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Thermophilicity is a very important property of proteins, as it sometimes determines

denaturation and cell death. Thus, methods for predicting thermophilic proteins and

non-thermophilic proteins are of interest and can contribute to the design and engineering

of proteins. In this article, we describe the use of feature dimension reduction technology

and LIBSVM to identify thermophilic proteins. The highest accuracy obtained by

cross-validation was 96.02% with 119 parameters. When using only 16 features,

we obtained an accuracy of 93.33%. We discuss the importance of the different

characteristics in identification and report a comparison of the performance of support

vector machine to that of other methods.

Keywords: support vector machine, thermophilic proteins, feature dimension reduction, amino acid, feature

selection

INTRODUCTION

Temperature is a critical condition for life. Proteins are less stable than other macromolecules,
and temperature changes can easily lead to protein denaturation, which can lead to cell death
(Kumar et al., 2000). Thus, it is important to develop a highly efficient method for predicting
protein thermophilicity, which will contribute to the design of stable proteins. The properties of
many proteins are related to their thermal stability. Studies have shown that the thermal stability
of proteins is influenced by ion number, salt bridge presence, amino acid composition (AAC),
dipeptide composition (DPC), and other factors (Sadeghi et al., 2006; Wang H. et al., 2018; Yin
et al., 2020). Zhang and Fang (2006), Li et al. (2018), and Wang Y. et al. (2020) found significant
differences in the presence of some dipeptides between thermophilic and mesothermal proteins. In
addition, Gromiha et al. (1999) found that protein stability was associated with the balance between
packing and solubility.

Many studies have been conducted on methods of distinguishing thermophilic proteins from
normal-temperature proteins based on protein properties. Liang et al. (2005) proposed an amino
acid coupling model with strong statistical ability to distinguish between thermophilic proteins and
mesophilic proteins. LogitBoost Classifier and 20 features were used to distinguish thermophilic
proteins by Zhang and Fang (2007) which achieved an overall classification accuracy reaching
88.9%. Montanucci et al. (2008) applied support vector machine (SVM) to investigate the
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impacts of mutations on the thermal stability of proteins,
and with jackknife cross-validation, they achieved a prediction
accuracy of 88%. Recently, Lin and Chen (2011) used feature
selection technique and SVM with 30 parameters to predict
thermotropic proteins, and the overall accuracy reached 93.27%.
These methods have achieved good accuracy, but there remains
room for improvement in the number of features used and
prediction performance.

In this work, we used the data set of Lin and Chen
(2011) after eliminating redundancy to distinguish between
thermophilic proteins and non-thermophilic proteins. After
feature extraction, MRMD2.0 was applied for feature selection
and dimension reduction, and LIBSVM was used to obtain the
optimal parameters of the model and establish the prediction
model. Finally, from the results of cross-validation, both the
number of features and the prediction accuracy were improved;
the overall prediction accuracy with only 16 features in AAC
was increased to 93.33%, and the highest overall accuracy,
attained with 119 parameters, reached 96.02%. In addition,
we analyzed the importance of features and demonstrated the
strong performance of SVM by comparing this method with
other methods.

MATERIALS AND METHODS

Data Sets
In this article, we conducted prediction experiments using two
groups of data, namely, a group of thermophilic protein data
and a group of non-thermophilic protein data. The data sets
were collected by Lin and Chen (2011). Generally, thermophilic
proteins and non-thermophilic proteins derive from the
corresponding biosome, and optimum growth temperature is
the key feature used to distinguish thermophilic and non-
thermophilic proteins. Therefore, we used 60◦C as the minimum
optimum growth temperature for thermophilic proteins and
30◦C as the maximum optimum growth temperature for
non-thermophilic proteins to avoid the problem of protein
denaturation. As a result, 136 prokaryotic genomes conforming
to the standard were selected, and their protein sequences were
obtained from the Universal Protein Resource.

