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Abstract: Sulfatases are commonly divided into three classes: type I, type II, and type III sulfatases.
The type III sulfatase, alkylsulfatase, could hydrolyze the primary alkyl sulfates, such as sodium
dodecyl sulfate (SDS) and sodium octyl sulfate. Thus, it has the potential application of SDS biodegra-
dation. However, the roles of alkylsulfatase in biological control fungus remain unclear. In this study,
an alkylsulfatase gene MaAts was identified from Metarhizium acridum. The deletion strain (∆MaAts)
and the complemented strain (CP) were constructed to reveal their functions in M. acridum. The
activity of alkylsulfatase in ∆MaAts was dramatically reduced compared to the wild-type (WT) strain.
The loss of MaAts delayed conidial germination, conidiation, and significantly declined the fungal
tolerances to UV-B irradiation and heat-shock, while the fungal conidial yield and virulence were
unaffected in M. acridum. The transcription levels of stress resistance-related genes were significantly
changed after MaAts inactivation. Furthermore, digital gene expression profiling showed that 512 dif-
ferential expression genes (DEGs), including 177 up-regulated genes and 335 down-regulated genes
in ∆MaAts, were identified. Of these DEGs, some genes were involved in melanin synthesis, cell wall
integrity, and tolerances to various stresses. These results indicate that MaAts and the DEGs involved
in fungal stress tolerances may be candidate genes to be adopted to improve the stress tolerances
of mycopesticides.

Keywords: alkylsulfatase; stress tolerances; Metarhizium acridum; mycopesticides

1. Introduction

The use of biological pesticides to protect plants is becoming increasingly widespread
in various agricultural crops [1]. Entomopathogenic fungi have shown a great potential
to reduce the application of chemical pesticides due to their advantages, such as low
possibility to induce insect resistance, environmental friendliness, and safety [1–4]. To
date, about 80 companies worldwide have developed more than 170 kinds of pesticide
products based on entomopathogenic fungi [5]. For instance, entomopathogenic fungi
Metarhizium spp. have been successfully applied to control locust [6–8], fruit fly [9], and
grasshoppers [10]. The available genome sequences have made the Metarhizium genera
become one of the important model fungi for exploring some questions about insect fungal
conidiation, stress tolerances, and pathogenesis [11].

Conidia are the asexual propagules in many entomopathogenic fungi and usually the
infective unit of mycopesticides [12,13]. Thus, the conidial pathogenicity, conidial yield, as
well as sensitivities of conidia to various adverse conditions are all critical for the produc-
tion cost and the application efficiency of the mycopesticides [14,15]. Among the adverse
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factors, the high-temperature and the ultraviolet (UV) irradiation from sunlight can lead
to the decrease of the conidial vitality and are closely related to the application efficiency
of the mycopesticides [16–19]. The UV irradiation usually results in DNA mutation and
damage, as well as protein denaturation, and it also damages a variety of intracellular
substances [17,20,21]. In addition, CPDs, 6-4PPs, and its isomer transformed from DNA
can cause cell mutation and even death by bending DNA double helix to make different an-
gles [22–24]. High temperatures can cause protein denaturation and DNA damage through
base loss, leading to depurination and membrane disorganization [25–28]. However, 20 to
30 ◦C is a suitable temperature for conidial germination, growth, and the conidiation of
most entomopathogenic fungi [29]. Therefore, exploring the mechanisms of the conidial
tolerances to UV irradiation and heat-shock will be helpful to improve the quality of coni-
dia, which is important for the effectiveness and sustainability of the mycopesticides in
pest control.

