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Abstract

Multipartite viruses have two or more genome segments, and package different segments into different particle types.
Although multipartition is thought to have a cost for virus transmission, its benefits are not clear. Recent experimental
work has shown that the equilibrium frequency of viral genome segments, the setpoint genome formula (SGF), can be un-
balanced and host-species dependent. These observations have reinvigorated the hypothesis that changes in genome-
segment frequencies can lead to changes in virus-gene expression that might be adaptive. Here we explore this hypothesis
by developing models of bipartite virus infection, leading to a threefold contribution. First, we show that the SGF depends
on the cellular multiplicity of infection (MOI), when the requirements for infection clash with optimizing the SGF for virus-
particle yield per cell. Second, we find that convergence on the SGF is very rapid, often occurring within a few cellular
rounds of infection. Low and intermediate MOIs lead to faster convergence on the SGF. For low MOISs, this effect occurs be-
cause of the requirements for infection, whereas for intermediate MOIs this effect is also due to the high levels of variation
generated in the genome formula (GF). Third, we explored the conditions under which a bipartite virus could outcompete a
monopartite one. As the heterogeneity between environments and specificity of gene-expression requirements for each en-
vironment increased, the bipartite virus was more likely to outcompete the monopartite virus. Under some conditions,
changes in the GF helped to exclude the monopartite competitor, highlighting the versatility of the GF. Our results show the
inextricable relationship between MOI and the SGF, and suggest that under some conditions, the cost of multipartition can
be outweighed by its benefits for the rapid tuning of viral gene expression.
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1. Introduction

Many viruses have segmented genomes, dividing their heredi-
tary material into what are effectively chromosomes (Sicard et al.
2016; Lucia-Sanz and Manrubia 2017). Whereas many segmented
viruses package all of these genome segments into a single virus
particle, multipartite (or multicomponent) viruses package ge-
nome segments into different virus particles (Fulton 1962). It has
been generally thought that all or most segments must be trans-
mitted between hosts to cause new infections. As a consequence,
there would be a high cost for multipartite virus transmission be-
cause the probability of infection per virus particle is low and one
or more segments might be lost during transmission (Fulton
1962; Iranzo and Manrubia 2012; Sanchez-Navarro, Zwart, and
Elena 2013; Sicard et al. 2013, 2016). Nevertheless, many plant vi-
ruses have a multipartite genome organization (Sicard et al. 2016;
Lucia-Sanz and Manrubia 2017). The first multipartite animal vi-
ruses were identified recently (Hu et al. 2016; Ladner et al. 2016),
and their number is likely to grow (Male et al. 2016; Kraberger
et al. 2019). An open key question is why multipartite genome or-
ganization evolved and is common among plant viruses, despite
its obvious drawbacks. Are there benefits to multipartition that
outweigh its cost to infection?

Since their discovery, many ideas have been proposed to ex-
plain the existence of multipartite viruses. One shortcoming of
many of these proposals—including the evolutionary benefits of
reassortment and faster nucleic-acid replication—is that they
concern advantages of genome segmentation, and are therefore
not neccessarily linked to multipartition as discussed elsewhere
(Sicard et al. 2016). One proposal with empirical support is that
smaller genome segments can lead to smaller and more stable
foot-and-mouth disease virus particles (Ojosnegros et al. 2011),
although the experimental conditions under which this virus
was evolved are not very representative for infection in a multi-
cellular host. Moreover, there does not seem to be an association
between multipartition and genome size for plant viruses, pre-
cluding a general relationship (Sicard et al. 2016). Recent observa-
tions suggest that viruses can have distributed replication: gene
products are shared between cells, ameliorating the cost of multi-
partition at the within-host level (Sicard et al. 2019). However, to
what extent these hitherto unknown mechanisms apply to other
viruses is unclear, and there will still be costs at the between-
host level due to population bottlenecks (Gallet et al. 2018).
Although some of these hypotheses are helpful and may explain
a part of the story, it remains unclear why multipartition exists.

For all multipartite viruses examined to date, different ge-
nome segments are not present at equal frequencies (French and
Ahlquist 1988; Hajimorad et al. 1991; Feng et al. 2006; Sicard et al.
2013; Hu et al. 2016; Wu et al. 2017), and these frequencies can
change over time (Hajimorad et al. 1991; Sicard et al. 2013; Wu
et al. 2017). These dynamics were tracked quantitatively for a
nanovirus: for this dsDNA plant virus, when perturbed the ge-
nome-segment frequencies converged on a host-species-
dependent equilibrium (Sicard et al. 2013). The set of genome-
segment frequencies for all genome segments is known as the
genome formula (GF), and its equilibrium value for a given envi-
ronment is the setpoint genome formula (SGF) (Sicard et al. 2013).
Later, we showed that frequency-dependent selection establishes
a host-species-dependent SGF for alfalfa mosaic virus, a plant
RNA virus, and that virus populations converged on this equilib-
rium within one week after perturbation (Wu et al. 2017). These
observations and ongoing work on multipartite viruses have rein-
vigorated the hypothesis that multipartition serves to regulate vi-
ral gene-expression levels in different environments (Lucia-Sanz,

Aguirre, and Manrubia 2018). Gene-expression levels probably de-
pend on the GF, and different environments might require differ-
ent levels of virus gene expression. These differences might
occur because viral proteins might not function equally well in
all environments, or some functions might need to be up- or
down-regulated in certain environments. Under these assump-
tions, a particular SGF might result from the selection pressures
acting on a virus population, and differences in SGF might be
adaptive and therefore rapidly arise in different environments
(Sicard et al. 2013, 2016; Wu et al. 2017; Gutiérrez and Zwart 2018).
Note that we use the term ‘selection’ when describing directional
changes in the GF. However, its meaning here is not equivalent
to its standard use in evolutionary genetics, as here we define se-
lection as adaptation by optimization of the GF. Genetic variabil-
ity is not considered in the models.