Next, we screened the protein sequences to increase the
quality of the data sets. The filtering process employed the
following criteria: (1) the sequence must have manual annotation
and evaluation; (2) the protein sequence cannot include
ambiguous residue; (3) the sequences cannot be fragments of
other proteins; and (4) the sequence cannot be deduced from
prediction or homology. After the above screening process,
we obtained a total of 1,250 non-thermophilic proteins and
1,329 thermophilic proteins. Next, highly similar sequences were
removed by employing the CD-HIT program, resulting in 793
non-thermophilic proteins and 915 thermophilic proteins.

Feature Extraction
Before protein prediction, the features of the protein sequences
were extracted to construct the feature vectors (Figure 1). For
this purpose, iFeature was used, which is a utility toolkit based on
python to obtain miscellaneous numerical feature representation

schemes for protein sequences (Chen et al., 2018). When using
iFeature, users can combine various feature clustering, feature
selection, and dimension reduction algorithms to promote the
analysis of feature importance and model training. iFeature has
been widely tested to ensure the validity of our calculations to
further ensure the strength of our work.

We used iFeature to extract the features of the protein
sequences from our data set, including AAC (Bhasin and
Raghava, 2004; Pan et al., 2018; Chen et al., 2019b; Liu et al.,
2019; Shen et al., 2019b; Tang et al., 2019; Li Y. H. et al.,
2020), C/T/D composition (CTDC), C/T/D transition (CTDT),
conjoint triad (CTriad), dipeptide deviation from the expected
mean (DDE) (Saravanan and Gautham, 2015), DPC (Saravanan
and Gautham, 2015; Chen et al., 2019a), tripeptide composition
(TPC), composition of k-spaced amino acid pairs (CKSAAP),
grouped dipeptide composition (GDPC), and grouped tripeptide
composition (GTPC). The following is a concise explanation of
the feature extraction protocol. In all of the following formulas, n
denotes the length of the protein sequence.

AAC

AAC refers to the frequency of each amino acid in a
protein or peptide sequence. There are 20 kinds of naturally
occurring amino acids, namely, ACDEFGHIKLMNPQRSTVWY,
and their frequencies in a sequence can be calculated by the
following formula:

f (i) =
n(i)

n
, i ∈ {A,C,D,E, F, . . . ,W,Y}

where n(i) refers to the number of occurrences of amino acid i.

DPC

DPC refers to the frequency of dipeptide combinations in a
protein or peptide sequence, which yields 400 descriptors (Cheng
J. H. et al., 2018; Tang et al., 2018). It is defined by the
following formula:

f
(

x, y
)

=
nxy

n− 1
, x, y ∈ {A,C,D,E, F, . . . ,W,Y}

where nxy refers to the number of dipeptides denoted by amino
acids x and y.

TPC

TPC refers to the frequency of tripeptide combinations in a
protein or peptide sequence, which yields 8,000 descriptors
(Tan et al., 2019; Zhu et al., 2019). It is defined by the
following formula:

f
(

x, y, z
)

=
nxyz

n− 2
, x, y, z ∈ {A,C,D,E, F, . . . ,W,Y}

where nxyz refers to the number of tripeptides denoted by amino
acid combination x, y, and z.

DDE

The DDE eigenvector is constructed by calculating three
parameters: dipeptide composition (Dc), theoretical mean value
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FIGURE 1 | Study flowchart. (I) The original protein sequence is input for feature extraction. (II) A feature extraction algorithm is used to obtain feature descriptors of

each protein. (III) MRMD2.0 is used to rank the importance of features and select features. (IV) Support vector machine is used for parameter optimization and training

model establishment. (V) Three parameters are used to evaluate the performance of the model: sensitivity (SE), specificity (SP), and accuracy (ACC).

(Tm), and theoretical variance (Tv). These three parameters and
DDE are calculated as follows:

Dc

(

x, y
)

=
nxy

n− 1
, x, y ∈ {A,C,D,E, F, . . . ,W,Y}

where nxy refers to the number of dipeptides displayed by amino
acid combination x and y.