As a widespread substance in nature, sulfate esters can be used by many microorgan-
isms as a sulfur source for growth by hydrolyzing the sulfate esters using sulfatases [30].
At present, three classes of sulfatases, including type I, type II, and type III sulfatases, have
been identified [31]. Type I sulfatases can utilize one equivalent of water to cleave the RO–
SO3

− in the process, which is the largest group among three classes of sulfatases [31]. Type
I sulfatases contain a highly conserved sulfatase motif, C/S-X-P-X-A-XXXX-T-G [32], in the
N-terminal region and a unique active-site aldehyde residue (the left C/S), α-formylglycine
(FGly), which is installed post-translationally [33]. So far, fifteen of the type I sulfatases
have been identified in humans [33]. The research found it related to the disease and the
regulation of embryonic development [33,34]. Type II sulfatases release inorganic sulfates
and the aldehyde by cleave sulfate esters and require α-ketoglutarate as a cosubstrate in
this process [35–37]. Type III sulfatases contain a metallo-β-lactamases catalytic domain in
the N-terminal, the C-terminal, and the central domain related to recruit substrates and the
resistance to SDS [35]. The type III sulfatases usually activate a nucleophilic water molecule
by a Zn2+ cofactor [31,38]. Mutations of residues Tyr246 and Gly263 of SdsAP, a type III
sulfatase in Pseudomonas sp. S9, show that the mutants abolish the enzyme activity for
SDS degradation, indicating that these residues are important for the functions of type III
sulfatases [39].

To date, type III sulfatases were found and identified mainly in microorganisms, with
a focus on the identification of the crystal structure [39] and the activities in degrading a
surfactant [40]. In Pseudomonas sp. ATCC19151, alkylsulfatase could cleave alkyl-sulfate,
such as SDS, and was named as SdsA accordingly [41]. In Pseudomonas sp. C12B, it could
secrete up to five different alkylsulfatases, and these exert hydrolysis of many kinds of
alkyl-sulfate substrate [42]. Alkylsulfatase from P. aeruginosa PAO1 has a wide substrate
specificity; it could not only degrade long chain alkyl-sulfate but also short chain ones, such
as decyl-sulfate, octyl-sulfate, and hexyl-sulfate [35]. The disruption of the alkylsulfatase
gene causes the inactivation of that enzyme, rendering it unable to degrade SDS [35].
Beyond that, some bacteria isolated from wastewater showed the capacity to biodegrade
alkylsulfatase [43]. In eukaryon, research related to alkylsulfatase is limited. Alkylsulfatases
from Saccharomyces cerevisiae surprisingly degrade certain ary-sulfates, and this strain could
utilize SDS regarded as a sulfur source to grow [44–46]. However, the functions of the type
III sulfatases in filamentous fungi are still a mystery.

In this study, we characterized a type III sulfatase gene MaAts and presented the
functional analysis of alkylsulfatase in M. acridum. We have found, unexpectedly, that
the loss of MaAts delayed conidial germination and conidiation, but it had no effect on
conidial yield and fungal virulence. In addition, the fungal tolerances to UV-B irradiation
and heat-shock were significantly decreased after the deletion of MaAts. Furthermore,
digital gene expression (DGE) profiling results showed the disruption of MaAts affected
the expression levels of some genes related to melanin synthesis, cell wall integrity, and
tolerances to various stresses.
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2. Materials and Methods
2.1. Strains and Cultivation

M. acridum CQMa102 (wild type) has been deposited in the Genetic Engineering
Center of Chongqing University. Nutrient-rich one-quarter SDAY medium was used for
fungal cultivation. It contains 2.5 g peptone, 5 g yeast extract, 10 g dextrose, and 18 g agar
per liter. Nutrient-poor Czapek-Dox medium was used to screen fungal transformants,
and it contains 2 g NaNO3, 0.01 g FeSO4·7H2O, 0.5 g MgSO4·7H2O, 1 g KH2PO4, 1 g KCl,
30 g sucrose, and 15 g agar, per liter. Escherichia coli DH5α was prepared to propagate
plasmid and grown on LB medium, which contained 5 g yeast extract, 10 g tryptone, 10 g
NaCl, and 18 g agar per liter. Agrobacterium tumefaciens strain AGL-1 was adopted in fungal
transformation [47].