The hypothesis that multipartition might have arisen to rap-
idly tune gene expression in different environments is tantaliz-
ing, but several aspects remain obscure. First, the role of the
cellular multiplicity of infection (MOI), the number of virus par-
ticles invading a cell, is unclear. Empirical estimates of MOI typ-
ically are low for plant viruses (Gutiérrez et al. 2010; Miyashita
and Kishino 2010; Tromas et al. 2014; Zwart and Elena 2015), al-
though they appear to be considerably higher during unfettered
cell-to-cell movement (Gutiérrez et al. 2015). It has been sug-
gested that MOI imposes limits on the SGF if each segment
must invade a cell to have infection (Gutiérrez and Zwart 2018),
but these effects have not been explored systematically.
Second, population bottlenecks will occur not only at the cell
level, but also during between-host transmission (Zwart and
Elena 2015; Gallet et al. 2018), making them an integral part of
viral infection. Population bottlenecks can hamper the trans-
mission of multipartite viruses and impose a cost, because all
segments need to be transmitted (Fulton 1962; Sanchez-
Navarro, Zwart, and Elena 2013). In a simple model of infection,
multipartite viruses therefore require a high MOI to be able to
compete with monopartite viruses (Iranzo and Manrubia 2012).
Conversely, bottlenecks during transmission between cells or
hosts will generate not only stochastic changes in allele fre-
quency, i.e. genetic drift (Gallet et al. 2018), they will also gener-
ate stochastic changes in gene frequency, i.e. GF drift (Gutiérrez
and Zwart 2018). For natural selection to change the SGF, itis in-
dispensable to have variation in the GF (Gutiérrez and Zwart
2018). The effect of bottlenecks in general, and MOI as a specific
case, on the costs and benefits of multipartition are therefore
unclear. Third, empirical observations have inspired the hy-
pothesis that multipartition might facilitate adaptation to dif-
ferent environments (Sicard et al. 2013), although strong
evidence of this hypothesis is still lacking. Can the benefits in-
troduced by this mechanism outweigh its inherent costs, and if
so, under which conditions? How much environmental hetero-
geneity is needed to offset the cost of multipartition, and is this
hypothesis biologically plausible? Here we set out to explore
these three questions using computational models.

2. Model description

We developed parsimonious models to allow us to study the evo-
lution of the GF of a multipartite virus population. We were par-
ticularly interested in modeling direct competition between a
monopartite and a multipartite virus, when these two viruses are
otherwise isogenic. We developed two different models of com-
petition between monopartite and bipartite viruses. Model 1 has
no co-infection exclusion, whereas Model 2 includes inter-
specific co-infection exclusion. Although some of the model



results focus on the evolution of the bipartite virus in isolation
(i.e. without a monopartite virus being present), in the model de-
scription we present only the complete model for conciseness.

2.1 Model 1: basic model of multipartite virus infection

For simplicity, we consider a multipartite virus genome that is
always composed of two genome segments. For both the
monopartite and multipartite viruses, the virus genome is com-
prised of two genomic regions with a frequency g in a virus pop-
ulation (i.e. comprising this region as represented in both the
monopartite and multipartite viruses in the inoculum or within
a cell) and a ratio of genomic regions r = g1/9>. Subscripts of g
refer to the genomic regions 1 and 2. For the monopartite, these
two regions are on a single genome segment that is packaged
into each virus particle, whereas for the multipartite virus,
these two regions are on separate genome segments that are al-
ways packaged individually into virus particles (Fig. 1a). Virus
particles containing one genome segment are present in the
complete virus population at a frequency f. Hereafter, subscripts
of f denote whether we are considering a virus type, m for
monopartite and 1 and 2 for two types of bipartite virus particles.
Note that therefore, g; = (fi + fm)/ (f1 + f2 + 2fm) With i€ {1, 2}.

We consider the exposure of c cells to a virus inoculum in
such a manner that we precisely control the cellular MOI, which
we define as the 2 virus particles of any type invading a cell. We
allow only a single round of infection for each passage of the vi-
rus through these cells. We assume that each virus particle acts
independently (e.g. Zwart et al. 2009) in the process of invasion,
i.e. physically entering a host cell. For the monopartite virus, in-
vasion by a single virus particle will always lead to infection. For
the multipartite virus, there will only be infection following in-
vasion by both types. As the probability of infection per virus
particle is low and the number of virus particles will be large,
the total number of virus particles invading a cell, K, will follow
a Poisson distribution over cells such that: P(K = k|A) = Ake ™ /k!,
where k is a single realization of this random variable. As each
virus particle acts independently in the invasion process—as
opposed to the infection process in the case of the bipartite vi-
rus—for the monopartite virus Ay, = fmh and for each bipartite
virus segment A; = fiA with i € {1, 2}.

