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Introduction
After germinal vesicle (GV) breakdown, the fully grown oo-

cyte is transcriptionally silent (Bachvarova, 1985). After fer-

tilization, chromatin remodeling has been proposed to provide 

a window of opportunity for transcription factors to bind the 

regulatory sequences of genes that must be activated for de-

velopment to proceed (Ma et al., 2001; Morgan et al., 2005). 

Concomitantly, a transcriptionally repressed state would be 

necessary to prevent promiscuous gene expression as a re-

sult of a “general permissiveness” of the genome (for reviews 

see Thompson et al., 1998; Schultz, 2002). In the mouse, two 

phases of transcriptional activation lead to the transition from 

maternal to zygotic control of gene expression (Schultz, 2002). 

The major and most studied wave of activation is the sec-

ond one, which begins at the late 2-cell stage. However, less 

is known about the fi rst wave, which occurs in the pronuclei 

of the  zygote and represents 40% of the transcriptional levels 

observed at the 2-cell stage (Aoki et al., 1997; Bouniol-Baly 

et al., 1997;  Hamatani et al., 2004).

Transcription intermediary factor (TIF) 1 α (Trim24) 

was fi rst identifi ed as a transcriptional regulator of nuclear 

receptors and has been shown to interact with numerous pro-

teins involved in chromatin structure (Le Douarin et al., 1995, 

1996; Fraser et al., 1998; Nielsen et al., 1999; Remboutsika 

et al., 2002; Germain-Desprez et al., 2003). TIF1α is one of 

four TIFs described in mammals that belong to the tripar-

tite motif superfamily of proteins (Le Douarin et al., 1995, 

1996; Venturini et al., 1999; Khetchoumian et al., 2004). 

TIF1β (Trim28) is required for the proper specifi cation of the 

anteroposterior axis in the mouse (Cammas et al., 2000). 

Little is known about the biological function of TIF1α, and 

its expression pattern is only known at late stages of post-

implantation development (Niederreither et al., 1999). Here, 

we have characterized the role of TIF1α in early mouse 

 embryogenesis. We show that TIF1α acts as a modulator of 

the transcriptional state of a particular set of genes during the 

fi rst wave of genome activation and that ablation of TIF1α 

compromises development.
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T
he fi rst events of the development of any embryo 

are under maternal control until the zygotic ge-

nome becomes activated. In the mouse embryo, 

the major wave of transcription activation occurs at the 

2-cell stage, but transcription starts already at the zy-

gote (1-cell) stage. Very little is known about the mole-

cules involved in this process. We show that the 

transcription intermediary factor 1 α (TIF1α) is involved 

in modulating gene expression during the fi rst wave of 

transcription activation. At the onset of genome activa-

tion, TIF1α translocates from the cytoplasm into the pro-

nuclei to sites of active transcription. These sites are 

enriched with the chromatin remodelers BRG-1 and 

SNF2H. When we ablate TIF1α through either RNA in-

terference (RNAi) or microinjection of specifi c antibodies 

into zygotes, most of the embryos arrest their develop-

ment at the 2–4-cell stage transition. The ablation of 

TIF1α leads to mislocalization of RNA polymerase II and 

the chromatin remodelers SNF2H and BRG-1. Using a 

chromatin immunoprecipitation cloning approach, we 

identify genes that are regulated by TIF1α in the zygote 

and fi nd that transcription of these genes is misregulated 

upon TIF1α ablation. We further show that the expres-

sion of some of these genes is dependent on SNF2H and 

that RNAi for SNF2H compromises development, sug-

gesting that TIF1α mediates activation of gene expres-

sion in the zygote via SNF2H. These studies indicate that 

TIF1α is a factor that modulates the expression of a set 

of genes during the fi rst wave of genome activation in 

the mouse embryo.
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Results
TIF1𝛂 expression is gradually restricted 
to the inner cells of cleavage stage embryos, 
and the protein translocates into the 
pronucleus at the onset of genome activation
We fi rst analyzed the expression pattern of Tif1α in oocytes and 

throughout preimplantation development by in situ hybridiza-

tion and RT-PCR. Tif1α was expressed from the GV stage oo-

cyte to the blastocyst (Fig. 1, a and b). Initially, Tif1α transcripts 

were present in all blastomeres, but as development progressed, 

Tif1α transcripts became restricted to the inner cells of the em-

bryo (Fig. 1 a). This became evident at the 16-cell stage, and 

when the blastocyst formed, Tif1α expression was restricted to 

the inner cell mass (ICM).