2.2. Construction of MaAts Mutants

We used pK2-PB with phosphinothricin resistance gene and pK2-sur chlorimuron
ethyl resistance gene to construct knockout and complementation strains, respectively [48].
For the deletion of MaAts, the upstream and downstream sequences of the MaAts gene
were amplified with primer pairs MaAts-LF/MaAts-LR and MaAts-RF/MaAts-RR. The
confirmed fragments were ligated to the pK2-PB vector to build pK2-PB-MaAts-LR (the
targeted gene disruption vector). Then, the resulting vector was transformed into WT
by A. tumefaciens mediated transformation. Nutrient-poor Czapek-Dox medium with
phosphinothricin (500 µg/mL) was prepared to select fungal transformants. For the com-
plementation of MaAts, the full length of MaAts (containing promoter 2.0-kb) was cloned
with primer pair MaAts-HF/MaAts-HR. The fragment was ligated into pK2-sur vector to
generate pK2-sur-MaAts. Then, it was transformed into ∆MaAts by A. tumefaciens mediated
transformation. Nutrient-poor Czapek-Dox medium with chlorimuron ethyl (20 µg/mL)
(Sigma-Aldrich, Bellefonte, PA, USA) was prepared to screen fungal transformants. All
transformants were verified by PCR and Southern blotting. Primers used in this study are
shown in Table S1.

2.3. Southern Blotting

About 5 µg of genomic DNA from various fungal strains was digested with Nru I and
Xho I, respectively. The digested fragments were separated, then transferred into a nylon
membrane. The probe was prepared by cloning 500 bp fragment from genomic sequence of
MaAts with primers MaAts-PF/MaAts-PR (Table S1). DIG High Prime DNA Labeling, and
Detection Starter Kit I (Roche, Mannheim, Germany) was used to label the probe.

2.4. Assessments of Conidial Germination and Conidiation Capacity

The conidial germination assays were conducted as described previously [49]. For the
conidial yield assays, aliquots of 2 µL 107 conidia suspensions of each strain were vertically
spotted into 24-well plates supplied with 1 mL 1/4 SDAY medium per well, which were
incubated at 28 ◦C for 3, 5, 7, 9, 11, 13, and 15 days, respectively. The conidia in each
well were collected and then suspended in ddH2O containing 0.05% Tween-80. The total
number of conidia in each well was counted by a haemocytometer. All experiments were
repeated three times.

2.5. Assessments for Fungal Stress Tolerances

The assessments for fungal stress tolerances were performed as described previously [50].
For the fungal tolerances to UV-B irradiation, 50 µL conidial suspensions
(1 × 107 conidia/mL) of each strain were spread on nutrient-rich 1/4 SDAY plates, which
were treated by 1350 mW/m2 UV-B irradiation for 1.5, 3.0, 4.5, and 6.0 h, respectively, then
cultivated in darkness at 28 ◦C for 20 h. For the fungal tolerances to heat-shock, sterile 1.5-mL
centrifuge tubes containing 100-µL aliquot of conidial suspensions (1 × 107 conidia/mL) of
different fungal strains were exposed in a water bath at 45 ◦C for 3.0, 6.0, 9.0, and 12.0 h.
After treatment, 50 µL conidial suspensions of WT, ∆MaAts, and CP strains were spread
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onto 1/4 SDAY plates, then incubated at 28 ◦C for 20 h. The conidial germination rate of
each strain was measured by microscopic examination and the time for 50% inhibition time
(IT50) was determined.

2.6. Bioassays

The bioassays were conducted by topical inoculation against Locusta migratoria manilen-
sis (5th-instar nymphs) according to the method described previously [51]. In brief, aliquots
of 3 µL 1 × 107 conidia/mL conidial suspension of WT, ∆MaAts, and CP strains, and 3 µL
paraffin oil were dipped on the locust pronotums. After the treatments, the locusts were
fed on fresh corn leaves daily and kept at 28± 2 ◦C with 75% relative humidity and a 16:8 h
(light–dark) photoperiod. The survival was recorded every 12 h until all locusts died. The
experiment was carried out with three replicates with 30 locusts in each group, and the
experiment was repeated three times. The mean median lethal time (LT50) was estimated
for the WT, ∆MaAts, and CP strains.

