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ABSTRACT

Single-cell RNA sequencing thoroughly quantifies
the individual cell transcriptomes but renounces the
spatial structure. Conversely, recently emerged spa-
tial transcriptomics technologies capture the cellular
spatial structure but skimp cell or gene resolutions.
Ligand-receptor interactions reveal the potential of
cell proximity since they are spatially constrained.
Cell–cell affinity values estimated by ligand–receptor
interaction can partially represent the structure of
cells but falsely include the pseudo affinities be-
tween distant or indirectly interacting cells. Here,
we develop a software package, SPROUT, to re-
construct the single-cell resolution spatial structure
from the transcriptomics data through diminished
pseudo ligand–receptor affinities. For spatial data,
SPROUT first curates the representative single-cell
profiles for each spatial spot from a candidate li-
brary, then reduces the pseudo affinities in the in-
tercellular affinity matrix by partial correlation, spec-
tral graph sparsification, and spatial coordinates re-
finement. SPROUT embeds the estimated interac-
tions into a low-dimensional space with the cross-
entropy objective to restore the intercellular struc-
tures, which facilitates the discovery of dominant
ligand–receptor pairs between neighboring cells at
single-cell resolution. SPROUT reconstructed struc-
tures achieved shape Pearson correlations ranging
from 0.91 to 0.97 on the mouse hippocampus and
human organ tumor microenvironment datasets. Fur-
thermore, SPROUT can solely de novo reconstruct
the structures at single-cell resolution, i.e., reaching
the cell-type proximity correlations of 0.68 and 0.89
between reconstructed and immunohistochemistry-
informed spatial structures on a human developing
heart dataset and a tumor microenvironment dataset,
respectively.

INTRODUCTION

Revealing the spatial context and molecular abundance of
cells and tissue is critical for understanding the compo-
sition and functions of complex tissues. Single-cell RNA
sequencing (scRNA-seq) technologies quantify the single-
cell transcriptome by a high sequencing depth with whole-
transcriptome coverage (1). The thorough scope of single-
cell transcriptome enables investigations on cell hetero-
geneities, subpopulations and interactions (2,3). However,
the isolation procedure renounces the spatial context of
these cells.

Spatial transcriptomics (ST) technologies have been de-
veloped to acquire spatial context and expression profiles
simultaneously. High-plex RNA imaging technologies (4–
6) only localize dozens to hundreds of genes, and spatial
barcoding technologies such as 10X Visium, Slide-Seq and
HDST (7–9) yield a greater magnitude. However, they have
achieved unsatisfied abundances or inadequate cell reso-
lution, which restricts the potential of ST data for down-
stream analyses. Resolution-enhancement methods, such as
the BayesSpace method powered by imposing a Bayesian
model on the spatial neighborhoods of spots, approach but
do not yet arrive at the single-cell resolution (10).