At the GV stage, TIF1α protein was detected in the oocyte 

cytoplasm (Fig. 1 c). Shortly after fertilization, TIF1α remained 

predominantly cytoplasmic, but it moved to both pronuclei at 

the mid and late zygote stages. TIF1α became localized to dis-

crete regions associated with the nucleolar-like bodies (NLBs), 

which are a compact mass of DNA surrounded by a perinu-

cleolar chromatin ring that cause the characteristic pattern of 

DNA staining visible at these stages (Fig. 1, c and d; Kopecny 

et al., 1995). This distribution was observed in both male and 

female pronuclei, although in some cases (11 of 32 zygotes 

analyzed), TIF1α was only seen in the male pronucleus, most 

likely refl ecting the fact that the male pronucleus undergoes 

transcriptional activation earlier (Bouniol et al., 1995). TIF1α 

remained associated with NLBs through the 2-cell stage and, al-

though less prominent, throughout the 4-cell stage. This pattern 

Figure 1. TIF1𝛂 expression becomes gradually restricted 
in the early embryo, and the protein translocates into the 
pronucleus around the onset of genome activation. (a) In situ 
hybridization for TIF1α of 2-cell (i), 5–8-cell (ii), 16-cell 
(iii), and 32-cell embryos (iv) and expanding (v) and late 
(vi) blastocyst. The insets within panels i and ii show em-
bryos at the 2- and 8-cell stages, respectively, processed 
with the sense probe. Expression of TIF1α is enriched in 
the inner cells of the mouse embryo from the 16-cell stage 
onward and is restricted to the ICM of the blastocyst. 
Shown are representative embryos of at least 20 embryos 
and two independent experiments for each stage. (b) RT-PCR 
analysis for TIF1α of mouse oocytes and embryos at the 
specifi ed stages. GVBD/MI, GV breakdown and meta-
phase I arrested oocytes; E, embryonic day. At least fi ve 
embryos per stage were analyzed. Note that the mRNA 
levels of actin are known to decline after oocyte  maturation 
(Temeles et al., 1994) and should only be considered 
as control of amplifi cation and not for quantifi cation 
 purposes. (c) Immunolocalization of TIF1α protein (red) in 
GV oocyte and early, mid, and late zygote at 2- and 4-cell 
stages. All samples were analyzed under comparable 
confocal imaging settings. In all panels, DNA was stained 
with TOTO-3 (blue). Shown are representative embryos of 
at least 20 embryos analyzed per stage from at least three 
independent experiments. Below the merge panel, the red 
channel (TIF1α) is shown as grayscale. (d) Higher magni-
fi cations of the pronuclei of mid and late zygotes and the 
nuclei of 2- and 4-cell stage  embryos. Arrows indicate the 
dense accumulation of TIF1α. Albeit weaker, association 
of TIF1α with NLBs persists in the 2- and 4-cell stage 
embryos. The pronuclei shown in higher magnifi cation 
are male. (e) TIF1β (red) exhibits a diffuse pattern of local-
ization in the two pronuclei of the mouse zygotes. The 
right panel is a higher magnifi cation of the region (male 
pronucleus) marked with the white square in the left panel. 
DNA is shown in blue.
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of  localization in dense spots was specifi c for TIF1α because 

TIF1β was uniformly distributed throughout the nucleoplasm 

of the two pronuclei (Fig. 1 e).

 The time when we observed TIF1α translocation into the 

pronuclei coincides with the time when chromatin remodelers 

and transcription machinery factors, such as Brahma-related 

gene 1 (BRG-1; SMARCA4), Brahma (BRM; SMARCA2), 

and high mobility group box 1 (HMGB-1), translocate into the 

pronuclei (Bellier et al., 1997; Legouy et al., 1998; Beaujean 

et al., 2000). This is also associated with the appearance of the 

hyperphosphorylated (active) form of the RNA polII (Bellier 

et al., 1997), concomitant with the activation of transcription of 

the embryonic genome (Bouniol et al., 1995). Thus, the change 

of TIF1α localization from the cytoplasm to the pronuclei oc-

curs at the time of embryo genome activation.

Sites enriched with TIF1𝛂 colocalize 
with transcription foci and are enriched 
with chromatin remodelers
To examine whether TIF1α is associated with regions of active 

transcription in the embryo, we assayed whether the sites of 

5-bromo UTP (BrUTP) incorporation in vivo colocalize with 

TIF1α in the zygote. BrUTP staining was detected throughout 

the pronuclear nucleoplasm of the zygote, and sites of higher 

BrUTP accumulation were observed in the periphery and the 

proximity of the NLBs (Fig. 2 a, +BrUTP; and Fig. S2, available 

at http://www.jcb.org/cgi/content/full/jcb.200603146/DC1). 

Immunostaining for TIF1α in BrUTP-injected zygotes revealed 

that TIF1α colocalized with some of these sites of greater BrUTP 

incorporation. Note, however, that not all of the BrUTP sites colo-

calized with TIF1α (Fig. 2 a). This data indicates that TIF1α is re-

cruited to specifi c sites of RNA synthesis at the late zygote stage.

Because the fully grown oocyte is transcriptionally silent 

(Bachvarova, 1985), chromatin remodeling is expected to be 

 required after fertilization to enable embryo genome activation. 

The TIFs are characterized by the presence of a bromodomain 

in the C terminus, and it is known that bromodomain-containing 

proteins can have a role in chromatin remodeling, gene repres-

sion, and gene activation (Agalioti et al., 2000; Schultz et al., 

2001; Ladurner et al., 2003). This led us to examine whether 

TIF1α colocalizes with chromatin remodelers. We assayed 

whether the sites of TIF1α accumulation relate to the localiza-

tion of the ATPase subunits of the mammalian types switching 

defective–sucrose nonfermenting (SWI–SNF) and Imitation of 

Switch (ISWI) remodeling complexes. SNF2H (SMARCA5) is 

the ATPase subunit of the mammalian ISWI complex (Lazzaro 

and Picketts, 2001). At the late zygote stage, SNF2H localized 

to small foci throughout the nucleoplasm of both pronuclei and 

to larger foci around the NLBs (Fig. 2 b). BRG-1 is the ATPase 

subunit of the mammalian SWI–SNF complex (Kwon et al., 

1994). BRG-1 localized to bigger foci than those of SNF2H and 

displayed increased accumulation around the NLBs (Fig. 2 b). 

A similar distribution has been reported for BRG-1 in earlier 

 zygotes (Legouy et al., 1998). As expected, TIF1α did not colo-

calize with SNF2H in early zygotes (Fig. 2 b, top). In contrast at the 

late zygote stage, we found that sites around the NLBs that were 

enriched with TIF1α were also enriched with both SNF2H and 

BRG-1 (Fig. 2 b, middle and bottom). Moreover, similar to the 

pattern of BrUTP incorporation, not all SNF2H and BRG-1 foci 

contained TIF1α. Thus, sites of accumulation of TIF1α are also 

enriched with chromatin remodelers in the late zygote stage.