Tm

(

x, y
)

=
Cx

Cn
×

Cy

Cn
, x, y ∈ {A,C,D,E, F, . . . ,W,Y}

where Cx and Cy are the number of codons encoding the first and
second amino acids, respectively, in dipeptide “x, y,” and Cn is the
total number of possible codons remaining after removing the 3
terminated codons.

Tv

(

x, y
)

=
Tm

(

x, y
)

(1− Tm

(

x, y
)

)

n− 1
,

x, y ∈ {A,C,D,E, F, . . . ,W,Y}

DDE
(

x, y
)

=
Dc

(

x, y
)

− Tm

(

x, y
)

√

Tv

(

x, y
)

GDPC

The GDPC encoding is a change of the DPC descriptor that
includes a total of 25 descriptors, defined as follows:

f
(

x, y
)

=
nxy

n− 1
, x, y ∈

{

g1, g2, g3, g4, g5
}

where nxy refers to the number of dipeptides denoted by amino
acid groups x and y.

GTPC

The GTPC is another change of TPC descriptor, which consists
of a total of 125 descriptors and is defined as follows:

f
(

x, y, z
)

=
nxyz

n− 2
, x, y, z ∈

{

g1, g2, g3, g4, g5
}

where nxyz refers to the number of tripeptides denoted by amino
acid combination x, y, and z.

CTD

CTD features represent the structural or physicochemical
distribution patterns of amino acids in protein or peptide
sequences (Dubchak et al., 1999; Tang et al., 2020). Thirteen
types of physicochemical properties were used to calculate these
characteristics, including hydrophobicity, standardized van der
Waals volume, solvent accessibility, polarity, secondary structure,
polarizability, and charge. These descriptors were computed by
the following procedures: (1) the amino acid sequences were
changed into residues with certain structural or physicochemical
properties; (2) according to the main cluster of Tomii and
Kanehisa (1996) amino acid index, the 20 amino acids were
divided into 3 groups according to 7 physicochemical properties.

CTDC

After all 20 amino acids are divided into three groups, the
composition descriptor is composed of 3 values, which are the
total percentages of group 1, group 2, and group 3 of the protein
sequences. The descriptor is calculated as follows:

C (x) =
n(x)

n
, x ∈ {group 1, group 2, group 3}

where n(x) refers to the number of occurrences of amino acid x
in the encoded sequence.

CTDT

The transformation descriptor T also contains three values. The
transition from group 1 to group 2 is the percentage frequency
of a residue from group 1 followed by a residue from group 2
or a residue from group 2 followed by a residue from group
1. Transformations between group 2 and group 3 and between
group 3 and group 1 are defined in a similar manner. The
transformation descriptor can be calculated as follows:

T
(

x, y
)

=
n

(

x, y
)

+ n
(

y, x
)

n− 1
,

x, y ∈ {
(

group 1, group 2
)

,
(

group 2, group 3
)

, (group 3, group 1)}

where n
(

x, y
)

and n
(

y, x
)

refer to the numbers of dipeptides
denoted by “x, y” and “y, x,” respectively, in the protein sequence.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 3 October 2020 | Volume 8 | Article 584807

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Guo et al. Discrimination of Thermophilic Proteins

Feature Selection
Feature selection is an important step in the process of protein
classification (Figure 1) (Feng et al., 2017; Cheng, 2019; Liu,
2019; Yang W. et al., 2019; Zheng et al., 2019; Wang M. et al.,
2020; Yang et al., 2020b; Zhao et al., 2020). MRMD2.0 is a very
deep feature selection method, which uses the concept of the
PageRank algorithm and is combined with methods such as
analysis of variance (Scheffe, 1960), minimal redundancy and
maximal relevance (Ding and Peng, 2005), maximal information
coefficient, and least absolute shrinkage and selection operator
(Xu et al., 2017). As a result, MRMD2.0 integrates seven
different feature ranking algorithms with PageRank algorithm
and detects optimized dimensionality with forward adding
strategy. PageRank algorithm was originally used to attach
weight value to each target page: pages with large weight values
are displayed in the front, whereas pages with small weight
values are displayed in the back. Similarly, MRMD2.0 uses
PageRank algorithm and several other feature ranking algorithms
to generate a corresponding weight value for each feature to form
a ranking of the importance of all features.