Except for wet-lab approaches, researchers also proposed
computational methods to restore the spatial structure from
the scRNA-seq data. NovoSpaRc (11) assigns cells to tissue
locations by probability. Its premise only considers the sim-
ilarity in gene expression as the neighboring factor, neglect-
ing the heterogeneity of, for instance, the transition areas
(12) or immune cell infiltration regions (13). CSOmap re-
constructs the intercellular proximity based on the contact-
required ligand–receptor (LR) interactions (14,15). Specif-
ically, CSOmap estimates the affinity of two cells by the
mRNA expression summation of the interacting LR pairs,
forming a k-nearest neighbor affinity graph simulating cell-
cell interactions. However, two distant cells could have a
‘pseudo’ high affinity due to the share of strong similarity
with the other two cells which interact. Without any spa-
tial reference, the estimated affinity contains pseudo affini-
ties from distance cells.
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Researchers also started to integrate the ST data with
the scRNA-seq data. Early attempts for integration focus
on reconstructing cellular spatial structure based on spatial
references such as immunohistochemistry (IHC) or fluores-
cence in situ hybridization (FISH) (16,17). Spatial barcod-
ing presents a new aspect for integrating scRNA-seq and
spatial data, leading to two primary integration approaches:
deconvolution and mapping (18). One objective of decon-
volution methods is to infer the proportion of cell types
from each ST capture location or spot in the ST data. Pro-
vided with a labeled scRNA-seq dataset, non-negative least
squares and dampened weighted least squares linear regres-
sion can deconvolute the captured spot mixtures (19,20).
Alternatively, deconvolution can be accomplished by fitting
a model of negative binomial distribution or Poisson distri-
bution to the scRNA-seq expression with the empirical data
of ST spot as a prior. Subsequently, maximized posterior
yields an estimation of the cell-type distribution (21–23).
Moreover, several studies on the tumor microenvironment
(TME) map subgroups of single-cell to specific subregions
in ST data by the enrichment score (24,25). These mappings
improve the resolution on the subpopulation level but re-
quire prior clustering and annotation on both data types,
which is inaccurate when mapping tissue regions comprised
of mixed cell types. SpaOTsc (26) maps cells by minimizing
the gene expression dissimilarity between single-cell data
and ST with the optimal transport distance, neglecting the
heterogeneity in the spot, and taking all provided single-cell
without selection.

Here, we present a software package, SPROUT, that reca-
pitulates the single-cell resolution cell structure of the spa-
tial transcriptome from a sparsified affinity graph where
the pseudo affinities are reduced by partial correlation (27),
spectral sparsification (28), and spatial coordinates refine-
ment. Instead of solely delivering cell-type acknowledg-
ment, SPROUT locates single-cell expression profiles in
spots from a candidate library, hence enabling the explo-
ration of the spatial intercellular communication mecha-
nisms at single-cell resolution.

MATERIALS AND METHODS

Constructing the single-cell aggregates to reproduce ST ex-
pression profiles

We propose a preprocessing module to integrate ST data
with scRNA-seq data. The module takes two parameters,
the cell number �s and cell-type proportion ps, t, t ∈ T for
a ST spot s, T denotes the set of cell types. The parame-
ter �s denotes the average number of cells in a spot. The
number of cells captured in a spot varies according to se-
quencing methods and tissue density; our module allows
users to specify it. Many accurate and efficient deconvolu-
tion methods have been developed to infer the cell-type pro-
portion of each spot, such as stereoscope, RCTD, SPOT-
light, and cell2location (19,21,23,29). Therefore, SPROUT
accepts the deconvolute result of these packages to approx-
imate the cell-type proportion ps, t.

Let ks, t denote the cell number of type t at ST spot s,
then ks, t ≈ �s × ps, t = fs, t. Note that fs, t can be fractional.
Here, we round on fs, t randomly (30) to acquire the inte-
ger number of ks, t while stabilizing the expectation of �s.

Randomized rounding round up or down with the probabil-
ity proportional to the value of the variable in a fractional
form. Denoting the decimal part of fs, t as {fs, t} ∈ [0, 1), fs, t
randomly rounds up or down to ks, t according to the prob-
ability P(ks, t = �fs, t�) = {fs, t}. The preprocessing module
chooses cell set Ms from a predefined single-cell candidate
library to reproduce the single-cell resolution for each spot
s. The summed expression profile of all chosen cells in Ms
termed the aggregated expressions E(Ms), which calculated
by

∑|Ms|
i=1 E(ci ). It curates the single-cell aggregates set Ms

by maximizing the Pearson correlation between E(Ms) and
the expression E(s) of spot s in the set of all spots S; that is,
by the following objective function.

Maximize
∑

s∈S,Ms⊂L
ρ(E(Ms), E(s))

Subject to ks,t = {c ∈ Ms|t(c) = t} , ∀t ∈ T

where L ∈ R
m×n is the expression matrix of the single-cell

candidate library composed of m cells and n genes, t(c) rep-
resents the type of cell c. The number of chosen cells from
each type in Ms should be the same as the value of ks, t.