Two processes will determine the virus yield produced in
each cell. First, to be infected both virus genome regions must be
present in a cell. Hence, the cell must have been invaded by at
least (1) a virus particle containing the monopartite virus, (2) two
or more bipartite virus particles representing both genome seg-
ments (Fig. 1b). As the coding regions of the viruses are assumed
to be isogenic, gene products can be freely shared between vi-
ruses when they co-infect a cell and combinations between the
monopartite virus and one genome segment of the multipartite
virus are also allowed (Fig. 1b). We assume neither virus has a
competitive advantage at the within-cell level. Hence, the fre-
quency of each invading virus particle in successfully infected
cells, i.e. fi = ki/(k1 + ko + k) where i € {m, 1, 2}, will be its fre-
quency in the final pool of virus particles produced by that cell.

Second, a recent study has suggested that the GF may affect
virus fitness, by tuning the expression of virus genes on differ-
ent segments (Sicard et al. 2013). Therefore, the total virus yield
produced in a cell will depend on the frequency of the genome
segments, while we also assume there is sharing of virus pro-
teins between the monopartite and bipartite virus in co-
infected cells. We assume virus yield generated by an infected
single cell (¢) follows the probability density function (PDF) of
the Normal distribution as a function of the decimal logarithm
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of the ratio of the genomic regions r, such that ¢(r) =
szTseXp —(logyor — u)2/262] where p is the mean of the distri-
bution and ¢ is its variance. We chose to decimal log-transform
r so that we do not have to truncate the Normal distribution.
We had also explored an alternative approach that uses a Beta
distribution linking f; and virus-particle yield per cell, which
renders similar results (Supplementary Appendix S1). At the
end of one round of cellular infection, all virus particles pro-
duced in all cells are pooled and their relative frequencies are
determined.

When considering competition between bipartite and
monopartite viruses, we allow the environmental conditions
(parameters influencing the total virus-particle yield per cell) to
vary over time. When we run competitions in variable environ-
ments, there is a 0.2 probability that new values for this distri-
bution will be drawn each passage. We then draw u from a
uniform distribution with range *+, whilst ¢? is fixed. When av-
eraging over environments, the highest yield will be obtained
for r=1. The virus-particle yield function is therefore parame-
trized such that the monopartite virus has gene-expression lev-
els optimized for the mean of all environments. This is a key
point, as it is not possible for the monopartite virus to change
its expression patterns in the simulations due to linkage be-
tween the two genomic regions.

2.2 Model 2: co-infection exclusion model

Many viruses show co- or superinfection exclusion, blocking the
ability of closely related viruses to infect the same cells or host.
To add interactions between the viruses to the model, we as-
sume that the locus encoding a co-infection exclusion function
is on the second genomic region. We make the simplifying as-
sumption that co-infection exclusion only occurs between the
monopartite and bipartite virus types, and that the frequency of
the second genomic region in the invading virus particles will
determine which virus excludes the other. The probability that
the monopartite virus will successfully infect a cell co-invaded
by both the monopartite virus and at least segment 2 of the bi-
partite virus is p = ky/(km + k2), which is assumed to follow a
Bernoulli distribution, and likewise for the multipartite virus.
Note that under these assumptions, the second segment of the
multipartite virus can block infection of the monopartite virus
in a particular cell, without itself causing infection when the
first bipartite segment has not invaded that cell.

2.3 Model predictions

We considered model predictions with numerical and
simulation-based approaches. A numerical approach can in
principle be used in all cases. Given MO], f, f,, and f,, the proba-
bility of a cell being invaded by any combination of the three ge-
nome segments (ky, ky, and k) is the product of the
probabilities for each individual outcome as predicted by the
Poisson distribution for invasion of that segment. From r and
the virus-particle yield function, we can determine virus yield,
¢(r), for all these combinations. The total yield (y) for the ith seg-
ment is then given by the expression:

Ry Ry Rm Au+v+w

—ery S

u=0 v

), (1)

ulvlw! fio

where i € {1, 2, m} and we set k; + ky + ky, to a large value (200)
so that all plausible numbers of invaders are represented. When
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Figure 1. (a) Schematic overview of the monopartite and bipartite viruses we are modeling. Both viruses contain two genomic regions, and are assumed to be isogenic
except for their organization into one or two segments. Virus particles are assumed to always package only a single genome segment. (b) Overview of the infection sta-
tus of cells according to which segments of the monopartite and bipartite viruses have invaded a cell. The formulae give the expected frequencies of these events.
Lines in the compartments indicated the infection status of the cell, according to the legend at the bottom of the figure. Note that there can be co-infection between
the monopartite and only a single segment of the bipartite virus. For Model 1, the frequencies of the invading virus particles will determine the relative frequency of
the virus genome segments in the virus yield. For Model 2, co-infection of cells will follow the scheme above but the final infection status of the cell (i.e. which virus
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Figure 2. Virus-particle yield as predicted for Model 1 is shown with heat plots. For each square plot, the bipartite virus GF (as indicated by f;, the frequency of genome
segment 1 in the virus inoculum) is the abscissa, and the decimal logarithm of the cellular MOI is the ordinate. The bars to the right of each plot labeled with an M indi-
cate virus-particle yield for the monopartite virus, in which the GF is fixed (g, = 1/2) and only MOI is varied. The heat colors indicate the virus-particle yield per cell, nor-
malized by the maximum possible yield (legend is at the right-hand side). In this case, the yield is calculated over the whole population of exposed cells, and not for a
fixed number of infected cells, to illustrate the combined effect of virus infectivity and virus-particle yield. The GF value for which highest yield is obtained per cell is
shifted from f; = 1/ (i.e. u = 0), to f; = 1/11 (i.e. u = 1), to f = 1/101 (i.e. u = 2). The sensitivity of virus-particle yield to changes in the GF decreases as ¢° increases from
10 to 0.01. Note that when the environment demands a balanced GF (u = 0, a-d), the yield for the monopartite virus is greater than or equal to that of the bipartite vi-
rus. The situation is reversed when an unbalanced GF is required (e-1), although when the sensitivity of virus-particle yield to changes in the GF is low (i.e. ¢>=10in h
and 1), the monopartite virus again has a higher yield than the bipartite virus.