In this study, MRMD2.0 was used to select features and
reduce the dimension of the obtained features to improve the
feature prediction ability. By treating each group of features in
the previous step with MRMD2.0, we obtained the combination
of features with the highest classification accuracy and the
importance ranking of each group of features. Generally,
the combination of features with the highest classification
accuracy has fewer dimensions, so we refer to this process
as feature dimension reduction. Based on the classification
performance, we ranked the group of features. After combining
the features with good classification performance, we applied
MRMD2.0 to select them again. Finally, after comparing the
results, we obtained the combination of features with the best
classification ability.

In addition, we applied MRMD2.0 to obtain the importance
ranking of features. On the rank list, higher-ranked features are
more predictive; accordingly, we identified the most important
features for the classification of thermophilic proteins and
non-thermophilic proteins. The resulting information enhances
our knowledge of the properties of proteins and can aid the
construction of stable proteins in protein engineering.

LIBSVM
In this study, LIBSVM was used to construct models and make
predictions (Figure 1). LIBSVM is an effective SVM pattern
recognition and regression software package designed by Chih-
Jen Lin, a professor at Taiwan University, and has been applied
in many fields (Lin et al., 2012; Liu et al., 2012, 2017; Ding et al.,
2017; Zeng et al., 2017; Wei et al., 2018, 2019; Xu et al., 2018b,c;
Cheng et al., 2019b; Deng et al., 2019; Liang et al., 2019; Shen
et al., 2019b,a; Su et al., 2019; Yang H. et al., 2019; Li F. et al.,
2020; Wang H. et al., 2020; Yang et al., 2020a; Zhang et al., 2020).
Before training SVM on a problem, the parameters must be
specified (Jiang et al., 2013; Zhao et al., 2015, 2017). We selected
the best parameters, C and g, through a simple tool provided
by LIBSVM for evaluating a grid of parameters. The accuracy
for each parameter setting is obtained in LIBSVM, allowing

the parameters with the highest cross-validation accuracy to be
determined. Next, we trained the whole data set with the best
parameters C and g to obtain the prediction model. Finally, we
tested and predicted our data set with the obtained model.

Performance Measurement
We used three commonly used indicators to evaluate model
performance: sensitivity (SE), specificity (SP), and accuracy
(ACC) (Figure 1) (Wang et al., 2010; Wei et al., 2017a,b; Zhang
et al., 2018; Cheng et al., 2019a; Ding et al., 2019a; Junwei et al.,
2019; Liang et al., 2019; Liu and Li, 2019; Tian et al., 2019; Jia
et al., 2020; Liu and Chen, 2020; Li J. et al., 2020; Lv et al., 2020;
Wang Z. et al., 2020). They are described as follows:

SE =
TP

TP+ FN

SP =
TN

TN+ FP

ACC =
TP+ TN

TP+ FN+ TN+ FP

where TN, TP, FN, and FP refer to the numbers of correctly
predicted non-thermophilic proteins, correctly predicted non-
thermophilic proteins, incorrectly predicted non-thermophilic
proteins, and incorrectly predicted thermophilic proteins,
respectively. SE and SP indicators measure the predictive ability
of a model in positive and negative situations, respectively, and
ACC is used to evaluate the overall performance of a prediction
model (Wang et al., 2008; Zou et al., 2017a,b; Cheng L. et al., 2018;
Wang G. et al., 2018; Xue et al., 2018; Xu et al., 2018a, 2019; Ding
et al., 2019b; Shen et al., 2019b; Yang, 2019; Zeng et al., 2019; Fu
et al., 2020; Hong et al., 2020).