The module adopts a heuristic method of two steps, ini-
tialization and swapping to optimize the objective function.
The initialization selects top ks, t cells of type t for spot s ac-
cording to the Pearson correlation coefficients between the
spot and the cell from the single-cell candidate library.

If a better objective value is obtained, the swapping step
swaps a cell in aggregates with a cell from the candidate li-
brary. We provide two optional cell sampling modes, one
mode gathers cells from the same type, and another mode
gathers cells from the whole candidate library. The process
is repeated until convergence, or a predefined maximum
number of iterations is achieved. The swapping process can
be time-consuming, and we adopted a local sensitive hash
(LSH) strategy to accelerate the swapping step (31), the
runtime of an exemplary dataset can be found in (Sup-
plementary information, Supplementary Table S4). During
the swapping procedure, the module removes one cell from
the aggregate Ms at spot s randomly, denoting the aggre-
gate after the removal as Ms

′. The module chooses a new
cell m in each iteration to further increases the ρ(E(Ms

′ ∪
{m}), E(s)). It can be chosen by querying a cell in LSH that
has the highest correlation with E(s) − E(Ms

′). The module
performs feature selection (32) on the single-cell candidates
before the aggregate construction to reduce the noise intro-
duced by sequencing and low variable genes by choosing
the top 3,000 highly variable genes and 80% highly variable
LR genes to maintain the capability to infer the intercellular
affinity.

Measuring the intercellular affinity by ligand–receptor inter-
actions in single-cell profiles

We gather the selected single-cell expression profile of all
spots to form a new matrix denotes by T ∈ R

r×n consisting
of r cells and n genes. We collect our human ligand–receptor
(LR) pairs from the curated database under the FANTOM5
project (33), and the mouse LR pairs from the CellTalkDB
(34). With collected LR pairs, we extract the expressions of
LR genes from T and form the ligand and receptor expres-
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sion matrices as TL and TR ∈ R
r×nlr where nlr denotes the

number of LR pairs. Specifically, for the ith LR pair, the
ith columns of TL and TR are the corresponding ligand and
receptor expressions subset from T, respectively. The mul-
tiplication of the two expression matrices yields the affinity
between each pair of cells suggested by the co-expression of
each LR pair.

As a cell can simultaneously express both ligand and re-
ceptor genes, we have two symmetric terms A1 = TLTT

R and
A2 = TRTT

L representing two possible LR orders in each cell
pair. We formulate the initial affinity matrixW as A1 + A2 =
TLTT

R + TRTT
L of size r × r.

Reducing the pseudo affinities to refine the affinity matrix by
sparsification

The initial affinity matrix includes pseudo affinities between
distant or indirectly interacting cells. Here we present three
different approaches for diminishing the pseudo affinities,
that is, partial correlation, spectral graph sparsification, and
spatial coordinates refinement for ST coupled datasets.

We first adopt partial correlation to reduce the pseudo
affinities for initial affinities of high variance (27). Two dis-
tant cells could have a high affinity value due to the share
of strong interaction with another cell. Partial correlation
is widely used in network analyses such as protein con-
tact predictions and brain region interactions as it mea-
sures the latent variables representing direct causation and
thus removes indirect relationships among entities (35–37).
While a covariance matrix represents the relations between
any two entities, the inverse of a covariance matrix, also
known as the precision matrix, approximates the partial
correlations among entities (38). For the block expression

matrix TLR = ( TL
TR

)
, we denote its covariance matrix as

K, that is, K = TLRTT
LR. In particular, we have the block

form of K = ( SL A1
A2 SR

)
, where A1 = TLTT

R, A2 = TRTT
L, and

SL = TLTT
L and SR = TRTT

R represent the ligand and re-
ceptor gene expression similarity between any two cells. We
could distinguish direct and indirect LR interactions among
cells and keep the direct ones by using the precision ma-

trix of K, that is, K−1 = ( K−1
11 K−1

12
K−1

21 K−1
22

)
. Therefore, we have

W = K−1
11 + K−1

12 + K−1
21 + K−1

22 representing direct LR inter-
actions.