2.7. Quantitative Reverse Transcription (qRT) PCR

We spread 100 µL conidial suspensions (1 × 108 conidia/mL) on nutrient-rich 1/4
SDAY medium and collected the fungal cultures after 3-d cultivation at 28 ◦C. The total
RNA of fungal samples were extracted using RNA Kit (CoWin Biosciences, Beijing, China).
PrimeScriptTM RT reagent kit (Takara, Dalian, China) was used for the reverse transcription
to generate cDNA with oligo-dT primer. The SYBR-Green PCR Master Mix kit (Bio-Rad,
Foster City, CA, USA) was applied for qRT-PCR in the iCycler system (Bio-Rad, Hercules,
CA, USA). The Magpd (GenBank accession No. XM_007817733.1) gene was used as the
internal standard. Using the 2−∆∆CT method, we assessed the transcript levels of target
genes [52]. The experiment was replicated three times. All the primers for qRT-PCR are
presented in Table S1.

2.8. Alkylsulfatase Activity Assays

The conidia of each strain were harvested from nutrient-rich 1/4 SDAY medium after
3 d of growth at 28 ◦C and washed with ddH2O. The conidia were quick-frozen in liquid
nitrogen and fully grinded (70 Hz for 3 min) using Tissue lyser-24 (Jingxin, Shanghai, China).
Then, we transferred 100 mg conidial powder of each strain in a new 2 mL centrifuge tube.
We added 1 mL of the extraction buffer (50 mM Tris-HCl buffer, 1 mM DTT, 1 mM EDTA,
pH 7.5) and mixed well; we followed that with centrifugation (16,000× g for 10 min) to
obtain the enzyme stock solution. The alkylsulfatase activities in different fungal strains
were measured by the barium chloride-gelatin method [30]. In brief, 200 µL of enzyme
stock solution and 200 µL substrate (sodium octyl sulfate) were mixed in reaction buffer
(0.1 M Tris-HCl, pH 7.5). The final concentration of the substrate was 15 mM. The reaction
was carried out at 30 ◦C for 10 min and stopped by adding trichloroacetic acid (50 µL
of 15%, wt/vol). After centrifugation (800× g for 1 min), aliquots of 200 µL supernatant
were added into the barium chloride-gelatin and mixed thoroughly. The blank control was
200 µL of the extraction buffer instead of 200 µL of the enzyme stock solution. The resultant
mixtures were detected by measuring maximum absorbance at 360 nm. One unit of the
alkylsulfatase activity was defined as ∆A360 = 0.001 after 10 min.

2.9. DGE Profiling

The raw data of DGE profiling based on biological triplicates have been deposited in
the NCBI BioProject database (accession number: PRJNA753293). The RNA sequencing was
conducted on the BGISEQ-500 platform by Beijing Genomics Institution (Wuhan, China).
The differentially expressed genes (DEG) were identified with a fold change ≥ 2 and
q value < 0.05. The DEG annotation was based on the NCBI protein databases and subjected
to gene ontology (GO) analysis (http://www.geneontology.org/, accessed on 10 January
2022) for the enrichments of GO terms to three function classes (p < 0.05).

http://www.geneontology.org/
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2.10. Data Analysis

All data obtained from the repeated experiments in each test were expressed as
means ± standard deviations. The one-factor analysis of variance was adopted to analyze
the experimental data based on three replicates. SPSS 17.0 (IBM, Armonk, NY, USA) was
used to analyze the datasets in this study.

3. Results
3.1. MaAts Belongs to the Type III Sulfatase

In M. acridum, a type III sulfatase gene, MaAts (MAC_08440) was cloned. The MaAts
comprised an ORF of 1890 bp encoding a protein consisting of 629-amino acid with pre-
dicted isoelectric point of 5.45 and molecular mass of 68.6 kD. This protein has no signal
peptide and no transmembrane domain. The MaAts contains a β-lactamase domain at the
N terminus, followed by an alkylsulfatase dimerization, and an alkylsulfatase C terminal
region (Figure 1A). The phylogenetic analysis showed that MaAts belongs to the type III of
sulfatase (Figure 1A). To examine the activity of the MaAts in M. acridum, we successfully
generated the MaAts-disruption mutants as well as the complementation strains (Figure
S1). The alkylsulfatase activity assays showed that the samples from the WT and CP strains
exhibited significantly higher alkylsulfatase activities than those from ∆MaAts strain, and
the alkylsulfatase activities were hardly detected in all the samples (WT, ∆MaAts, CP) with
heat-shock treatment (Figure 1B).