considering the bipartite virus in isolation we can consider only between segments. For competition between monopartite and
invaded cells: bipartite viruses a numerical approach could also be used.
However, in the model we have incorporated stochastic
changes in the environment, and we therefore used a simula-

yi=e? kzl 3 /3':: fio(r). tion approach to make a large number of independent replicates
u=1v=1 more computationally tractable, as an individual simulation
requires less computational resources than calculating a single
For the bipartite virus alone, if total virus yield is known we numerical solution.
can use the f; value that maximizes viral yield as an estimate of All model predictions were also considered using a

the SGF, because we have assumed no within-cell competition simulation-based approach. We ran simulations of
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Figure 3. The effects of MOI on the mean and variance of the GF in infected cells (GF, as indicated by the frequency of segment 1, f;) are demonstrated. On the abscissae
the log-transformed MOI is given, and on the ordinate the mean f; (a) or variance (b) in infected cells. Different values of f; are used in the viral inoculum to which the
cells are exposed, as indicated in the inset in (a). (a) At very low MOIs, f; always converges on 0.5 in infected cells, irrespective of its value in the inoculum. (b) The vari-
ance of f; is maximized at intermediate MOIs, and approaches zero at very low MOI values. Low MOI cause these effects on the mean and variance of f; because at low
MO], very few cells are infected, and almost all infected cells will only be invaded by one virus particle of each type.

competitions over a range of MOI,  and ¢ values to determine
which conditions would favor the bipartite virus, with N =1,000
independent simulations for each condition. We ran these com-
petitions until either 1, one of the two viruses had gone to fixa-
tion, or 2, up to 1,000 passages (equivalent to 1,000 viral
generations). As a metric of bipartite virus success, we consider
the relative frequency of the bipartite virus in the pool of virus
particles generated after the final passage, over all simulations:

f11+f21
sz11+f21+2fml (3)

We are interested in choosing a total number of cells () for
our simulations such that for each passage the total number of
infected cells infected by the whole virus population (c;,) at any
value of MOI is approximately c;s. If we are randomly drawing
the number of invaders from a Poisson distribution, for each
passage Ciot = Cins /I, where we can predict the fraction of infected
cells as: I=1-P(B1NB2N-M) -P(B:NB2NM) —
P(BiNB2NM) =1—-e?*n(e™ + e —e™~2) (see Fig. 1b for
details). Here B; and B, refer to the two segments of the bipartite
virus and M to the monopartite virus and the bars means ‘ab-
sence of’. To speed up the simulations, however, we only mod-
eled invaded cells and therefore randomly drew values from the
zero-truncated Poisson distribution, using the rztpois() function
from R library actuar v2.3-3 (Dutang, Goulet, and Pigeon 2008).
The expected number of invaded cells, c;,, must then be pre-
dicted as Ciny = CinyQ/1, where the fraction of invaded cells is
Q =1 P(B1 B, (M). This similarity in the number of infected
or invaded cells ensures that comparisons between different
MOI values are not biased by large differences in the number of
infected cells. This estimate was also used for Model 2, although
in this case it is an approximation as multipartite segment 2
can exclude infection by the monopartite virus without actually
infecting a cell. For all simulations we used cjps = 103, unless oth-
erwise noted.

All models were implemented in R version 3.4.2 (R Core
Team 2017). Model code, simulation results and numerical

results are available in the Dryad Digital Repository (https://data
dryad.org/stash/dataset/d0i:10.5061/dryad.18931zcsw).

3. Results

We developed a model of competition between monopartite
and bipartite viruses that allows selection to shape the GF of a
multipartite virus. We were particularly interested in linking
the frequency of virus genomic regions in infected cells to virus-
particle yield per cell, to explore the relationship between the
GF and virus fitness. We developed two models of competition
between monopartite and bipartite viruses: Model 1 has no co-
infection exclusion, whereas Model 2 allows for inter-specific
co-infection exclusion. We used the log-normal PDF as the func-
tion linking the presence of virus genomic regions and yield,
allowing the optimum () and breadth (¢?) of the yield function
to be tuned independently.

