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Abstract

Motivation: Owing to advanced DNA sequencing and genome assembly technology, the number of species with
sequenced genomes is rapidly increasing. The aim of the recently launched Earth BioGenome Project is to sequence
genomes of all eukaryotic species on Earth over the next 10 years, making it feasible to obtain genomic blueprints of
the majority of animal and plant species by this time. Genetic models of the sequenced species will later be subject
to functional annotation, and a comprehensive molecular network should facilitate functional analysis of individual
genes and pathways. However, network databases are lagging behind genome sequencing projects as even the
largest network database provides gene networks for less than 10% of sequenced eukaryotic genomes, and the
knowledge gap between genomes and interactomes continues to widen.

Results: We present BiomeNet, a database of 95 scored networks comprising over 8 million co-functional links,
which can build and analyze gene networks for any species with the sequenced genome. BiomeNet transfers func-
tional interactions between orthologous proteins from source networks to the target species within minutes and
automatically constructs gene networks with the quality comparable to that of existing networks. BiomeNet enables
assembly of the first-in-species gene networks not available through other databases, which are highly predictive of
diverse biological processes and can also provide network analysis by extracting subnetworks for individual bio-
logical processes and network-based gene prioritizations. These data indicate that BiomeNet could enhance the ben-
efits of decoding the genomes of various species, thus improving our understanding of the Earth’ biodiversity.

Availability and implementation: The BiomeNet is freely available at http://kobic.re.kr/biomenet/.

Contact: bulee@kribb.re.kr or insuklee@yonsei.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Advances in DNA sequencing and genome assembly technology pro-
moted rapid increase in the number of species with sequenced gen-
ome. By April 2019, the Genome OnLine database (Mukherjee
et al., 2019) reported sequenced genomes for more than 134 000 cel-
lular organisms, including over 5000 eukaryotic species. Annotation
of every sequenced genome should be followed by functional anno-
tation of individual genes and pathways, and construction of bio-
logical networks significantly facilitates functional analysis of
genomes by disclosing interactions among different genes. However,
creation of network databases has been lagging far behind genome

projects and currently, the largest network database, STRING v11
(Szklarczyk et al., 2019), provides gene networks for not more than
500 eukaryotic species, which is less than 10% of all sequenced eu-
karyote genomes. Considering a recent launch of the Earth
BioGenome Project (Lewin et al., 2018) aiming to sequence genomes
of all eukaryotic species on Earth in the next 10 years, it can be
expected that the knowledge gap between genomes and interac-
tomes will continue to widen. This problem may be solved by public
computational pipelines that can automatically construct gene net-
work models for every sequenced genome.

Here, we present BiomeNet (http://kobic.re.kr/biomenet/), a
database that enables construction and analysis of gene networks
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for any sequenced genome in the Earth’s biome. The workflow of
BiomeNet is summarized in Figure 1. Users can submit protein
sequences of target species in the FASTA format and the BiomeNet
‘Network Builder’ server extracts functional interactions between
orthologous genes from 95 source networks comprising �8 million
links, which have been scored and evaluated in 18 species (five ani-
mals, six plants, five bacteria and two fungi). By using distributed
computing and a fast homology search algorithm, BiomeNet can re-
turn a newly constructed gene network for most species in a few
minutes. Furthermore, the BiomeNet ‘Network Analyzer’ server
provides two network-based tools for functional analysis of the
obtained network: (i) subnetwork extraction for individual inferred
Gene Ontology biological processes (GO-BP) (The Gene Ontology,
2017) and KEGG pathways (Kanehisa et al., 2017) and (ii)
network-based gene prioritization for the user-input gene set (Wang
and Marcotte, 2010).

We assessed the networks automatically constructed by BiomeNet
for various animal and plant species for prediction of biological pro-
cess annotations by AgriGO v2 (Tian et al., 2017) and found that
these networks were comparable in quality with those provided by
the STRING database. Furthermore, we showed that first-in-species
gene networks assembled by BiomeNet could effectively retrieve
genes annotated for the same AgriGO biological processes. We also
demonstrated feasibility of candidate gene enrichment by BiomeNet-
based gene prioritization on an example of drought responses in green
foxtail, a grass species with sequenced genome for which a functional
network model had not been yet available.