Sparsification of the affinity matrix aims to keep the asso-
ciation between adjacent cells while reducing affinities with
distant ones. Sparsification based on k-nearest neighbor
consider local neighborhood relationships by values. There
is no proof that the spectral features of the graph are pre-
served (39). While spectral graph sparsification maintains
high spectral similarity while reducing unnecessary edges
between distant cells by finding a sparse approximation of
the original graph (28). Therefore, we apply the Spielman-
Srivastava spectral graph sparsification algorithm (40) to
remove pseudo affinities. We build the affinity graph G by
regarding the cells as vertices and the cell-cell affinity as
the edge weight. When the context is clear, we also refer
to W as the adjacency matrix for G for notation simplic-

ity. We further denote the Laplacian matrix of G as L. In
the Spielman-Srivastava algorithm, the effective resistance,
that is, the distance between two vertices connected by an
edge is proportional to the reciprocal of its edge weight.
In the sparsification step, edges are sampled by the proba-
bilities proportional to their effective resistances. The algo-
rithm preserves the spectrum of the graph Laplacian, that is,
the eigenspaces spanned by eigenvalues, and their relations
by requiring high similarity between the two Laplacian ma-
trices, while some previous works only maintain the span of
the dominant eigenvectors (41,42). We define the effective
resistance between two cells u and v as

Reff(u, v) = (δu − δv)TL−1(δu − δv) (1)

where δu ∈ {0, 1}r is the indicator vector of vertex u. Fol-
lowing the definition, the sparse graph preserves the cru-
cial edges of the original graph. We sample the edge
(u, v) by the probability pu,v = min{1, C · (log r )Wu,v ·
Reff(u, v)/ε2}, where C is some constant and � is the ap-
proximation parameter. We further adjust the weight of the
sampled edge (u, v) as Wu, v/pu, v. We determine the value of
the term C/�2 by the user-defined proportion of preserved
edges q = 2

∑
u, vpu, v/r(r − 1). Since the expected number of

chosen edges can be bounded by
∑

u,v

pu,v =
∑

u,v

min{1, C · (log r )Wu,v

×Reff(u, v)/ε2} ≤ Cr log r
ε2

(2)

where C
ε2 ≥

∑
u,v pu,v

r log r = q(r−1)
2 log r , thus by adjusting the parame-

ter q we can control the percentage of preserved edges.
Moreover, we utilize the spot coordinates in the coupled

spatial data as one sparsification approach. If two cells be-
long to nonadjacent spots, the affinity between them is con-
sidered to be pseudo affinities.

Reconstructing the quasi-structure with fuzzy set cross-
entropy embedding

The embedding of a cell-cell affinity graph to a low-
dimensional space consists of two stages: (a) forming a
topological representation W of sparsified the cell-cell
affinity W; and (b) finding an embedding E in the low-
dimensional space of the topological representation to min-
imize the discrepancy between the embedding and the repre-
sentation. A reliable topological representation of W should
maintain the affinity relations while restricting the num-
ber of neighbors for each cell. Here, we maintain the top
kn affinities in W for each cell while setting other values
to be zeros. Subsequently, we perform min-max normaliza-
tion on the remaining affinities to obtain the membership
strength in the range of [0, 1], denoting the matrix as W.
The fuzzy simplicial set expands the classical binary defi-
nition of membership by allowing continuous membership
strength in the range of [0, 1] (43), and the union of the fuzzy
simplicial sets (44) yields the fuzzy topological representa-
tion. Hence, W is the fuzzy topological representation of W.