3.1 Effects of GF drift on virus-particle yield

We first considered model predictions of virus-particle yield for
the monopartite and bipartite viruses in isolation, for a range of
values for the MOI (/) and different values for the functions that
determine the relationship between the GF and virus-particle
yield. As we have defined co-infection exclusion to be a process
that acts interspecifically, it will not affect model predictions
here and therefore we only consider Model 1. We varied u (the
mean of the log-Normal distribution for the yield function, here
in effect the value of r that renders optimal yield) and ¢° (the
variance of the log-Normal distribution, here in effect the sensi-
tivity of virus-particle yield to changes in r) (Fig. 2). For this com-
parison, we considered the yield per cell exposed to the virus
(as opposed to the yield per infected cell). Virus-particle yield of
the bipartite virus is always equal to or less than that of the
monopartite virus for a given MOI if the environment demands
the two genome segments be present at equal frequencies
(Fig. 2a-d). These effects occur because 1, multipartite viruses
will infect fewer cells at a low MOI and 2, in infected cells there
will be variation in the GF when MOI is intermediate (i.e. GF
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Figure 4. The effects of the cellular MOI on the SGF are illustrated. Note that for all panels x = 1, and that the legend for ¢* shown in (d) also applies to (a) and (b). (a)
Relationship between the GF and virus-particle yield per cell is shown. As ¢” increases, the yield function becomes less sensitive to the GF with that cell (i.e. a broader
function). When ¢ = 10, the function is almost uniform. (b) For some conditions, there was a discrepancy between the numerical and simulation predictions. The ab-
scissa is the number of effectively infected cells (i), and the ordinate is the SGF as indicated by the frequency of segment 1 (f;). For MOI = 0.1 and ¢” = 0.01, we show
the numerical prediction (red line) and mean + SD for simulation results black circles with error bars. As the number of infected cells is increased in the simulations,
the predictions converge on the numerical prediction. (c) Relationship between MOI and the SGF predicted by Model 1 is given. Decimal log-transformed MOI is the ab-
scissa and the SGF the ordinate. Lines represent the prediction for the numerical model. Simulation results (+SD) are shown by the symbols, with colors corresponding
to ¢? values as indicated in the inset. For the simulations, we ran Model 1 until an equilibrium was reached (i.e. up to 500 generations depending on the MOI) for a large
number of replicate experiments (1,000), with the highest yield per cell obtained when f; = 10/11 (i.e. u = 1). We ran the model including only the bipartite virus, with
the starting virus inoculum set to f; = 0.91, f, = 0.09, and f,,, = 0. Our results clearly indicate that MOI can affect the SGF, which arise because of the interplay between vi-
rus-particle yield per cell and the requirement for both types of virus particles to invade a cell (as illustrated in Fig. 3). For some conditions, there is a discrepancy be-
tween the numerical and simulation results, which can be accounted for by the number of infected cells used in the simulation (see (c)).

drift) and therefore deviations from the optimal log r =0 for
yield, u. Both of these mechanisms result in a MOI-dependent
cost of multipartition, one acting at the between-cell level and
the other at the within-cell level.

However, when the environment does not demand balanced
gene expression (u#0) and as the yield function becomes nar-
rower (o2 is small), the bipartite virus has a higher yield than the
monopartite virus (Fig. 2e-g and i-k). Hence, for our model multi-
partite viruses can have a yield advantage when the environment
demands differences in the frequencies at which genomic
regions are present. These figures reveal an interesting property
of multipartite viruses. When the GF is displaced from the opti-
mum for a given environment, at intermediate MOIs the virus-
particle yield can be higher than at high MOIs (e.g. Fig. 2a and b).
This effect occurs because at intermediate MOIs there is more GF
drift, as the number of virus particles invading a cell is smaller.
Whilst this ‘noise’ is costly when the inoculum frequency of virus
genome segments is equivalent to the optimum of the environ-
ment, it can have immediate benefits when the virus is displaced
from the optimum. Moreover, from an evolutionary perspective,
variation in the GF is the raw material that selection requires to
directionally change it toward the optimum (i.e. the SGF) for a

given environment (Gutiérrez and Zwart 2018). Therefore, these
virus-particle yield plots suggest there can be benefits associated
with intermediate MOIs for multipartite viruses, as variation in
the GF is required for adaptation by changes in the GF.

If we consider very low MOIs, then eventually the GF in
infected cells is determined solely by the requirement for both
segments to be present. In the extreme, only cells invaded by
one virus particle of each genome segment will be present, and
as f; = 0.5 for all infected cells there will be no variation in the
GF. An overview of these predictions for how MOI will affect the
mean and variance of the GF in infected cells as a function of
MOI is given in Fig. 3. Based on these initial observations, we
might expect the GF to change most rapidly at low to intermedi-
ate values. At intermediate values, the GF might change to max-
imize virus-particle yield per cell, whereas at low MOIs the
requirement to have both segments present will be the main
driver of GF changes.

3.2 MOI can affect the SGF

When the yield function is imbalanced (i.e. p # 0) and the prob-
ability of invasion is the same for all virus-particle types, at low
MOIs there will be conflicting forces acting on the GF. On the
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Figure 5. The time until convergence on the SGF is shown. The decimal log-
transformed MOI is the abscissa and the decimal log-transformed number of
passages until convergence on the SGF is the ordinate. In all cases, x = 0 and
the GF was displaced to f; = 0.1, and we then considered how many passages it
took for the population to converge on an equilibrium when we varied the
breadth of the yield function by manipulating ¢°. We considered that the popu-
lation had reached the equilibrium of f; = 0.5 = 0.01. Lines represent the predic-
tion for the numerical model. Simulation model results (+SD) are shown by the
symbols, with colors corresponding to ¢® values as indicated in the legend. We
again ran 1,000 replicates for the simulations.