2 Materials and methods

2.1 Network construction using interologs from

95 co-functional source networks
BiomeNet builds a network of user-input proteins by transferring
orthologous interactions (also known as interologs) (Yu et al., 2004)
from co-functional network sources. Therefore, the quality of the
newly constructed networks is largely determined by the accuracy
and completeness of the source networks. The current version of
BiomeNet contains a total of 95 source networks for 18 species
(Supplementary Table S1): 5 animal species, including human
(Hwang et al., 2019), mouse (Kim et al., 2016), worm (Cho et al.,
2014), zebra fish (Shim et al., 2016) and fly (Shin et al., 2015), six
plant species, including Arabidopsis (Lee et al., 2015b), rice (Lee
et al., 2015a), soybean (Kim et al., 2017a), tomato (Kim et al.,
2017b), maize (Lee et al., 2019b) and barley (unpublished), five bac-
terial species, including Escherichia coli (Kim et al., 2015b),
Klebsiella pneumoniae (Lee et al., 2019a, b), Pseudomonas aerugi-
nosa (Hwang et al., 2016), Staphylococcus aureus (Kim et al.,
2018), Xanthomonas oryzae pv. Oryzae (Kim et al., 2019b) and
two fungal species such as Cryptococcus neoformans (Kim et al.,
2015b) and Saccharomyces cerevisiae (Kim et al., 2014). Individual

networks were inferred from distinct types of omics data (Shim
et al., 2017), including: (i) co-citation of two genes in PubMed
articles, (ii) co-expression of two genes in various conditions, (iii)
associations by domain profiles of protein sequences (Shim et al.,
2019; Shim and Lee, 2016), (iv) associations by phylogenetic
profiles (Shin and Lee, 2015, 2017), (v) associations by gene neigh-
borhood (Kim and Lee, 2017; Shin et al., 2014), (vi) protein–protein
interactions determined by high-throughput experimental assays,
collected from literature, or inferred from protein tertiary structure
(Aloy and Russell, 2003) and (viii) association by genetic interaction
profiles (Kim et al., 2019a). We suggest the following default selec-
tion of source networks because it generally enables to achieve the
best trade-off between model quality and computational efficiency:
use all 95 source networks for building plant gene networks; use ani-
mal, bacterial and fungal source networks for building animal or
fungal gene networks and use exclusively bacterial source network
for building bacterial gene networks. We suggested to include source
networks for animals in building plant gene networks, because func-
tional associations between orthologous proteins in animal species
were proven useful to complement the lack of those known for plant
species (Lee et al., 2010, 2019b). Rich information of functional
associations between proteins conserved in single-cell eukaryotic
fungal species generally improve the quality of gene networks for
both animal and plant species. Since not many orthologous proteins
exist between prokaryotes and eukaryotes, we suggested not to use
animal and plant gene networks in building bacterial gene networks
for computing efficiency. However, users may select and use any set
of source networks for their own network construction.

2.2 Fast identification of orthologous functional

interactions
Because molecular functions for cellular processes are evolutionarily
conserved at the protein sequence level, BiomeNet uses orthology re-
lationship between proteins for mapping interologs. After protein
sequences of target species are uploaded by the user, the BiomeNet
server starts searching for homologous proteins among the selected
source species. As more than one protein isomer can be translated
from a single gene, it is desirable to reduce the complexity of
functional hypotheses generated from the final network models.
To this purpose, we recommend using one protein sequence per
gene by modifying the FASTA file to contain a single protein se-
quence (typically the longest isoform) for each gene. BiomeNet web-
site provides a Python code that can select the longest isoform
protein for each gene of the input FASTA file with a given gene
and isoform cross reference table. However, this preprocessing of
input file is not mandatory for running BiomeNet server. For the
identification of homologous proteins, BiomeNet uses a fast
protein alignment algorithm DIAMOND (v. 0.8.24) with sensitive
mode (Buchfink et al., 2015), because DIAMOND-sensitive oper-
ates about 2000 times faster than BLAST with comparable sensitiv-
ity. To further accelerate homology mapping, the BiomeNet server
distributes search jobs for different source networks into individual
central processing unit cores.

We applied BiomeNet for conducting ortholog identification
based on bidirectional best hit (BBH), which allowed identification
of a pair of orthologous proteins with the highest sequence similarity
among proteins encoded by a respective genome. Although the in-
clusion of co-orthologs (in-paralogs) which were duplicated after
speciation is known to improve the sensitivity of analysis in animals
and plants (Dalquen and Dessimoz, 2013), we found that the effect
was marginal for species with many available source networks.
In addition, the identification of co-orthologs was shown to require
hours for computing statistical significance with bootstrapping sam-
pling (Remm et al., 2001). Therefore, BiomeNet uses orthologs iden-
tified by BBH with DIAMOND.