Figure 1. Features of MaAts in M. acridum. (A) Phylogenetic relationships of sulfatase proteins from
bacteria, fungi, human. S. enterica subsp: Salmonella enterica subsp (EDZ09460.1); E. hormaechei: Enter-
obacter hormaechei (CBK85007.1); P. aeruginosa PAO1: Pseudomonas aeruginosa PAO1 (SKC13380.1); M.
acridum: Metarhizium acridum (EFY85493.1); M. tuberculosis: Mycobacterium tuberculosis (NP_217923.1);
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P. putida: Pseudomonas putida (SUD73147.1); H. sapiens: Homo sapiens (NP_001012301.1); C. perfringens:
Clostridium perfringens (WP_131337334.1); P. aeruginosa: Pseudomonas aeruginosa (SKC13380.1).I, II
and III represent different types of sulfatases. (B) Alkylsulfatase activities in the 3-day-old conidia
from nutrient-rich 1/4 SDAY medium. The heat-shock WT, heat-shock ∆MaAts, and heat-shock CP
denotes that the samples were treated at 100 ◦C for 10 min. One unit of the alkylsulfatase activity
was defined as ∆A360 = 0.001 after 10 min. Asterisk indicates significant difference at (**) p < 0.01,
(ns) p > 0.05.

3.2. Disruption of MaAts Delays Conidial Germination and Conidiation but Does Not Affect
Fungal Virulence and Conidial Yield

To identify the biological function of MaAts on growth, we observed the colonies of
each strain on nutrient-rich 1/4 SDAY medium by microscopy. Our results showed no
significant difference between the fungal strains in growth rates (Figure S1). Interestingly,
the conidial germination rate of ∆MaAts was significantly lower than the WT and CP
strains (Figure 2A). The GT50 of the ∆MaAts (5.50 ± 0.06 h) strain was significantly longer
compared to the WT (5.10 ± 0.02 h) and CP (4.98 ± 0.08 h) strains (p < 0.05; Figure 2B). In
addition, we observed the whole conidiation process of each strain by microscopy. The
results showed that the WT and CP strains had formed conidia at 16 h, while the ∆MaAts
strain did not form conidia until 20 h (Figure 3A). At 34 h, the knockout strain produced a
small amount of conidia, while the control strains (WT and CP) had produced numerous
conidia. (Figure 3A). However, there was no significant difference in the conidial yield of
each strain from 3 days to 15 days (Figure 3B).

Figure 2. The deletion of MaAts delayed the conidial germination. (A) The germination rates of
conidia of each strain on nutrient-rich 1/4 SDAY medium. (B) The mean 50% germination time (GT50)
of each strain. Asterisk indicates significant difference at (*) p < 0.05, (**) p < 0.01, (ns) p > 0.05.

Figure 3. The deletion of MaAts delayed conidiation. (A) Conidiation of each strain cultured on
nutrient-rich 1/4 SDAY medium. Black arrows indicate the typical conidiophores and conidia.
(B) Conidial yield of WT, ∆MaAts and CP strains on nutrient-rich 1/4 SDAY medium at 28 ◦C.
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To explore the virulence of fungal strains, we conducted bioassays by topical inoc-
ulation onto the pronotum of L. migratoria manilensis with conidial suspensions of each
strain. As a result, there were insignificant differences in LT50 among each strain (p > 0.05),
indicating that the MaAts-disruption did not affect the virulence of M. acridum (Figure S2).

3.3. Disruption of MaAts Reduced the Tolerances to UV-B Irradiation and Heat-Shock

To reveal the contributions of the MaAts gene to stress tolerances, the mature conidia
(15-day-old conidia) of tolerances to UV-B irradiation and heat-shock were evaluated. The
results showed that there is a dramatic difference in the conidial stress tolerances between
the ∆MaAts and the control strains (Figure 4A). The inhibition time of 50% (IT50) of ∆MaAts
(3.8 ± 0.09 h) was significantly reduced compared to control strains with the IT50s of
4.5 ± 0.1 h (WT) and 4.5 ± 0.2 h (CP), respectively (Figure 4B, p < 0.01). After the heat-
treatment in time-course, the conidial germination rates of the control strains were signifi-
cantly higher than those of ∆MaAts (Figure 4C, p < 0.01). The inhibition time of 50% (IT50)
of ∆MaAts (8.1 ± 0.9 h) was significantly reduced compared to control strains with the
IT50s of 11.7 ± 0.9 h (WT) and 10.1 ± 1.0 h (CP), respectively (Figure 4D, p < 0.01). The
above results indicated that the deletion of the MaAts reduced conidial tolerances to UV-B
irradiation and heat-shock.