RNAi or injection of antibodies against 
TIF1𝛂 compromises early development
We next wished to assess the function of TIF1α at the begin-

ning of development of the mouse embryo. To this end, we used 

two methods: RNAi and injection of antibodies. For RNAi, zy-

gotes were microinjected with double-stranded RNA (dsRNA) 

for TIF1α at the fertilization cone stage. Injections of dsRNA 

Figure 2. TIF1𝛂 localizes to active sites of transcription enriched with 
chromatin remodelers in the late zygote. (a) Colocalization of TIF1α and 
incorporated BrUTP in the pronuclei of late zygotes. Embryos were ana-
lyzed by indirect immunofl uorescence and confocal microscopy using an 
anti-TIF1α (red) and anti-BrdU (green) antibody. No staining with the BrdU 
antibody was detected in the controls (top). Arrowheads point to the sites 
where TIF1α colocalizes with BrUTP. A lower magnifi cation of the same zy-
gote is shown in the right panel, where the arrow points toward the male 
pronucleus. Shown are one of the pronuclei (male) of representative zy-
gotes from two different experiments (n = 20). (b) Sites of TIF1α accumula-
tion are enriched with SNF2H and BRG-1 around the onset of genome 
activation. Confocal laser images of embryos stained with TIF1α (red) and 
SNF2H (green, top and middle) or BRG-1 (green, bottom). Arrowheads in 
the merge panels point to the regions of accumulation of TIF1α. Shown 
is one of the pronuclei of representative zygotes at the indicated stages 
(n = 6). DNA was stained with TOTO-3 (blue) in all panels.
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for GFP as well as noninjected embryos were used as negative 

 controls. We found that embryos injected with TIF1α dsRNA 

proceeded through the fi rst cleavage and reached the 2-cell 

stage at the same time as the control embryos. However, al-

though the control embryos developed normally to the blasto-

cyst stage ( noninjected, 96%, n = 85; dsGFP, 92%, n = 70; 

fi ve independent experiments), the majority of the embryos 

injected with dsRNA for TIF1α arrested at the 2–4-cell stage 

(66%; n = 80; fi ve independent experiments; Fig. 3, a and b). 

19% of these embryos arrested at the 2-cell stage, 30% arrested 

at the 3-cell stage, and 15% developed only to the 4-cell stage 

(Fig. 3 a). To examine whether the down-regulation of TIF1α 

upon RNAi in zygotes was effi cient, we analyzed embryos 

that had been injected with dsRNA for TIF1α or for GFP by 

Western blot, which showed that TIF1α protein was effi ciently 

knocked down (Fig. 3 c). We also verifi ed that injection of 

dsRNA for TIF1α was specifi c: it did not result in the reduc-

tion of TIF1β, E-cadherin, or β-actin mRNA levels in these em-

bryos, and the protein levels of tubulin were unchanged (Fig. 3 c 

and Fig. S1 a, available at http://www.jcb.org/cgi/content/full/

jcb.200603146/DC1, and see Fig. 5 a).

As an additional approach to test TIF1α function, we 

 performed a similar series of experiments, this time blocking 

TIF1α protein through injection of antibodies. Although the 

majority of the Flag antibody–injected (87%; n = 35; four inde-

pendent experiments) and noninjected control embryos (100%; 

n = 56; four independent experiments) developed to the blasto-

cyst stage, 86% of the embryos injected with antibodies against 

TIF1α arrested between the 2- and 4-cell stages (n = 50; four 

independent experiments; Fig. 3 d). Most embryos (46%) 

 arrested at the 3-cell stage, and 20% of the embryos developed 

to the 4-cell stage. Thus, injection of antibodies, similarly to 

RNAi, caused the majority of embryos to arrest at the 2–4-cell 

stage. Although the arrest was slightly stronger upon antibody 

injection, this is unsurprising, as the injection of antibodies may 

result in a more immediate neutralization of TIF1α than RNAi. 

These results show that reducing the levels of TIF1α by two 

complementary approaches (either through interference with 

the message or with the protein) results in a decreased number 

of embryos that develop to the blastocyst stage.

Ablation of TIF1𝛂 function leads 
to aberrant localization of SNF2H, 
BRG-1, and RNA polII
To further understand the phenotype resulting from ablation of 

TIF1α, we injected TIF1α antibodies before the onset of ge-

nome activation and examined the localization of SNF2H and 

BRG-1 at the late zygote stage, that is, at the time of genome 

activation. We also analyzed the localization of the active (Ser5-

 phosphorylated) form of the RNA polII in the injected zygotes. 

We found that ablation of TIF1α resulted in a change in the 

distribution of the active Ser5-phosphorylated form of RNA 

polII (Fig. 4 a). The active RNA polII localized in a patchy and 

foci-network distribution instead of the homogeneous pattern 

throughout the nucleoplasm observed in the control embryos 

(n = 10; Fig. 4 a), suggesting an effect on transcription.  Blocking 

of TIF1α resulted in the mislocalization of BRG-1, which was 

only barely detected in the pronuclei of the injected zygotes and 

showed a diffuse staining in the cytoplasm (n = 9; Fig. 4, a and c). 

The distribution of SNF2H was also affected: the small foci 

 observed throughout the nucleoplasm of the  control  embryos 

were no  longer visible after ablation of TIF1α. Instead, SNF2H 

accumulated in few larger foci (n = 10; Fig. 4 a). Given that 

heterochromatin protein 1 (HP1) recruitment and histone 

Figure 3. Ablation of TIF1𝛂 reduces the number of embryos that develop to the blastocyst stage. (a) RNAi for TIF1α results in arrested development at the 
2–4-cell stage transition. Early zygotes were injected with dsRNA for GFP or dsRNA for TIF1α or were not injected. The embryos were cultured until the blas-
tocyst stage, and the embryos of each experimental group were counted and scored. Shown is the percentage of embryos for each group that reached a de-
termined developmental stage, where the total number of embryos derives from fi ve different experiments. (b) Pictures of noninjected controls and embryos 
injected with dsRNA for GFP or dsRNA for TIF1α taken 42 h after dsRNA injection. The embryos injected with dsRNA for TIF1α remain at the 2-, 3-, or 4-cell 
stages, whereas the control groups reached later stages. Shown are representative embryos of eight independent experiments. (c) Western blot analysis for 
TIF1α of control embryos injected with dsRNA for GFP and experimental embryos injected with dsRNA showing down-regulation of TIF1α protein induced 
by RNAi. Tubulin was used as loading control. (d) Neutralization of TIF1α function through antibody injection leads to developmental arrest. Early zygotes 
were injected with antibodies anti-Flag or anti-TIF1α or were not injected and were cultured until the controls reached the blastocyst stage. Embryos were 
counted and scored according to their developmental stage. Shown is the percentage of embryos for each group from a total of fi ve different experiments.
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 acetylation increase gradually in the zygote and that both are 

involved in regulation of gene expression ( Adenot et al., 1997; 