2.3 Network scores and integration
All source networks used by the BiomeNet server are pre-scored by
the log likelihood score (LLS) (Lee et al., 2004), which corresponds
to the logarithmic likelihood of the hypothesis that two connected

Fig. 1. Overview of network building and analysis processes provided by the

BiomeNet web server
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genes belonged to the same biological process. These scores are
based on gold-standard co-functional gene pairs generally compiled
from manually curated annotations for pathways or biological proc-
esses in each source species. It may not be possible to rescore the net-
work for a target species using gold-standard co-functional gene
pairs, because in general, manually curated pathway annotations are
not available for the target species. However, it is reasonable to con-
sider the original likelihood score derived from source networks in
the interpretation and integration of networks for the target species
because the quality of manually curated pathway annotations is not
likely to significantly differ among species.

Since BiomeNet transfers functional interactions from multiple
source networks, identical interactions can be supported by many
sources with different likelihood scores. The likelihood scores from
multiple sources may be efficiently integrated assuming either com-
plete independence or complete correlation among the network
sources. The assumption of complete independence allows naı̈ve
Bayes integration, in which LLSs from multiple sources can be sim-
ply summed up. In contrast, the assumption of complete correlation
allows integration of multiple scores by selecting only one with the
highest likelihood. We compared the two approaches of data inte-
gration with benchmarking of the integrated networks based on the
probability of finding connected genes within the same AgriGO bio-
logical processes (Tian et al., 2017) which are independent from
modeling any of the evaluated networks, and found that integration
by taking the highest score generally resulted in better performance.
Therefore, BiomeNet integrates scores from multiple source net-
works using the interaction with the highest likelihood score.

3 Results

3.1 Networks constructed by BiomeNet and the STRING

database have comparable quality
BiomeNet builds gene networks for target species via interolog-
based network transfer (Yu et al., 2004). As it is a relatively simple
method of network inference, we compared the quality of networks
constructed by BiomeNet and STRING v11 (Szklarczyk et al.,
2019), which performs data training and integration for each spe-
cies. The evaluation was based on the probability of finding con-
nected genes within the same AgriGO biological processes (Tian
et al., 2017). For the comparison between BiomeNet- and STRING-
constructed networks, we chose two animal and two plant species
that have gene networks by STRING and AgriGO biological process
annotations: cattle (Bos taurus), grape (Vitis vinifera), wild pig (Sus
scrofa) and potato (Solanum tuberosum). Analysis of gene networks
for the four species constructed by BiomeNet and STRING revealed
their comparable quality (Fig. 2). We also assessed the ability of the
networks to retrieve genes for the same AgriGO biological processes
based on the area under the receiver operating characteristic curve
(AUROC) until recall of 1% of false positive results [false positive
rate (FPR) < 0.01]. The data indicated that networks constructed by
BiomeNet were significantly better in predicting AgriGO biological
processes in cattle and grape than those built by STRING
(P<0.0001 and P<0.01, respectively, by Wilcoxon signed rank
test; Fig. 2, inset). These data suggest that the networks automatical-
ly constructed by the BiomeNet server can provide the quality and
predictive power for biological processes comparable to those con-
structed by STRING based on training genomics data for each
species.

3.2 First-in-species gene networks built by BiomeNet

are highly predictive for biological processes in

animals and plants
Considering the comparable performance of BiomeNet- and
STRING-constructed networks, we expected a reasonable quality of
networks for species not yet featured in STRING. Although
STRING is the most comprehensive network database, it contains
information for only � 10% of all eukaryotic species with
sequenced genomes; therefore, the real benefit provided by

BiomeNet may be the prediction of gene networks for animals and
plants not yet featured in public network databases. We tested the
quality of first-in-species gene networks constructed by BiomeNet
for tobacco (Nicotiana tabacum), green foxtail (Setaria viridis),
sheep (Ovis aries) and Atlantic salmon (Salmo salar), which have
AgriGO biological process annotations and found that BiomeNet
could construct gene networks covering a large proportion of
protein-coding genes in these species (33.6%, 58.2%, 78.9%,
29.3%, respectively; Fig. 3). Benchmarking analysis of the ability to
retrieve genes for AgriGO biological processes using AUROC
(FPR < 0.01) indicated that the gene networks built by BiomeNet
had a substantially higher predictive power compared to those
assembled by random chance (Fig. 3, inset). These findings suggest
that BiomeNet can provide highly predictive gene networks for any
species with the sequenced genome.

During the study, we obtained gene networks for four animal
species and four plant species with the number of genes from 22 118
(cattle) to 97 555 (Atlantic salmon). The results revealed that the
BiomeNet server could build a network for species with less than
60 000 genes in 2 min and for that with 97 555 genes (Atlantic sal-
mon)––in 5 min (Fig. 4), indicating that BiomeNet could perform
gene networking for most species within a few minutes.