RESULTS AND DISCUSSION

Identification of Protein Thermostability
The results of feature selection by using MRMD2.0 are
shown in Table 1. Among them, features with good
classification performance include AAC, DPC, CTDC, and
dipeptide deviation from the expected mean. However,
although the classification ACC of dipeptide deviation
from the expected mean after dimension reduction reached
85.6%, it had 365-dimensional features. Considering the
excessive dimension and the unexceptional performance,
only AAC, DPC, and CTDC were subsequently combined
for classification.

Next, based on LIBSVM and grid parameter optimization, we
used various combinations of these three features to construct
models and perform cross-validation for our data sets. The results
are shown in Table 2. The overall ACC of three schemes is higher
than that of Lin and Chen (2011) (93%).

Initially, we used AAC with 16 dimensions alone to build
a prediction model for the data set, achieving an overall ACC
rate of 93.33% through cross-validation, which is slightly higher
than that of Lin and Chen (2011). In addition, Zhang and Fang
(2006) and Gromiha and Suresh (2010) used all 20 amino acids
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TABLE 1 | The results of feature selection by using MRMD2.0.

Feature Dimensions Accuracy (%)

AAC 16/20 87.94

DPC 103/400 87.00

DDE 365/400 85.60

CTDC 33/39 85.01

CTDT 39/39 80.50

CTriad 338/343 79.80

CKSAAP 143/150 79.04

GTPC 107/125 78.63

GDPC 13/25 78.57

TPC 1,008/1023 77.11

The two numbers in the second column of the table are the number after dimension

reduction and the number before dimension reduction.

TABLE 2 | The results of classification using SVM and various feature

combinations.

Feature combination SE (%) SN (%) Accuracy (%)

The method of Lin and Chen (2011) 93.77 92.69 93.27

AAC (16) 93.44 93.19 93.33

AAC (16) + CTDC (33) 93.77 92.81 93.33

AAC (16) + DPC (103) 95.85 96.22 96.02

The numbers in parentheses in the first column of the table represent the number of

arguments to the feature preceding the parentheses.

TABLE 3 | The results of classification accuracy using LIBSVM and various

combinations of important features.

Dimension Feature Accuracy (%)

1 K 76.41

2 K + D 77.50

3 K + D + LK 78.29

A plus sign in the second column of the table indicates the use of these characteristics

for model training and classification. For example, “K + D” indicates the modeling and

classification of the data sets with the two-dimension characteristics K and D.

composition to predict the thermostability of protein, and their
overall ACC was 90.5 and 89%, respectively. Furthermore, Wang
and Li (2014) enhanced the ACC to 95% by selecting 9 AAC
and 38 DPC using a genetic algorithm. In contrast, the scheme
used only 16 parameters, but the ACC reached 93.33%, which is
fewer than the dimensions used in previous studies. The results
show that AAC plays an important role in the identification of
thermophilic proteins.

The top two features in Table 3 were AAC and DPC.
The model constructed with 16 parameters of AAC and 103
parameters of DPC achieved the highest overall ACC of 96.02%.
The SE and SP of this method were 95.85 and 96.22%,
respectively, which indicates that the predictive ability of this
model in both positive and negative situations is excellent.

In addition, we used the combination of AAC with 16
dimensions and CTDC with 33 dimensions to build a prediction
model and obtained the same overall ACC as the first model.
However, this second model had higher SE and lower SP than the
first model, indicating that it was slightly inferior to the model
built with 16 dimensions of AAC.

Feature Importance
We aimed to identify the most important features of the method
with 119 parameters that can achieve the highest ACC and
analyze them. To assess feature importance, first, we used
MRMD2.0 to rank all 119 features by importance. We found
that the top three features were K, D, and LK (Feature K is the
percentage of lysine in the amino acid sequence, feature D is
the percentage of aspartic acid in the amino acid sequence, and
feature LK is the percentage content of the dipeptide consisting
of leucine and lysine in the amino acid sequence). These three
features are arguably the most predictive among the 119 features
for the classification of thermophilic proteins.