Figure 4. The deletion of MaAts impaired the UV-B irradiation and heat-shock tolerances of the mature
(15-day-old) conidia. (A) Conidial germination after exposure of UV-B irradiation (1350 mW/m2)
in a 1.5 h interval. (B) The half-inhibition time (IT50) under UV-B irradiation. (C) Germination rates
after heat-shock treatment (45 ◦C) in a 3 h interval. (D) IT50 under high temperature (45 ◦C). After
treatments, WT, ∆MaAts and CP strains were cultured on nutrient-rich 1/4 SDAY medium at 28 ◦C
for 20 h. Asterisk indicates significant difference at (**) p < 0.01, (*) p < 0.05, (ns) p > 0.05.

Furthermore, the conidia with different maturity (3, 6, 9, 12, and 15-day-old) were
respectively collected to determine their tolerances to UV-B irradiation and heat-shock. The
results showed that the stress tolerances of all stages of the conidia from the ∆MaAts strain
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were severely compromised (Figure 4A,B, p < 0.01). Furthermore, the transcription levels of
some genes related to fungal stress tolerances were detected by qRT-PCR in the 3-day-old
conidia of the WT and ∆MaAts strains. The results showed that the transcription levels of
seven genes were significantly reduced in ∆MaAts (Figure 5C).

Figure 5. The deletion of MaAts diminished the UV-B irradiation and heat-shock tolerances of the
conidia with different maturity. (A) The IT50 of conidia with different maturity (3, 6, 9, 12 and
15-day-old) under UV-B irradiation. (B) The IT50 of conidia with different maturity (3, 6, 9, 12 and
15-day-old) under heat-shock. (C) Relative transcript level of genes related to conidia tolerances to
UV or heat-shock in the 3-day-old conidia. MaPHR1 (MAC_05772); MaRas (MAC_07622); MaUve1
(MAC_07337); MaSOD1 (MAC_03040); MaCatA (MAC_09645); MaHsp104 (MAC_05034); Maslm1
(MAC_04714); MaSSA3 (MAC_02927); MaUbi1 (MAC_01946); MaHPPD (MAC_02015); MaSOD2
(MAC_01660). Asterisk indicates significant difference at (**) p < 0.01, (*) p < 0.05, (ns) p > 0.05.

3.4. Identification of DEGs Influenced by the MaAts

To further reveal the mechanism of the disruption of MaAts reducing the fungal tolerances
to UV-B irradiation and heat-shock, the total RNA was isolated from the 3-day-old conidia of
the ∆MaAts and WT strains to identify the DEGs between the ∆MaAts and WT strains via
DGE profiling. As a result, 512 DEGs (fold change ≥ 2 and p ≤ 0.05) were identified from
the DGE data. Of the DEGs, 335 DEGs were down-regulated and 177 DEGs were commonly
up-regulated (Figure 6A). The details of DEGs are given in Table S2. To further verify the
reliability of the DGE data, we randomly selected 15 genes, including 5 up-regulated genes
(MAC_06945, MAC_00193, MAC_04050, MAC_00228, MAC_03018) and 10 down-regulated
genes (MAC_01777, MAC_07727, MAC_08480, MAC_07363, MAC_02161, MAC_01480,
MAC_01513, MAC_06626, MAC_08198, MAC_06979), and detected their expression by
qRT-PCR. For all the selected genes, the expression patterns obtained by qRT-PCR showed
similar patterns of down-regulation and up-regulation, indicating that the DGE data were
reliable (Figure S3). By gene ontology (GO) annotation, all DEGs (p < 0.05) were classified
as cellular component, molecular function, and biological process, which were 160, 292,
and 242, respectively (Figure 6B).
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Figure 6. Identification and GO annotation of DEGs. (A) Identification of DEGs in the 3-day-old
conidia from the ∆MaAts vs. WT. Green dots, down-regulated genes (log2 ratio ≤ 1). Red dots,
up-regulated genes (log2 ratio ≥ 1). Grey dots, not differentially regulated (−1< log2 ratio < 1).
(B) GO annotation of DEGs in the 3-day-old conidia from the ∆MaAts vs. WT.