Arney et al., 2002; Hediger and Gasser, 2006), we also examined 

the effect of TIF1α ablation on HP1 localization and histone 

acetylation. Moreover, HP1 proteins can associate with both ac-

tive and silent chromatin (Hediger and Gasser, 2006). Ablation of 

TIF1α did not affect HP1β (n = 15) or HP1γ (n = 9) localiza-

tion. Similarly, the acetylation status of lysines 14 and 18 of 

histone H3 remained unchanged and that of histone H4 was not 

drastically affected (n = 8; Fig. 4 a). Similar results were ob-

served when the same experiments were performed upon RNAi 

( unpublished data).

Given that TIF1α ablation provoked a change in the lo-

calization of the RNA polII, we next wished to assess whether 

ablation of TIF1α elicited a general defect in transcription. 

To this end, we analyzed the pattern of staining of BrUTP in-

corporation in the late zygote after ablation of TIF1α. The em-

bryos remained transcriptionally active after interference with 

TIF1α (Fig. 4 b). Ablation of TIF1α did not appear to result 

in striking differences in the pattern of BrUTP incorporation 

in comparison with the control groups. However, an in-depth 

observation revealed that the general signal of fl uorescence 

was more disperse, and the accumulation of BrUTP around the 

NLBs seemed slightly enhanced. This observation was con-

fi rmed by quantifi cation of the area containing transcription 

foci, which showed a small and reproducible increase in the 

area being transcribed in the embryos after ablation of TIF1α 

compared with the two control groups (Fig. 4 b). Thus,  blocking 

of TIF1α did not abolish transcription, consistent with our ob-

servation that TIF1α localizes only to specifi c sites of active 

transcription (Fig. 2 a), but induced a signifi cant change in the 

area of BrUTP incorporation.

Mislocalization of BRG-1 and SNF2H observed by 

 immunofl uorescence after TIF1α ablation suggested that TIF1α 

might be involved in the nuclear localization of these two chro-

matin remodeling proteins in the late zygote. Given that not all 

of the BRG-1 colocalized with TIF1α (Fig. 2 b), the reduced 

signal of BRG-1 staining in the pronuclei resulting from TIF1α 

ablation suggests that TIF1α may play a role in the nucleation 

of BRG-1. Alternatively, the absence of TIF1α could affect the 

expression of SNF2H and/or BRG-1. We attempted to examine 

by Western blot whether the protein levels of SNF2H and/or 

BRG-1 were affected after ablation of TIF1α, but because of 

technical limitations attributable to the amount of material, we 

could not draw any conclusion.  However, we found that the 

mRNA levels of both BRG-1 and SNF2H were maintained in 

the embryos after ablation of TIF1α (Fig. S2 b). We observed 

a slight decrease of the mRNA levels of SNF2H upon TIF1α 

ablation, which could correlate with the decreased staining that 

we observed in our immunofl uorescence experiments. Thus, 

our data indicate that ablation of TIF1α function results in the 

mislocalization of BRG-1 and SNF2H in the zygote.

TIF1𝛂 modulates transcription of a specifi c 
set of genes in the embryo
The mislocalization of the active form of the RNA polII, 

 together with the change in the transcriptionally active area 

 resulting from TIF1α loss, could indicate that specifi c sites 

Figure 4. Ablation of TIF1𝛂 leads to aberrant 
localization of RNA polII, SNF2H, and BRG-1 
but does not affect HP1𝛃 localization or histone 
H3 acetylation. (a) Zygotes were microinjected 
with the antibodies anti-Flag or anti-TIF1α or 
were not injected and were cultured for 7 h, 
until the late zygote stage. The embryos were 
then analyzed with the indicated antibodies 
using a 60× oil objective under confocal mi-
croscopy. For each antibody, embryos from the 
three groups were processed in parallel and 
were analyzed using the same confocal laser 
power. Shown are representative pronuclei 
of at least 10 zygotes analyzed for each ex-
perimental group and for each antibody used. 
The same results were observed in both female 
and male pronuclei. (b) Pattern of BrUTP in-
corporation upon ablation of TIF1α. BrUTP 
incorporation was analyzed by indirect immuno-
fl uorescence in zygotes after microinjection of 
antibodies. After injection of BrUTP and the 
indicated antibodies, embryos were cultured 
for 7 h, fi xed, and analyzed using a BrdU 
antibody. All the samples were processed in 
parallel and analyzed under a 60× oil objec-
tive using the same confocal parameters. (left) 
Representative pronuclei of six (noninjected 
[ni] and Flag) and nine (TIF1α) zygotes. For 
quantifi cation, the area of the pronuclei was 
fi rst delimited and extracted using Volocity, 
and the area displaying BrUTP incorporation 
within each pronucleus was quantifi ed using 

the same software. The graph shows the mean ± SD of at least six replicates for each group of embryos. *, P = 0.0001, t test. (c) BRG-1 was localized in 
the cytoplasm and was barely detected in the pronuclei upon TIF1α ablation. Zygotes were microinjected as in panel a and processed for immunostaining 
with a BRG-1 antibody in parallel. Shown are representatives of at least 10 zygotes.
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of initiation of transcription may be disrupted and/or mis-