Next, to obtain the classification performance of the above
features, we used one-dimensional (K), two-dimensional (K and
D), and three-dimensional (K, D, and LK) features to classify our
data set based on LIBSVM. The results are shown in Table 3.

As seen from Table 3, the classification ACC of the K
feature alone reached 76.41%, whereas the ACC achieved with
K combined with D and LK was only slightly greater. To better
analyze the classification ability of these three important features,
we constructed a violin diagram, scatter diagram, and 3D scatter
diagram for the 1-, 2-, and 3-dimension features. The results are
shown in Figure 2.

As seen from Figure 2A, the K value of the thermophilic
proteome is concentrated ∼0.08, whereas the K value of the
non-thermophilic proteome is concentrated∼0.03. These results
indicate that the K feature can well distinguish thermophilic
proteins from non-thermophilic proteins, a finding of great
significance for the identification of the thermophilic properties
of proteins. All three panels reveal obvious differences in the
distribution pattern between the two data sets, which indicates
that these features have strong recognition ability and good
performance in distinguishing thermophilic proteins from non-
thermophilic proteins, as shown in Table 3.

Comparison With Other Classification
Methods
To reveal the advantage of our method, we applied six other
classification methods to train our data sets based on the
Waikato environment for knowledge analysis (Weka) tool
(Witten and Frank, 2002): logistic, random forest, BayesNet,
logistic model trees (LMTs), J48, and reduced error pruning
tree (REPTree).

We used the combination with the highest overall ACC
in this article (16 features in AAC and 103 features in
DPC) as the input, and we used the above classifiers to
predict the data set to obtain the SE, SP, and ACC of
each method. To ensure a robust comparison, we also
used cross-validation to predict the data set. By comparing
the performance of different methods, the performance of
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FIGURE 2 | Visualization of the ability of important features to classify thermophilic and non-thermophilic proteins. (A) is a violin diagram of the K feature. (B) is a

scatter diagram of the K feature and D feature. (C) is a 3D scatter diagram of the K, D, and LK features. K is the percentage of lysine in the amino acid sequence, D is

the percentage of aspartic acid in the amino acid sequence, and LK is the percentage content of the dipeptide consisting of leucine and lysine in the amino acid

sequence.

TABLE 4 | The performance of different classification methods in the prediction of

the data sets.

Classification method SE (%) SN (%) Accuracy (%)

SVM (this article) 95.85 96.22 96.02

LMT 92.35 90.29 91.40

Logistic 91.15 88.90 90.11

Random Forest 91.69 87.51 89.75

BayesNet 88.08 86.25 87.24

REPTree 83.60 84.62 84.07

J48 83.50 80.33 82.03

different classifiers was evaluated. The prediction results
of each method applied to the data set are shown in
Table 4.

It can be seen from Table 4 that the SVMwe used in this study
achieved the best performance; the SE, SP, and ACC of the other
methods were all lower than those of the SVM method of this
article. To visualize the data, we constructed a cluster histogram
of the performance of the different methods, shown in Figure 3.

The advantage of using SVM to predict data sets is apparent
from the histogram.

CONCLUSION

In this article, we distinguished 915 thermophilic proteins and
793 non-thermophilic proteins. We applied iFeature to extract
the features of the protein sequences. MRMD2.0 was used to
reduce the dimensions of features and select the ones that
performed the best. LIBSVMwas used to optimize the parameters
and establish the prediction model. As a result, the overall ACC
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FIGURE 3 | The performance of the method described in this article and other six predictors when the input is 16 parameters of amino acid composition and 103

parameters of dipeptide composition. The performance metrics are sensitivity (SE), specificity (SP), and accuracy (ACC).

was improved, which reached 96.02% under cross-validation.
Furthermore, we constructed a prediction model by LIBSVM
with 16 parameters, and the ACC determined by cross-validation
was 93.33%. In addition, we found that the K feature played a
significant role in the identification. Finally, we demonstrated the
advantage of SVM by comparing its performance with that of
othermethods.We aim to analyze information, such as the family
of misclassified proteins, to optimize our method in the future.
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