CTD)
The basic idea of this approach is to map each variable-length

peptide into a fixed-length feature vector such that standard

machine learning algorithms are applicable. This method was used

and explained in details in [16,39]. 21 features are extracted from

each peptide sequence as follows:

N First, each peptide sequence p is mapped into a string sp

defined over an alphabet of three symbols, {1,2,3}. The

mapping is performed by grouping amino acids into three

groups using a physico-chemical property of amino acids (see

Table 20). For example the peptide (AIRHIPRRIR) is mapped

into (2312321131) using the hydrophobicity division of amino

acids into three groups (see Table 20).

N Second, for each peptide string sp, three descriptors are derived

as follows:

# Composition (C): three features representing the percent

frequency of the symbols, {1, 2, 3}, in the mapped peptide

sequence.

# Transition (T): three features representing the percent

frequency of i followed by j or j followed by i, for i, jM{1,2,3}.

# Distribution (D): five features per symbol representing the

fractions of the entire sequence where the first, 25, 50, 75,

and 100% of the candidate symbol are contained in sp. A

total of 15 features are derived from each peptide.

Table 20 shows division of the 20 amino acids into three groups

based on hydrophobicity, polarizability, polarity, and Van der

Waal’s volume properties. Using these four properties, we derived

84 CTD features from each peptide sequence. In our experiments,

we trained SVM classifiers using RBF kernel and peptide

sequences represented using their amino acid sequence composi-

tion (20 features) and CTD descriptors (84 features).

Local alignment (LA) kernel
Local alignment (LA) kernel [40] is a string kernel designed for

biological sequence classification problems. The LA kernel

measures the similarity between two sequences by adding up

the scores obtained from local alignments with gaps of the

sequences. This kernel has several parameters: the gap opening

and extension penalty parameters d and e, the amino acid

mutation matrix s, and the factor b which controls the influence

of suboptimal alignments in the kernel value. Saigo et al. [40]

used the BLOSUM62 substitution matrix, gap opening and

extending parameters equal 11 and 1, respectively, and b ranges

from 0.2 to 0.5. In our experiments, we tried a range of values

for gap opening/extension and b parameters and got the best

performance out of LA kernel using BLOSUM62 substitution

matrix, gap opening and extending parameters equal 10 and 1,

respectively, and b = 0.5. Detailed formulation of the LA kernel

and a dynamic programming implementation of the kernel are

provided in [40].

k-spectrum kernel
Intuitively, a k-spectrum kernel [24] captures a simple notion of

string similarity: two strings are deemed similar (i.e., have a high k-

spectrum kernel value) if they share many of the same k-mer

substrings. We used the k-spectrum with relatively large k value,

k = 5. As noted earlier, the choice of a relatively large value for k

was motivated by the desire to construct a predictor that is

expected to perform well in settings where the peptides in the test

set share significant similarity with one or more peptides in the

training set.

Performance evaluation
The prediction accuracy (ACC), sensitivity (Sn), specificity (Sp),

and correlation coefficient (CC) are often used to evaluate

prediction algorithms [26]. The CC measure has a value in the

range from 21 to +1 and the closer the value to +1, the better the

predictor. The Sn and Sp summarize the accuracies of the positive

and negative predictions respectively. ACC, Sn, Sp, and CC are

defined as follows:

ACC~
TPzTN

TPzFPzTNzFN

Sn~
TP

TPzFN
and Sp~

TN

TNzFP

CC~
TP|TNð Þ{ FP|FNð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TNzFNð Þ TNzFPð Þ TPzFNð Þ TPzFPð Þ

p

where TP, FP, TN, and FN are the numbers of true positives, false

positives, true negatives, and false negatives respectively.

Although these metrics are widely used to assess the perfor-

mance of machine learning methods, they all suffer from an

important limitation of being threshold-dependent. Threshold-

dependent metrics describe the classifier performance at a specific

threshold value. It is often possible to increase the number of true

positives (equivalently, the sensitivity) of the classifier at the

expense of an increase in false positives (equivalently, the false

alarm rate). The ROC (Receiver Operating Characteristic) curve

shows the performance of the classifier over all possible thresholds.

The ROC curve is obtained by plotting the true positive rate as a

Table 19. Five allele-specific blind test set obtained [30].

Allele peptides binders non-binders

HLA-DRB1-0101 3882 2579 1303

HLA-DRB1-0301 502 209 293

HLA-DRB1-0401 512 286 226

HLA-DRB1-0701 505 358 147

HLA-DRB1-1101 520 317 203

Peptides are categorized into binders and non-binders using an IC50 cutoff
500 nM.
doi:10.1371/journal.pone.0003268.t019

Table 20. Categorization of amino acids into three groups for
a number of physicochemical properties [42].

Property Group 1 Group 2 Group 3

Hydrophobicity RKEDQN GASTPHY CVLIMFW

Polarizability GASCTPD NVEQIL MHKFRYW

Polarity LIFWCMVY PATGS HQRKNED

Van der Waal’s volume GASDT CPNVEQIL KMHFRYW

doi:10.1371/journal.pone.0003268.t020
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function of the false positive rate or, equivalently, sensitivity versus

(1-specificity) as the discrimination threshold of the binary classifier

is varied. Each point on the ROC curve describes the classifier at a

certain threshold value and, hence, a particular choice of tradeoff

between true positive rate and false negative rate. The area under

ROC curve (AUC) is a useful summary statistic for comparing two

ROC curves. The AUC is defined as the probability that a

randomly chosen positive example will be ranked higher than a

randomly chosen negative example. An ideal classifier will have an

AUC = 1, while a classifier performs no better than random will

have an AUC = 0.5, any classifier performing better than random

will have an AUC value that lies between these two extremes.

Implementation and SVM parameter optimization
We used the Weka machine learning workbench [38] for

implementing the spectrum, and LA kernels (RBF kernel is already

implemented in Weka). For the SVM classifier, we used the weka

implementation of the SMO algorithm [41]. For k-spectrum and

LA kernels, the default value of the cost parameter, C = 1, was used

for the SMO classifier. For the RBF kernel, we found that tuning

the SMO cost parameter C and the RBF kernel parameter c is

necessary to obtain satisfactory performance. We tuned these

parameters using a two dimensional grid search over the range

C = 225,223,…,23, c = 2215,2213,…,23.
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