one hand, the requirements for infection (i.e. presence of both
viral genome segments) will drive a balanced GF when invasion
probabilities for the different virus-particle types are equal
(Fig. 3). One could intuitively expect that any genome-segment
frequency at the SGF equilibrium would not be far below the re-
ciprocal of MOI, as otherwise that genome segment would not
be represented in many cells and infection levels would be low.
On the other hand, when u # 0 selection for virus-particle yield
per cell will pull the GF away from this 1:1 balance, irrespective
of the MOI. We therefore considered whether the SGF can be
MOI-dependent for a range of ¢° values, with range representing
very narrow (¢° = 0.01) to very broad (¢*> = 10) yield functions
(Fig. 4a). As we had anticipated, the SGF can indeed depend on
the MOI, with the largest deviations from the optimum for cellu-
lar yield occurring at low MOIs (Fig. 4c). We found discrepancies
between numerical and simulation-based predictions of the
SGF (Fig. 4c). As we increased the number of infected cells in the
simulations (ci,), these predictions converged on the numerical
prediction (Fig. 4b). The numerical prediction is in effect for an
infinite population of infected cells. As the number of infected
cells becomes larger, rare f; frequencies leading to higher yields
are more regularly sampled and their contribution to determin-
ing the SGF becomes more prominent. Interestingly, this result
also shows how sensitive the SGF can be to the exact conditions
under which the virus is replicating.

In real-world systems MOI is known to vary during the
course of infection and be relatively low (Gonzalez-Jara et al.
2009; Gutiérrez et al. 2010, 2015; Miyashita and Kishino 2010;
Tromas et al. 2014; Zwart and Elena 2015; ). Our model suggests
that SGF depends on MOI, especially at low MOI values. We
therefore predict that the SGF can change over time during in-
fection of a single host, as MOI changes during infection. These

changes in SGF could depend solely on MOI dynamics, though
there are clearly other processes such as host immune
responses or the number of infected cells in which the virus is
replicating that could come into play.

3.3 Low and intermediate MOIs lead to faster
convergence on the SGF

Next, we set out to explore whether low and intermediate MOIs
can lead to faster convergence on the SGF. As for determination
of the SGF, we expect two effects to come into play: 1, the con-
straints upon SGF variation imposed by very low MOIs (Fig. 3a),
and 2, the high GF variation generated by intermediate MOIs
(Fig. 3b), which generates the variation on which selection for
higher virus-particle yield can act. In this section, we consider
the evolution of the bipartite virus in isolation for simplicity. To
estimate how MOI affects the rate at which the GF changes
without MOI-induced differences in the SGF, we studied how
the GF evolves toward a balanced equilibrium after being dis-
placed. When u=0, MOI does not affect the SGF, because there
is not a clash between the requirements for infectivity and opti-
mal virus-particle yield per cell.

We found very clear and consistent effects of MOI on the
time to convergence on the SGF: populations at low MOIs con-
verged more rapidly than those at high MOIs (Fig. 5). At very
high MOIs and for broad yield functions (i.e. MOI = 100 and ¢* =
10), it takes thousands of passages for the population to con-
verge on the SGF. At low MOIs, between-cell GF variation
approaches zero, but hard selection for infectivity (having both
genome segments present in a cell) nonetheless drives rapid
change. At high MOIs, little between-cell GF variation is gener-
ated (Fig. 3b) and cellular infection rates will be high irrespective
of the GF, therefore limiting both variation and selection and
hereby the rate at which the GF can evolve. Others have previ-
ously shown how low MOI 1, enhances selection for traits that
act in trans (Miyashita and Kishino 2010) and 2, allows viruses to
reach an equilibrium frequency more rapidly because of a lack
of cooperative benefits when there are no co-infections (Leeks
et al. 2018).

The time to convergence on the SGF is sensitive to changes
in MOI for different ranges of MOI values, which in turn depend
on ¢? (Fig. 5). The range of empirical MOI estimates is between 1
and 13 (Gonzélez-Jara et al. 2009; Gutiérrez et al. 2010, 2015;
Miyashita and Kishino 2010; Tromas et al. 2014; Zwart and Elena
2015; ), a range in which the model predicts the SGF and time to
convergence on the SGF can depend on MOI. Overall, these
results suggest that MOI might play an important role in deter-
mining both SGF and how long it takes for multipartite viruses
to converge on the SGF in the real world. Many studies have
found that MOI increases during the course of infection
(Gonzalez-Jara et al. 2009; Gutiérrez et al. 2010; Tromas et al.
2014). An increasing MOI during infection could help to bolster
the benefits of multipartition while also mitigating its cost: dur-
ing early infection, low MOI would foster rapid changes in the
GF, whilst at late infection high MOIs would allow the virus to
infect a higher number of cells, thereby increasing yield and the
probability of transmission.

One striking aspect of our results is how quickly the GF con-
verges on the equilibrium: for low and intermediate MOIs this
often takes only one or two passages, each consisting only of a
single round of replication. Our model therefore also under-
scores that adaptation by changes in the GF can be very rapid,
requiring only a few generations of replication. As MOIs are gen-
erally low, especially during early infection (Zwart and Elena
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2015), we therefore predict that GF changes can be extremely
rapid. We have found convergence on the SGF after one week of
infection (Wu et al. 2017), but our model suggests this adapta-
tion may, indeed, be much faster.