Subsequently, we apply strategies from UMAP (45) to
minimize the fuzzy set cross-entropy between the embed-
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ding E and the topological representation W, that is,

CE(E,W) = PE log
PE

QW

+ (1 − PE) log
1 − PE

1 − QW

(3)

where PE and QW represent the min-max normalized ad-
jacency matrices of E and W, respectively. We use a spec-
tral layout, that is, the Laplacian matrix of W to as the
initial Cartesian coordinates of E (46). By regarding edges
as attractive forces and vertices as repulsive forces, we al-
ternatively apply the attractive and repulsive forces until
CE(E,W) converges to a local minimum.

Evaluating the reconstruction performance of SPROUT

A major metric for assessing the quality of the reconstructed
spatial structure is its reproduction of the spatial charac-
teristics of the tissue. Given a spatial structure of cells, we
construct a fixed-volume neighbor graph, where the radius
is the median distance between any cell to its third-nearest
neighbor. According to the fixed-volume neighbor graph,
we quantify the spatial characteristics as the number of
neighboring pairs between any two cell types, indicating
whether the two are enriched or depleted near each other.
Therefore, we evaluate the cell type enrichment or depletion
discrepancy by the Kullback–Leibler (KL) divergence (47)
of the neighboring pair numbers for any two cell types be-
tween a given spatial structure and the embedding structure.
To further evaluate the statistical significance of observed
possible enrichment or depletion, we compare the number
of neighboring pairs with 1000 random permutations of the
cell type labels. We test the enrichment hypothesis, that is,
the observed number of neighboring pairs is larger than the
random expectation by P-values from both the right-tailed
and left-tailed tests. We further adjust the P-values follow-
ing the Benjamini-Hochberg procedure (48) and obtain the
q-values with a cutoff of 0.05 for significance.

Revealing the dominating LR pairs contributing to intercel-
lular affinity

Given a pair of cell i and j in the expression matrix T, the
expression profile is Ti and T j , the contribution from the
k-th LR pair to the total cell-cell interacting affinity can be
formulated as:

bi j
k = Ti

Lk
T j

Rk

T + Ti
Rk

T j
Lk

T

Ti
LT j

R
T + Ti

RT j
L

T (4)

where Ti
Lk

denotes the ligand gene expression of kth LR pair

in cell i, T j
Rk

denotes the receptor gene expression of kth LR
pair in cell j. The contribution of each LR pair between two
cell types t1 and t2 is calculated by:

bt1,t2
k = 1

N

∑

i∈t1, j∈t2

bi j
k (5)

where N is the number of neighboring cell pairs between t1
and t2.

Assessment of the state of the art resolution enhancement
methods and simulation datasets construction

Comparison of state of the art resolution enhancement meth-
ods. We perform SPROUT, BayesSpace (10), CellTrek
(49) and SpaOTsc (26) on a mouse cortex dataset (50,51).
We run BayesSpace spatialEnhance function following the
default parameters in the BayesSpace package vignette.
Given the qplot result of BayesSpace, we set the estimated
cluster number as eight. We select sets of marker genes for
each of 15 cell types and predict their expression at subspot
resolution using enhanceFeatures of BayesSpace. To assign
the cell type to each enhanced subspot, we assign the cell
type by the highest scaled enhanced cell-type expression in
each subpot. For CellTrek, we follow the same protocol in
its Quick Tour. For SpaOTsc, we follow the parameters in
its short tutorial. We acquire the cost matrix by mapping
the datasets to a common low dimensional space by its rec-
ommending software––scanorama (52) and calculated their
Euclidean distance in the low dimensional space.