From the DGE data, dozens of DEGs involved in cell wall biosynthesis and stress
tolerances were strongly affected by the disruption of MaAts. Seven DEGs related to
plasma membrane and membrane fusion are down-regulated in ∆MaAts, including a
rab GDP-dissociation inhibitor gene (MAC_00732), cytochrome P450 gene (MAC_01212),
ABC multidrug transporter gene (MAC_01512), glucose-methanol-choline oxidoreduc-
tase gene (MAC_02934), VHS domain protein gene (MAC_03504), phosphate permease
gene (MAC_05171), and tetraspanin gene (MAC_00860). Ten DEGs involved in cell wall
biosynthesis were down-regulated, such as phospholipase A gene (MAC_06774), a puta-
tive maltase gene (MAC_00567), a putative oxidoreductase gene (MAC_01213), and so on
(Table S3). It is worth noting that two DEGs, the beta-glucosidase gene (MAC_00623) and a
putative C2H2 finger domain protein gene (MAC_07727) related to fungal tolerances to
heat were remarkably down-regulated in ∆MaAts (Table S3). The PQQ-repeat-containing
protein gene (MAC_07325), which could inhibit the melanin synthesis, was dramatically up-
regulated in ∆MaAts (Table S3). In addition, eight DEGs involved in oxidative stress were
remarkably down-regulated in ∆MaAts, such as the phospholipase A-2-activating protein
gene (MAC_00293), quinone oxidoreductase gene (MAC_02039), 6-phosphogluconate dehy-
drogenase, NAD-binding protein gene (MAC_01012), a putative ankyrin-repeat-containing
protein gene (MAC_01774), and so on. Two DEGs, the guanyl-specific ribonuclease F1 gene
(MAC_01777) and sugar transporter family protein gene (MAC_04267) related to salt stress
were down-regulated in ∆MaAts. Furthermore, eleven DEGs related to other stresses
in ∆MaAts, such as the cysteine synthase K/M:Cysteine synthase B gene (MAC_00603)
and the transporter-like protein gene (MAC_04282) involved in aluminum tolerance in
Arabidopsis. Thus, the absence of MaAts reduced the tolerances to UV-B irradiation and
heat-shock, owing to the alteration of the transcription levels of genes involved in melanin
synthesis, cell wall integrity, and tolerances to various stresses.

4. Discussion

Sulfatases are commonly divided into three classes: type I, type II, and type III sulfa-
tases [31]. They can also hydrolyze the sulfate esters, which are widespread in nature, to
generate a source of sulfur for growth in many microorganisms [30]. To date, the research of
sulfatase largely focuses on type I sulfatase in bacteria and humans [33,40,53], while there is
a little information about type III sulfatase. Ats, an alkylsulfatase, belongs to type III sulfa-
tases and can hydrolyze the primary alkyl sulfate [31]. However, the roles of alkylsulfatase
in a biological control fungus are still unclear. In this study, the roles of the alkylsulfatase
gene MaAts were characterized in the model entomopathogenic fungus M. acridum. The



J. Fungi 2022, 8, 270 10 of 14

results showed that the disruption of MaAts delayed the germination and the conidiation,
while the conidial yield and fungal virulence were not affected. Interestingly, the conidial
tolerances to UV-B irradiation and heat-shock were significantly impaired, which has not
been reported before in other fungi. According to the DGE data, MaAts might affect the
conidial tolerances to UV-B irradiation and heat-shock by influencing the transcriptional
levels of some genes related to melanin synthesis, cell wall integrity, and tolerances to
various stresses in M. acridum.