3.4 Bipartite viruses can outcompete monopartite
viruses in variable environments

Our model illustrates that adaptation by changes in the GF
occurs fastest for low MOIs, whilst the cost of multipartition is
also highest at low MOIs. Moreover, a key question remains un-
der what conditions—if any—the putative benefits related to
rapidly changing genome-segment frequencies can outweigh
the costs of multipartition. We therefore considered direct com-
petitions between monopartite and bipartite viruses, by tuning
the MOI (2), the sensitivity of virus-particle yield to changes in
the GF (¢%), and the magnitude of environmental heterogeneity
(). For Model 1, we found that for the majority of conditions the
monopartite virus dominates (Fig. 6 and Supplementary Fig. S2).
Only for a limited parameter space in which MOI was high (MOI
> 30), virus-particle yield was sensitive to changes in r (¢% < 0.1),
and there was considerable environmental heterogeneity (y >
0.5) did the multipartite dominate the competitions (Fig. 6).
When virus-particle yield was insensitive to r (¢> > 1), both vi-
ruses coexisted at high MOI irrespective of environmental het-
erogeneity (Supplementary Fig. S2). This result is not surprising

however, as for Model 1 there is no co-infection exclusion and
neither virus has a replicative advantage.

When we considered direct competitions for Model 2, which
introduces inter-specific co-infection exclusion, we found that
there was a much larger parameter space in which the multi-
partite virus could outcompete the monopartite virus (Fig. 7 and
Supplementary Fig. S3). When virus-particle yield was very sen-
sitive to changes in r (¢> = 0.01), the multipartite virus domi-
nated when there was environmental heterogeneity (y > 0.5)
and nearly all MOI values considered (MOI > 0.25) (Fig. 7). For ¢?
= 0.1, the parameter space in which the multipartite dominates
becomes smaller (y > 1.25, MOI > 3). In contrast, for ¢ > 1 the
monopartite virus always dominates. Either the monopartite or
bipartite virus went to fixation in virtually all simulations
(Supplementary Fig. S3), even when the success metric indi-
cates an even probability of survival for each virus (Fig. 7). This
result is not surprising as Model 2 includes co-infection
exclusion.

These results therefore suggest that a bipartite virus can out-
compete a monopartite virus when three conditions are met: 1,
virus-particle yield is sensitive to changes in the frequency of
genome segments, 2, the virus regularly encounters environ-
ments which demand different frequencies of genome seg-
ments, and 3, there is replicative isolation, that is, some
mechanism that prevents monopartite viruses from taking
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advantage of multipartite viruses rapidly changing their gene
expression. We have explored the role of co-infection exclusion,
but other mechanisms could also bring about replicative isola-
tion. Only when competitions were performed at very high MOI
(>100), did we see that MOI could disadvantage the bipartite vi-
rus (Supplementary Fig. S4). Therefore, the cost of infection at
low MOI appears to have a stronger impact on the competitive
ability of multipartite viruses than limited GF variation at high
MOL

Changes in the GF could conceivably occur to a variety of se-
lection pressures, as we have already shown the SGF can de-
pend on MOIL We assigned a co-infection exclusion function on
the second genome segment, and we therefore considered
whether a higher frequency of this segment could be beneficial
for displacing the monopartite competitor. Indeed, we found
such an effect when neither virus dominated the competitions
(Fig. 8). For those simulations in which the bipartite virus even-
tually won, the frequency of segment 2 was on average higher
until the monopartite virus was displaced from the population.
However, in these simulations the average ¢° was also below 1
in early passages, suggesting that these GF changes were driven
mainly by selection for virus-particle yield and not for an in-
creased strength of inter-specific co-infection exclusion.
Nevertheless, this up-regulation of segment 2 highlights how
GF changes can affect multiple virus characteristics simulta-
neously in a manner that impacts viral fitness. Although

changes in the GF probably can occur as a response to a wide
variety of selection pressures, we speculate that selection for in-
creased infectivity or virus-particle yield will predominate
changes in the GF.

4. Discussion

We have developed a simple model of the evolution of a multi-
partite virus GF that offers some new perspectives on GF dy-
namics. First, this model illustrates that the GF equilibrium—i.e.
SGF—is sensitive to the exact conditions under which a multi-
partite virus population is replicating, similar to results on the
equilibrium frequency between cooperating viruses (Leeks et al.
2018). Changes in MOl—a parameter that is known to change
markedly during virus infection of multicellular hosts—can af-
fect the SGF, illustrating that the SGF can be highly sensitive to
the exact conditions under which a virus population is replicat-
ing. It has been previously shown that the SGF is host-species
dependent (Sicard et al. 2013; Wu et al. 2017). We speculate that
many other factors besides host species and MOI can affect the
SGF, including the virus genotype, host environment, and their
interaction. Second, our model illustrates how intermediate
MOIs can generate the variation in the GF that allows direc-
tional selection to change the GF. GF drift is however clearly a
double-edged sword, since it also continually displaces the GF
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in some cells away from an optimum value, imposing a cost
and resulting in selection to maintain the SGF. Third, this model
strongly suggests that directional changes in the GF are very
rapid, with virus populations reaching the SGF within one to a
few generations at low MOIs. This result is compatible with em-
pirical results, which suggest populations converge on the SGF
rapidly (Sicard et al. 2013; Wu et al. 2017).