3.3 BiomeNet provides subnetworks for inferred

biological processes
BiomeNet was designed to serve not only for the construction of co-
functional gene networks in target species but also as an interface
for the users to explore functional modules of interest, which are
often represented as subnetworks. To demonstrate the latter feature
of BiomeNet, we applied it to listing and visualization of GO-BP
subnetworks (The Gene Ontology, 2017) and KEGG pathways

Fig. 2. Comparison of networks constructed using BiomeNet and STRING based on

prediction of AgriGO annotation. Quality assessment of networks assembled by

BiomeNet and STRING was based on the probability of finding two co-functional

genes within the same agriGO biological process terms and genome coverage.

Predictive powers of the networks for agriGO biological processes were also meas-

ured by the AUROC until retrieving 1% of false positive results (FPR < 0.01).

BiomeNet appeared to be significantly more predictive than STRING for cattle and

grape, whereas STRING was significantly more predictive than BiomeNet for wild

pig and potato (*P<0.01, **P< 0.001 and ***P<0.0001; Wilcoxon signed rank

test). B, S and R of inset represent BiomeNet, STRING and random network,

respectively
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(Kanehisa et al., 2017) (Fig. 5A). Newly sequenced genomes may
not have annotations in KEGG pathways or GO-BP; therefore,
BiomeNet subnetworks are based on inferred KEGG and GO-BP
annotations from source species. When BiomeNet transfers func-
tional interactions from source species, it also transfers KEGG and
GO-BP annotations associated with orthologous proteins. This ap-
proach allows subnetwork extraction for each of inferred KEGG
pathways and GO-BP for target species. BiomeNet provides only
subnetworks that contain at least three connected genes and visual-
izes them using Cytoscape.js (Franz et al., 2016). Users can search
for KEGG pathways or GO-BP subnetworks with keywords. An ex-
ample is presented in Figure 5A, which shows a network of genes
annotated for the GO-BP term ‘cellular response to water depriv-
ation’, which is composed of 25 nodes (genes) and 38 edges (func-
tional interactions). By clicking on a node and an edge, users may

see such information as the likelihood score and supporting evi-
dence, including codes for source species and data type (Fig. 5A in-
set; also see Supplementary Table S1) and can also obtain lists of
member genes and edge information for each subnetwork using a
download button inside the network viewer.

3.4 BiomeNet-based gene prioritization enables

candidate gene enrichment
Another popular application of gene networks is prioritization of
candidate genes for pathways or complex traits (Wang and
Marcotte, 2010). To test the capability of BiomeNet-based gene pri-
oritization in candidate gene enrichment for complex traits in multi-
cellular organisms, we focused on drought response in S. viridis, an
emerging model grass species for agronomically important crops
such as maize and sorghum (Brutnell et al., 2015). Although the
S. viridis reference genome has been released (Setaria viridis v2.1,
DOE-JGI, http://phytozome.jgi.doe.gov/), the genome-scale func-
tional network is not yet available. Using the BiomeNet server, we
constructed a network mapping 1 529 150 co-functional links
among 20 507 proteins (58.2% of all 35 214 coding genes) within
2 min. Next, we selected 62 S. viridis genes upregulated by more
than 2-fold in crown roots of plants subjected to drought conditions
and harvested 6 days after sowing (Sebastian et al., 2016). In the
functional network of S. viridis constructed by the BiomeNet server,
51 of the 62 drought response genes were present and well con-
nected to each other (Fig. 5B), suggesting that the obtained network
could predict new genes involved in S. viridis drought response. The
network viewer enabled visual display of the results, as shown on
the gene prioritization page which presented a network of user-input
proteins (black) and their 100 closest neighbors (red) based on the
sum of edge weight scores (i.e. sum of LLSs) for the user-input pro-
teins. Users may also interactively select a threshold score for net-
work neighbors with a range slider.

The user-input genes were ranked based on within-group con-
nectivity by sorting out the genes with the highest sum of edge
weight scores. Among the 51 user-input genes, 12 were annotated
for inferred GO-BP terms relevant to drought response. Based on
the inferred annotations from source species, we found that 367 out
of the 35 214 S. viridis coding genes were annotated for ‘response to
water deprivation’, ‘response to heat’, or ‘heat acclimation’.
Considering that the background probability of drought response
genes was �1% (367/35, 214), it could be concluded that the given
transcriptional analysis comparing the response to drought and
watered conditions in S. viridis crown roots achieved �24-fold en-
richment for the relevant function. Furthermore, annotation for the
involvement in drought response was found for 10 of the top 25
genes (�40-fold enrichment) but only for 2 of the bottom 26 genes
(�4-fold enrichment), indicating potential utility of the network in-
formation for prioritizing candidate genes derived from genomic
analysis.