localized in the zygote after TIF1α ablation. Therefore, we 

next examined whether TIF1α binds to specifi c genes in the 

zygote and whether the expression of these genes would be 

misregulated as a consequence of TIF1α ablation. To this end, 

we fi rst used a chromatin immunoprecipitation (ChIP) clon-

ing approach in late zygotes, which we modifi ed to circumvent 

the constraint of the requirement of large amounts of material 

(see the supplemental text, available at http://www.jcb.org/

cgi/content/full/jcb.200603146/DC1). Our approach allowed 

us to identify 18 candidate target genes of TIF1α in the late 

zygote. These encode proteins that perform diverse cellular 

functions (Table I). Second, to validate these target genes and 

to explore whether the genes identifi ed by ChIP cloning are 

indeed regulated by TIF1α, we randomly chose 10 of them 

and examined their expression in embryos that had been sub-

jected to TIF1α RNAi. We injected dsTIF1α in zygotes before 

the onset of genome  activation (at the fertilization cone stage) 

and performed RT-PCR at a time when the embryos would 

have been gone through genome activation. We found that 9 

out of the 10 genes that we analyzed were indeed misregu-

lated after TIF1α interference (Fig. 5). The changes elicited 

in the levels of gene expression varied from complete loss of 

the corresponding mRNA (Emb and C230093Riken), to par-

tial (Vegfa) or very slight (Pacsin3 and Eif5a) down-regulation, 

to robust up-regulation (Tcf2, Mm.55980, 4732486Riken, and 

A230103N10Riken). Although the expression pattern between 

the zygote and the 4-cell stage of most of these genes is not 

known, Emb expression has been shown to increase its mRNA 

levels around the zygote stage (Wang et al., 2004), consistent 

with it being one of the genes that requires TIF1α to be acti-

vated at the zygote stage (Fig. 5).

To verify whether the changes in gene expression upon 

TIF1α RNAi were specifi c, we analyzed the mRNA levels of 

three genes as internal control: β-actin, TIF1β, and E-cadherin. 

None of these three genes showed changes in their mRNA lev-

els (Fig. 5 and Fig. S2). This suggests, in agreement with what 

we observed for the BrUTP incorporation profi le, that down-

regulation of TIF1α does not elicit a general defect in transcrip-

tion but only affects the expression of a specifi c set of genes. 

Moreover, TIF1α acts not only as an activator of its target 

genes but can also prevent the activation of others. Importantly, 

genes such as Vegfa, Tcf2 (HNF1β), Emb, and Eif5a have docu-

mented functions in early embryonic development and/or cell 

growth (Huang et al., 1993; Barbacci et al., 1999; Coffi nier 

et al., 1999; Miquerol et al., 1999, 2000). Thus, our data indi-

cate that TIF1α is required to determine the transcriptional state 

(active or repressed) of a set of genes in the late zygote.

A subset of TIF1𝛂 target genes 
is misregulated upon RNAi for SNF2H
After observing the mislocalization of SNF2H and BRG-1 upon 

TIF1α ablation, we hypothesized that if these chromatin remod-

elers are relevant for its function in the zygote, the expression of 

at least some of the TIF1α target genes should be affected when 

either BRG-1 or SNF2H are knocked down. To test this hypoth-

esis and given that SNF2H can coimmunoprecipitate with 

TIF1α (Fig. S4, available at http://www.jcb.org/cgi/content/full/

jcb.200603146/DC1), we performed RNAi for SNF2H using 

the same conditions as for TIF1α RNAi. Early zygotes at the 

fertilization cone stage were microinjected with dsRNA for 

SNF2H; injections of dsRNA for GFP as well as noninjected 

embryos were used as negative controls. The embryos subjected 

to SNF2H RNAi divided to the 2-cell stage normally (n = 52). 

The control embryos developed normally to the blastocyst stage 

(noninjected, 95%, n = 23; dsGFP, 91%, n = 23). Although 

 approximately half of the embryos injected with dsRNA for 

SNF2H developed to the morula and blastocyst stages (54%; 

n = 52), the other half showed developmental arrest between 

the 2- and 8-cell stages (46%; n = 52; Fig. 5 c).

We then analyzed the same genes that we analyzed after 

RNAi for TIF1α. RT-PCR of these genes revealed a subset of 

genes (Emb, C230093Riken, and Vegfa) that showed a drastic 

down-regulation in their mRNA levels after injection of dsRNA 

for SNF2H (Fig. 5 b). These genes corresponded to the genes 

that were down-regulated upon TIF1α RNAi (Fig. 5 a). Similar 

to what we observed for TIF1α RNAi, we also observed a slight 

decrease in the expression of Pacsin3 and Eif5a after RNAi for 

SNF2H. We did not observe any effect on the expression of 

Tcf2, Mm.55980, 4732486Riken, or A230103N10Riken, which 

remained not expressed in the embryos after RNAi for SNF2H 

(Fig. 5 b). This was in contrast to what we observed after RNAi 

for TIF1α, which resulted in a robust up-regulation of the cor-

responding mRNA for this second group of genes (Fig. 5, com-

pare a and b). Fig. 5 d shows that SNF2H knockdown was 

induced effi ciently in the embryos. Thus, although the effect on 

gene regulation elicited upon TIF1α ablation was both up- and 

down-regulation of target genes, RNAi for SNF2H resulted 

only in down-regulation of the same target genes that were 

Table I. Identifi cation of genes regulated by TIF1𝛂 in the mouse zygote

Gene Chromosome

Cytoskeleton/processing
 Flrt3 1

 Pacsin3 2

 Itih2 2

 Emb 13
 Npm-Rar 5

Translation

 Eif5a 11

Transcriptional regulators

 Tcf2 (HNF1β) 11

 Npas3 12

Signaling

 Vegfa 17

 Epha6 16

 Prkcq 2

Unknown genes

 4732486Riken cDNA 2

 C230093Riken cDNA 2

 A830008007Riken cDNA 1

 cDNA Mm.55980 9

 1700012H17 Riken cDNA 4

 A230103N10Rik cDNA 11

 LOC384193 5
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down-regulated after TIF1α RNAi. This data suggests that 

TIF1α regulates activation of gene expression of a subset of its 

target genes in the zygote through SNF2H function.