During the applications of mycopesticides in the field, many natural abiotic factors, es-
pecially UV irradiation and heat-shock, directly affect the effectiveness of fungal biocontrol
agents [15,18]. In addition, the conidial tolerances to UV-B irradiation and high temperature
are also served as the important indicators of the conidial quality during the industrial
production of mycopesticides [54]. In this study, the results showed the loss of MaAts
resulted in significantly reduced conidial tolerances to UV-B irradiation and heat-shock.
Accordingly, the DGE data showed that the expression levels of some genes involved in
fungal tolerances to different stresses were significantly changed in ∆MaAts compared to
WT. The gene for C2H2 finger domain protein (MAC_07727), which was directly related
to the response to cold, drought, and heat stresses in rice [55], was significantly down-
regulated in ∆MaAts. The ROS levels in the fungal cell would rise after treatment with UV
irradiation [16]. Among the DEGs, the ThiJ/PfpI family protein gene (MAC_08673), which
was involved in the tolerance to ROS and specifically H2O2 and superoxide radicals in
Candida albicans [56], were significantly down-regulated in ∆MaAts, suggesting that the
∆MaAts strain was more vulnerable to UV irradiation than the WT strain. Furthermore, a
β-glucosidase gene (MAC_00623), which was involved in the thermotolerance of Pyrococcus
furiosus [57], was significantly changed in ∆MaAts. Many reports have demonstrated that
melanin synthesis and cell wall organization were both closely involved in fungal stress
tolerances [58–61]. The PQQ-repeat-containing protein gene (MAC_07325), which could
inhibit the melanin synthesis in murine [62], was dramatically up-regulated in ∆MaAts.
In addition, ten cell wall-associated protein genes (MAC_06774 [63], MAC_00567 [64],
MAC_01213 [65], MAC_01513 [66], MAC_02366 [67], MAC_02951 [68], MAC_04850 [69],
MAC_06773 [70], MAC_00235 [71], and MAC_04881 [69]) were significantly down-regulated
in ∆MaAts, which possibly resulted in a decrease in stress tolerances of M. acridum. The
gene for feruloyl esterase B precursor (MAC_05632), which was involved in the cell
wall composition and structure of plants [72], was significantly up-regulated in ∆MaAts.
The vacuolar protein-sorting protein BRO1 gene (MAC_06773) was dramatically down-
regulated in ∆MaAts, which was related to the regulation of secondary wall biosynthesis in
Arabidopsis [70].

The loss of MaAts delayed germination and conidiation compared to the control
strains. Consistently, some genes involved in germination, conidiation and fungal growth
were down-regulated in ∆MaAts from the DGE data, such as the GmcA gene for the
glucose-methanol-choline oxidoreductase (MAC_02934), which was involved in conidial
germination and conidiation in Aspergillus nidulans [73]. Meanwhile, the fungal specific
transcription factor gene StuA (MAC_06675) related to the growth of A. nidulans [74] was
also down-regulated. In addition, the gene for the kelch repeat protein (MAC_09450),
which could regulate cell apoptosis processes in Drosophila [75], was also down-regulated.

In summary, our results showed that the deletion of MaAts significantly decreased the
conidial tolerances to UV-B irradiation and heat-shock. MaAts and some DEGs involved
in fungal stress tolerances may be candidate genes to be adopted to improve the stress
tolerances of mycopesticides. In the future, clarifying the roles of the DEGs identified in
this study may be conducive to further reveal the molecular mechanisms of the fungal
tolerances to UV-B irradiation and heat-shock.
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from different fungal strains were cut with Nru I and Xho I. The probe was cloned from 5′ genomic
sequence of MaAts by PCR using the primers of MaAts-PF/MaAts-PR. (C) Colonies of each strain
on 1/4 SDAY plates at 28°C for 6 days. Figure S2: Bioassays. (A) Survival of locusts after topical
inoculation; paraffin oil was used as control. (B) The mean 50% lethal time (LT50) of fungal strains
for topical inoculation; ns indicates p > 0.05. Figure S3: Verification of the DGE data via qRT -PCR.
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∆MaAts vs. WT involved in stress tolerances and cell wall components.
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