Using the 51 user-input genes as ‘guide genes’, we could priori-
tize additional candidate genes for drought response based on close-
ness in the constructed network. BiomeNet provided a table of 200
closest neighbors to the guide genes. We found that 38 of the top
100 candidate genes were associated with drought response (38%
discovery rate); among them, four genes encoded proteins related to
‘response to water deprivation’ and 34 of those related to ‘response
to heat’ or ‘heat acclimation’. Compared to the background prob-
ability of �1%, the BiomeNet-based prioritization could achieve
�38-fold enrichment for relevant biological processes. These results
suggest that BiomeNet would facilitate functional annotation of
genes involved in complex traits for any species with sequenced
genomes.

4 Discussion

The most important benefit provided by BiomeNet would be ena-
bling researchers to obtain a gene network for any species with the
available genome sequence. The number of eukaryotic species with
mapped functional interactome included in the latest issue of

Fig. 3. Benchmarking of first-in-species networks by BiomeNet with AgriGO anno-

tation. Quality assessment of networks first constructed for each species by

BiomeNet was performed as described for Figure 2

Fig. 4. Computing time required to build gene networks for target species with vari-

ous numbers of input proteins. Computing time was defined as the time period from

job submission to return of the constructed network. Analysis was repeated 5 times

using all 95 source networks for each of the 8 tested species. Box plots show max-

imum, median and minimum values from five measurements
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STRING, the largest network database, constitutes about 10% of
eukaryotes with sequenced genomes. This statistics indicates a con-
siderable gap between genome and interactome information, which
may not be reduced unless a computational pipeline allowing auto-
matic network inference for genomes becomes available. In
BiomeNet, network inference is based on interologs (Yu et al.,
2004) as the server requires information on protein sequences only.
Despite of its algorithmic simplicity, BiomeNet provides the quality
of networks for AgriGO biological processes comparable with that
of STRING. Thus, the results of this study suggest that BiomeNet
can be used to construct networks of cellular processes for any
sequenced species with reasonable predictive power.

Currently, there are two publicly available web applications for
homology-based network inference: the BIANA Interolog Prediction

Server (BIPS; http://sbi.imim.es/BIPS.php) (Garcia-Garcia et al., 2012)
and JiffyNet (http://www.jiffynet.org) (Kim et al., 2013). Compared
to them, BiomeNet offers substantial improvements in several aspects:
(i) considerable reduction of computational time (from days to a few
minutes), which is especially relevant for animals and plants with tens
of thousands of genes; (ii) inferred networks with edge weights (BIPS
provides binary interactions only), which are highly useful in down-
stream analysis and (iii) possibility of conducting functional analysis
of the constructed network. With these benefits, BiomeNet represents
a homology-based network inference server to be used for network-
based functional analysis.

BiomeNet also has limitations. In particular, we observed
smaller genome coverage of networks compared to that by
STRING, which may be partly due to insufficient use of species-

Fig. 5. Screenshots of BiomeNet Analyzer pages. (A) Subnetwork extraction for inferred GO biological processes and KEGG pathways. Users can search for biological proc-

esses of interest with keywords. The visualized network for ‘cellular response to water deprivation’ is composed of 25 nodes and 38 edges. If users click on a particular

gene (e.g. Sevir.7G091800.1.p; inset), a network including the selected gene and its neighbors should be highlighted and edge information (source network and score) pre-

sented. (B) The gene prioritization page displays a network of user-input guide genes (black) and their close neighbors (red). Users can interactively select a threshold (16.5 for

the given example) for close neighbors with a range slider
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specific data which allow inference of functional links between pro-
teins without interologs in the source species. In the future, we plan
to update BiomeNet with additional source networks, which may
improve genome coverage of the constructed networks.

As demonstrated by gene prioritization for drought response in
S. viridis, users can generate new functional hypotheses based on
close neighbors to the guide genes in the network. Although in our
example of S. viridis the guide genes were derived from transcrip-
tomic profiling analysis, they may also be selected based on prior
knowledge. Thus, we might have prioritized genes linked to drought
response using those with annotation to relevant biological proc-
esses such as water deprivation and heat response. Since many GO-
BP annotations are associated with complex traits in animals and
plants, users will be able to apply BiomeNet-based gene prioritiza-
tion to studying genetic mechanisms underlying complex traits in
newly sequenced species. In conclusion, our results suggest that
BiomeNet should enhance the benefit of decoding species genomes
for understanding and utilizing biodiversity on Earth.
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