Discussion
We have investigated the role of TIF1α in the early develop-

ment of the mouse embryo. We show that at the onset of ge-

nome activation, TIF1α translocates into the pronuclei and 

accumulates in specifi c regions of RNA synthesis that are en-

riched with chromatin remodelers. Ablation of TIF1α results in 

the mislocalization of RNA polII, SNF2H, and BRG-1, and in 

the misregulation of a particular set of genes. Thus, TIF1α is 

a maternal factor that functions in the fi rst wave of embryonic 

genome activation as a modulator of the transcriptional state of 

a subset of genes.

TIF1α was originally cloned because of its ability to inter-

act with nuclear receptors (Le Douarin et al., 1995). Although 

we cannot rule out a functional interaction with the nuclear re-

ceptors at this stage, the expression of the nuclear receptors 

known to interact with TIF1α is undetectable in the stages of 

development that are within the time window of our study 

(Wang et al., 2004). Our data show that TIF1α plays a role as a 

modulator of embryonic transcription and suggest that its func-

tion in the zygote is required for the proper localization of chro-

matin remodelers and the RNA polII.

Several reports have documented TIF1α acting as a re-

pressor or as an activator in cultured cells and, therefore, its role 

as a coactivator appears controversial (Le Douarin et al., 1995, 

1996; Venturini et al., 1999; Peng et al., 2002). Although the 

discrepancies could be explained by the differences in the sys-

tems used in those studies, it is also likely that TIF1α plays a 

dual role in regulating repression versus activation of specifi c 

genes. This is supported by the effects on gene expression ob-

served here after TIF1α RNAi in early mouse embryos.

TIF1α function could also be regulated, as it may as-

sociate with different chromatin remodeling complexes, ulti-

mately causing changes in the transcription of selected genes. 

Thus, the proteins TIF1α associates with would determine the 

specifi city and the outcome on transcription (activation versus 

repression). Indeed, remodeling complexes containing BRG-1 

and SNF2H can lead to both activation and repression of gene 

expression (Pal et al., 2003, 2004; Eberharter and Becker, 

2004). Our results suggest that TIF1α regulates activation of 

a subset of its target genes through SNF2H function. Further, 

lack of recruitment of BRG-1 may also account for some of 

the changes in gene expression that we observed after TIF1α 

ablation.  Mislocalization of SNF2H, BRG-1, and RNA polII 

itself suggests that TIF1α may be involved at least partially in 

the localization of these remodeling complexes in the zygote. 

In support, we found that SNF2H can coimmunoprecipitate 

with TIF1α (Fig. S4). Moreover, TIF1α’s ability to nucleate the 

formation of a ternary complex with coactivators has recently 

been documented (Teyssier et al., 2005). Thus, we propose that 

recruitment of TIF1α to specifi c sites in the genome would en-

sure the localization of initiating RNA polII on one hand and of 

chromatin remodeling complexes on the other, and the “choice” 

of particular chromatin remodeling complexes will determine 

the outcome on transcription.

The tripartite motif proteins have been implicated in pro-

cesses such as cell differentiation, growth, and development. 

Figure 5. Misregulation of the expression of TIF1𝛂 target genes identifi ed 
through ChIP cloning induced by RNAi. (a) RT-PCR analysis for nine of the 
genes identifi ed through ChIP cloning. Early zygotes were microinjected 
with dsRNA for GFP or for TIF1α or were not injected and were analyzed 
by RT-PCR. Shown are representative samples for the noninjected controls, 
for the dsGFP controls, and from embryos injected with dsRNA for TIF1α. 
(b) Misregulation of a subset of TIF1α target genes upon RNAi for SNF2H 
in early zygotes. Early zygotes were microinjected as in panel a with 
dsRNA for SNF2H and analyzed by RT-PCR for the TIF1α target genes as 
indicated. β-Actin was used as an internal control. (c) Development of em-
bryos upon SNF2H RNAi. Early zygotes were injected with dsRNA for GFP 
or for SNF2H or were not injected. Embryos were cultured until the blasto-
cyst stage, and embryos of each experimental group were counted and 
scored. Shown is the percentage of embryos for each group that reached 
a determined developmental stage. (d) Down-regulation of SNF2H upon 
dsRNA injection in zygotes. The same samples used in panel b were ana-
lyzed by RT-PCR for SNF2H. β-Actin and no reverse-transcriptase controls 
are shown. The graph shows the quantifi cation of SNF2H transcripts upon 
RNAi normalized against β-actin mRNA. Shown are the mean ± SD of 
three independent experiments.
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In Drosophila melanogaster, Bonus, a TIF homologue, is es-

sential for cell viability and embryogenesis (Beckstead et al., 

2001). Of the four TIF members reported in mammals (Le 

Douarin et al., 1995, 1996; Venturini et al., 1999;  Khetchoumian 

et al., 2004), TIF1β has been shown to be required for the 

 specifi cation of the anteroposterior axis in the mouse (Cammas 

et al., 2000).  However, in view of the observation that TIF1β 

is also expressed in early embryos, it remains to be estab-

lished whether TIF1β also plays a role earlier in development. 

Although the protein motifs in the TIFs are conserved—a tripartite 

domain composed of a coiled-coiled, a RING (really interest-

ing new gene) domain, and a B-box, and a bromodomain in the 

C terminus (Reymond et al., 2001)—some molecular differences 

have been documented that translate into functional differences 

among the TIFs: only TIF1β can target histone deacetylase ac-

tivity, thereby acting as a corepressor, and it localizes to hetero-

chromatin, the latter via interactions with HP1 (Schultz et al., 

2001; Cammas et al., 2002). Additionally, TIF1β has so far not 

been reported to interact with nuclear receptors, in contrast to 

TIF1α (Le Douarin et al., 1996). Moreover, TIF1α possesses a 

kinase activity (Fraser et al., 1998) that has not been documented 

for the other TIFs. Likewise, the RING domain of TIF1γ acts 

as a ubiquitinase (Dupont et al., 2005), but this activity has so 

far not been detected in TIF1α or -β. Interestingly, this RING-

like ubiquitinase activity is required for ectoderm induction in 

 Xenopus laevis (Dupont et al., 2005). The functional heteroge-

neity of the TIFs may account for the different roles that so far 

have been assigned to some of them during embryogenesis.