One interesting property of the model we have developed is
that both the costs and benefits of multipartition are properties
that emerge from the model. The cost of multipartition arises
from lower rates of cellular infection when MOI is not high,
whilst the benefits arise from rapid changes in the GF that in-
crease competitive fitness. In our model, there appear to be two
routes by which bipartite viruses increase their fitness: 1, by in-
creasing the virus-particle yield, which appears to be the most
prevalent manner in which the GF is adapting, and 2, by in-
creasing copy number of loci coding for inter-specific co-infec-
tion exclusion to exclude the competing monopartite virus,
which only occurs under some conditions. We view up-

regulation of co-infection exclusion as an emerging property of
the system, since we had not foreseen this behavior and had in-
cluded co-infection exclusion so that the monopartite virus
would benefit less strongly from GF adaptation by the bipartite
virus. Our modeling results suggest that the GF could play a role
in adaptation to a wide range of environmental changes, includ-
ing competing viruses, highlighting the versatility that multi-
partite genomes possibly confer. It has been demonstrated that
the GF of cucumber mosaic virus changes in the presence of sat-
ellites (Feng et al. 2012), suggesting the GF might then be opti-
mizing expression in the presence of such parasitic genetic
elements. We have modeled co-infection exclusion as an inter-
specific process here, although for plant viruses co-infection ex-
clusion is often an intra-specific process. However, a wide range
of interactions between viruses is possible (Bennett 1953) and
different mechanisms can act on different spatial scales (Bergua
et al. 2014; Bergua, Kang, and Folimonova 2016). Co-infection ex-
clusion has ramifications for the occurrence of coexistence and
cooperation within virus populations (Leeks et al. 2018), whilst
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its possible effects on multipartite viruses infection kinetics and
GF dynamics have not been considered fully to date.

When we performed direct competitions between otherwise
identical monopartite and bipartite viruses, the bipartite virus
could regularly outcompete the monopartite virus when 1, there
was inter-specific co-infection exclusion, 2, virus-particle yield
was sensitive to changes in the GF, and 3, there was environ-
mental heterogeneity (the optimum for the virus-particle yield
function is drawn from a broader range). Multipartite viruses
were also more likely to outcompete monopartite viruses at
higher MOIs, including the biologically relevant range of 1-10
(Zwart and Elena 2015) but only when there is co-infection ex-
clusion. Our results therefore support the hypothesis that a pos-
sible benefit of multipartite viruses is the capacity to rapidly
regulate gene expression in highly variable environments that
demand changes in gene expression. We therefore favor a sce-
nario in which having a broad host-range fosters the evolution
of multipartite viruses, and therefore suggest that multiparti-
tion may facilitate host-range expansion. Intriguingly, a recent
theoretical study found that easy transmission and homoge-
neous contact networks favor the transmission of multipartite
viruses, and that multipartite viruses can often be maintained
when multipartition does not have actual benefits (Valdano
et al. 2019). These two views are compatible, since our modeling
highlights benefits at the within-host level, whilst Valdano
et al. (2019) explore mechanisms that would operate at the epi-
demiological level.

The rapid evolution of the GF could be an important benefit
conferred by multipartition. We expect that changes in the GF
will typically occur on shorter time scales than the fixation of
beneficial mutations, due to the large and continuous supply of
GF variation at low to medium MOIs. However, it has been ar-
gued that rapid rates of evolution can lead to shortsighted adap-
tation in viruses, leading to enhanced within-host replication at
the detriment of between-host transmission (Lythgoe et al.
2017). Given the rapid rate at which we expect GF evolution to
proceed, this problem could be exacerbated in GF evolution. For
example, consider a situation in which 1, a highly unbalanced
SGF is reached within a plant, and 2, the invasion probabilities
for virus particles carrying different genome segments are simi-
lar and hence a balanced SGF would be optimal for between-
host transmission. In this case the GF changes that are benefi-
cial within the plant will impose a cost on transmission. The
fast evolution of the GF suggested by our modeling results
underscores the importance of considering how different levels
of selection affect GF evolution.

These model results also suggest a number of ways to test
the relevance of these ideas to real-world multipartite viruses.
First, it has not been studied how quickly populations converge
on the SGF, although experimental results suggest this conver-
gence is rapid. One interesting approach to study these dynam-
ics is measuring the GF in local lesions or primary infection foci
(e.g. Miyashita and Kishino 2010), so that the GF can be mea-
sured in viral populations that have experience only a few gen-
erations. Second, the outcome of competition between
monopartite and bipartite viruses depends heavily on the
breadth of the function for virus-particle yield. The more sensi-
tive virus-particle yield is to changes in the GF, the more rele-
vant our framework will be. This relationship could be
investigated empirically by measuring the GF and virus-particle
yield in individual cells, for example by single-cell transcrip-
tomics for RNA viruses. However, accumulation and competi-
tive fitness appear to be largely independent properties for
another plant virus (Zwart et al. 2014), and measuring the virus-

particle yield of a cell might not elucidate its potential for
between-cell transmission of infection. Third, the respective
roles of the GF and mutations in adaptation have not been in-
vestigated. We speculate that whereas the GF will be important
as an initial adaptive response, mutations will be more impor-
tant during long-term adaptation of a multipartite virus to a
constant environment, a pattern that occurs with copy number
variants in other viruses (Elde et al. 2012; Cone et al. 2017) and
in bacteria (Sandegren and Andersson 2009). We therefore pre-
dict that the GF will change rapidly in a new environment, but
on longer time scales when point mutations are fixed, changes
in the GF may be reversed. Both modeling approaches and ex-
perimental evolution could be used to tackle these interesting
and hitherto unaddressed questions.

Supplementary data

Supplementary data are available at Virus Evolution online.
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