Our work now documents a role for TIF1α in early devel-

opment and in regulation of transcription in the mouse zygote. 

In this context, it is important to note that altogether the group 

of TIF1α target genes that we have identifi ed cover several cel-

lular processes that are essential for early development, such as 

translation (Eif5a) and adhesion (Flrt3, Emb, and Itih2;  Fleming 

et al., 2000; Schultz, 2002). In fact, the expression of some 

translation initiation factors correlates with the maternal-to-

zygotic transition in mouse embryos (De Sousa et al., 1998). 

The target genes under the “unknown” category include a con-

served mRNA for a protein containing a highly basic lysine 

domain of unknown function (4732486Riken), a protein with 

domains predicted to be involved in RNA processing and tran-

scriptional regulation (C230093Riken), and an mRNA dead-

enylase (A230103N10Rik). Although the relevance of each of 

these genes in early development remains to be investigated, 

their coordinated expression may be of functional signifi cance 

in the control of the maternal-to-zygotic transition.

The expression pattern of TIF1α in the preimplantation 

embryo is reminiscent of that of Oct4/Pou5f1, which is ex-

pressed initially in all blastomeres but then becomes restricted to 

the ICM, and whose expression is essential for maintaining the 

pluripotency of the ICM cells (Nichols et al., 1998).  Moreover, 

TIF1α expression decreases upon differentiation of embryonic 

stem cells (Remboutsika et al., 1999). It is also noteworthy that 

TIF1α has been reported to be a direct target gene of Nanog 

in mouse embryonic stem cells (Loh et al., 2006). Thus, in the 

future, it will be interesting to determine whether expression of 

TIF1α contributes to the establishment or the maintenance of 

the pluripotent capacities of the early mouse embryo. Such a 

role for TIF1α is supported by the failure of most embryos lack-

ing TIF1α to develop to the blastocyst stage, and by the changes 

in the localization of SNF2H and BRG-1 resulting from TIF1α 

ablation, both of which are required for ICM and/or trophecto-

derm survival in the mouse (Bultman et al., 2000; Stopka and 

Skoultchi, 2003). During the early stages of development, deci-

sions about cell fate determination, pluripotency, and patterning 

are made. Thus, the chromatin has to be dynamically remodeled 

for opening and closing specifi c regions in response to those 

events. TIF1α could take part in this process by activating or 

repressing particular sets of genes. Our data suggest that TIF1α 

is a factor involved in epigenetic mechanisms in early mam-

malian development.

Materials and methods
Embryo collection and culture
Embryos were collected from F1 (C57BL/6 × CBA/H) 6-wk-old superovu-
lated females as described previously (Hogan et al., 1994). For the RNAi 
experiments, F1 females were mated with EF-1α MmGFP transgenic males 
(Zernicka-Goetz and Pines, 2001). All other experiments were performed 
with F1 × F1 crosses. Zygotes and cleavage stage embryos were collected 
at the indicated hours after human chorionic gonadotrophin (hCG) injec-
tion and cultured in KSOM medium (Specialty Media, Inc.) as described 
previously (Hogan et al., 1994). All animals were handled in accordance 
to Home Offi ce legislation.

In situ hybridization
Freshly collected embryos at various stages were fi xed in 4% paraformal-
dehyde in PBS. In situ hybridizations were performed as described previ-
ously (Wilkinson et al., 1990), except that the embryos were not dehydrated 
and the proteinase K treatment was omitted. The TIF1α probe was pre-
pared and labeled with digoxygenin-UTP using the pSK.TIF1α plasmid 
(provided by R. Losson, Institut de Génétique et de Biologie Moléculaire 
et Cellulaire [IGBMC], Strasbourg, France) as a template (Niederreither 
et al., 1999).

Immunostaining and confocal analysis
After removal of the zona pellucida with acid Tyrode’s solution (Sigma-
 Aldrich), embryos were washed three times in PBS and fi xed in 5% para-
formaldehyde, 0.04% Triton X-100, 0.3% Tween, and 0.2% sucrose in 
PBS for 20 min at 37°C. After permeabilization with 0.5% Triton X-100 in 
PBS for 20 min, the embryos were washed three times in 0.1% Tween 
in PBS (PBS-T), blocked in 3% BSA in PBS-T, and incubated with the primary 
antibodies for �12 h at 4°C. Embryos were then washed twice in PBS-T, 
blocked for 30 min, and incubated for 2 h at 25°C with the corresponding 
secondary antibodies. After two washes in PBS-T, the DNA was stained 
with TOTO-3 (Invitrogen) and the embryos were mounted in Vectashield 
(Vector Laboratories) and analyzed using a 60×/1.40 oil objective 
(Nikon) in an upright confocal laser microscope (Radiance; Bio-Rad Labo-
ratories) using the LaserSharp 2000 software (Bio-Rad Laboratories) at 
room temperature. The antibodies used in this work are as follows: TIF1α 
(Santa Cruz Biotechnology, Inc.), KAP1 (TIF1β; Abcam), RNA polII (recog-
nizing the CTD phosphorylated in Ser5; CTD4H8; Upstate Biotechnology), 
BRG-1 (Santa Cruz Biotechnology, Inc.), hSNF2H (provided by P. Varga-
Weisz, The Babraham Institute, Cambridge, UK; Bozhenok et al., 2002), 
tubulin (Sigma-Aldrich), HP1β (IGBMC), HP1γ (IGBMC), acetylated his-
tone H4 (Upstate Biotechnology), acetylated K14 histone H3 (provided by 
B. Turner, University of Birmingham, Birmingham, UK), and acetylated K18 
histone H3 (Abcam). Secondary antibodies were coupled with either  Alexa 
Fluor 568 or 488. Images were then prepared or analyzed using Photo-
shop 7 (Adobe) and Volocity (Improvision), respectively.

BrUTP labeling
BrUTP labeling was performed as described previously (Borsuk and 
Maleszewski, 2002). Embryos were collected 24 h after hCG injection 
and microinjected using a transjector (model 5246; Eppendorf) with 1–2 
pl of 100 mM BrUTP (Sigma-Aldrich) in 2 mM Pipes and 140 mM KCl, 
pH 7.4. Embryos were fi xed after 3 h of culture and processed for 
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 immunostaining using an anti-BrdU antibody (Sigma-Aldrich). For quantifi -
cation of BrUTP incorporation in pronuclei after microinjection of anti-
bodies, the embryos were collected at 20 h after hCG injection and 
microinjected with BrUTP followed by microinjection of antibodies as de-
scribed (see Microinjection of antibodies). For the analysis after immuno-
staining, the area of the pronucleus of injected zygotes was defi ned and 
cropped using  Volocity. The pixels were then selected under a 30% toler-
ance level, and the area displaying BrUTP staining was quantifi ed using 
the measurement tools of the software as recommended by the manufacturer.

RNAi and RT-PCR
Zygotes were collected and microinjected at 20 h after hCG injection with 
1–2 pl of 1 μg/μl long dsRNA for TIF1α, long dsRNA for SNF2H, or long 
dsRNA for GFP (Wianny and Zernicka-Goetz, 2000). The sequence for the 
dsRNA for TIF1α spans nucleotides 1284–1771, which shares no homol-
ogy with the other members of the family. For the SNF2H RNAi experi-
ments, dsRNA spanning nucleotides 2041–2520 of the cDNA was used.

For RT-PCR analysis, embryos were collected �42 h after dsRNA in-
jection and processed for RT in pools of fi ve embryos, each using the Dyna-
beads mRNA direct micro kit (Dynal). Embryos were collected at the same 
stages for all the samples to avoid variation resulting from embryos derived 
from different stages. Half of the mRNA extracted (10 μl) was used for the 
reverse-transcriptase controls and the other half for cDNA synthesis. PCR was 
performed with 1/20 of the cDNA (0.5 μl), such that all genes were ana-
lyzed in the same sample using 60 cycles for amplifi cation, except for Eif5a 
and Tcf2, in which 35 cycles were used, and Epha6, Snf2h, and Brg-1, in 
which 50 cycles were used. It was verifi ed that the cycling conditions were 
within the exponential phase of amplifi cation for each gene. The products 
were transferred onto a Hybond N+ membrane (GE Healthcare), hybrid-
ized against the corresponding probes, and exposed for autoradiography.

RT-PCR analysis of TIF1α was performed in 15 freshly collected oocytes, 
15 zygotes, 15 2-cell stage, 4 6–16-cell stage, 5 embryonic day 5.5, and 5 
embryonic day 6.5 embryos. cDNA samples were amplifi ed for 40 cycles. 
Note that maternal transcripts are not distinguishable from zygotic ones.

Microinjection of antibodies
Antibodies against TIF1α and Flag (Sigma-Aldrich) were microdialyzed 
overnight at 4°C against Tris-EDTA, pH 8.0, and concentrated using a fi lter 
(Centricon; Amicon) to a fi nal concentration of 215 ng/μl (Bevilacqua 
et al., 2000). Zygotes collected at 20 h after hCG injection were micro-
injected with �1–2 pl of antibody solution and cultured. For the immuno-
staining analysis, the embryos were fi xed after 7 h of culture.

Western blot analysis
Embryos from fi ve different experiments were collected 42 h after 
dsRNA injection, washed three times in PBS, pooled (155 embryos per 
group), and subjected to Tris-Glycine PAGE-SDS. Competition assays 
with the corresponding TIF1α-blocking peptide were performed to en-
sure the specifi city of the antibody (Fig. S3, available at http://www.jcb.
org/cgi/content/full/jcb.200603146/DC1).

ChIP and cloning
We fi rst assessed the ability of the antibody to immunoprecipitate TIF1α in 
pronuclei extracts (Fig. S3). For the ChIP, 413 zygotes were collected in 
M2 at 27 h after hCG injection, formaldehyde cross-linked, washed, and 
lysed in 5 mM Pipes, pH 8.0, 85 mM KCl, and 0.05% NP-40. The pro-
nuclei were then lysed and sonicated. For the immunoprecipitation, 1 μg of 
TIF1α antibody was used after preclearing of the chromatin. The samples 
were then extensively washed, eluted with 50 mM NaHCO3 and 1% SDS, 
and treated with proteinase K at 65°C for 4 h. After purifi cation, DNA was 
incubated with T4 DNA polymerase and ligated to two unidirectional linkers 
(Oberley et al., 2003). The samples were amplifi ed by PCR, cloned into 
pGEM-T Easy (Promega), and sequenced. Out of 25 clones sequenced, 19 
contained inserts that corresponded to regions of different genes, many of 
them unknown. The remaining six clones contained background sequences 
corresponding to the cloning vector or Escherichia coli. Two clones con-
tained sequences of the same gene, which led us to select 18 candidate 
genes. We provide a detailed protocol in the supplemental text.

Online supplemental material
Fig. S1 shows typical BrUTP accumulation in late zygote and 2-cell stage 
embryos. Fig. S2 provides evidence that RNAi for TIF1α does not induce 
down-regulation of TIF1β and an analysis of the mRNA levels of SNF2H 
and BRG-1 upon TIF1α RNAi. Fig. S3 shows the characterization of the 
TIF1α antibody used in this work. Fig. S4 depicts coimmunoprecipitation of 

SNF2H with TIF1α. The supplemental text provides a detailed protocol for 
ChIP cloning in zygotes. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200603146/DC1.
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