Simulated ST datasets. Our simulated ST datasets were
generated by the combined expression profiles of cells
drawn from the mouse hippocampus scRNA-seq data (53).
We utilize cells from mice age 28 postnatal days (P28) as
both the scRNA-seq reference data to build the ST sim-
ulation data and the paired candidate library. Meanwhile,
we use the mice aged 60 postnatal days (P60) as the un-
paired candidate library. We randomly sampled cells from
the scRNA-seq reference and summed the expression of
each gene in the selected cells to generate the expression
profile of the ST simulation data. To underline the adapt-
ability of the preprocessing module regarding various spot
internal densities, we simulate ST data with 1–10, 30 and
40 cells per spot. Moreover, to assess preprocessing mod-
ule performance in dealing with different cell mixing ratios
within the spot, the ST simulation was generated by the
combined expression profiles of cells with different astro-
cyte ratios (per = 1, 0.8, 0.5, 0.2, 0) of astrocytes and neu-
rons, since astrocytes and neurons are the main constituents
of the brain and their interactions are crucial to the central
nervous system (54). Each preliminary simulated ST data
consist of 40 spots with the same cell per spot and astro-
cyte ratio. We concatenated the preliminary simulated ST
datasets with the same cell number and different astrocyte
ratios together by a sequence of decreasing astrocyte ra-
tios, forming simulated ST data with 200 spots to simulate
the transition of two cell types. We generated five repeats
for each simulation with a various sampling of cells from
the scRNA-seq reference data. We performed SPROUT on
the simulated ST data with paired and unpaired candidate
libraries.

Correlation measures the degree of similarity between
two datasets while mean squared error (MSE) quanti-
fies their difference in absolute value, however, correlation
prone to reduce the noise (55). Therefore, to quantitatively
evaluate the cell selection performance of preprocessing
module, we calculated the Pearson correlation and the MSE
between the summed expression of the selected cell of each
spot with its corresponding ST simulations.
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Furthermore, to assess the performance of SPROUT, we
computed the correlation of pairwise distance between the
SPROUT reconstruction and the simulated spatial struc-
ture.

RESULTS

Overview of SPROUT algorithm: reconstructing spatial or-
ganization at single-cell resolution from the spatial transcrip-
tome

SPROUT provides a preprocessing module for ST datasets
that select and aggregate single-cell profiles representing the
expression profile of each spot. For a spot of the spatial
data, the module derives the quantities of each cell type by
deconvoluted cell type proportions produced by deconvolu-
tion software and a prespecified parameter �s representing
the average number of cells in a spot (Figure 1A). The com-
parison of SPROUT processing human lymph node and
mouse brain dataset (29) with the deconvoluted cell type
proportions produced by stereoscope, RCTD, SPOTlight,
and cell2location displays a small difference (Supplemen-
tary information, Supplementary Figure S1). The module
then aggregates a set of single cells agreeing with the de-
rived quantities and maximizing the correlation between the
aggregated cell expression profile and the ST spot. Note
that if the paired single-cell data are unavailable, we can
use a labeled single-cell candidate library of similar tissue to
create aggregations and achieves similar performance (Fig-
ure 1 B, Supplementary information, Supplementary Fig-
ure S3). Cells interact with proximal cells, and in this work,
we use the term affinity as the measurement for the interac-
tion strengths between interacting cells. We can build a cel-
lular spatial configuration, termed quasi-structure, from the
affinity values. We first assume that the cell-cell affinity can
be estimated by the concentration of LR complexes which
can be approximated by their mRNA abundance. Further-
more, we assume that cells compete for space because of the
limitation of biological constraints. SPROUT has no prior
knowledge of cell proximity when forming the initial affinity
matrix. It calculates the affinity value between any two cells.
Therefore, the approximated affinities based on the first as-
sumption contain pseudo affinities between distant or in-
direct interacting cells. Following the above assumptions,
SPROUT reconstructs the quasi-structure from scRNA-seq
data with four steps: (a) establishing the initial affinity ma-
trix by the LR expression profiles, which falsely includes
the pseudo affinities between distant or indirect interacting
cells; (b) constructing an affinity graph regards cells as ver-
tices and the initial affinity matrix as the adjacency matrix;
(c) reducing the underlying pseudo affinities in the initial
affinity graph by partial correlation, spectral graph spar-
sification and spatial coordinates refinement and (d) em-
bedding the sparsified affinity graph into a low-dimensional
space as the quasi-structure in the single-cell resolution.

SPROUT approximates the cell-cell affinity by the
mRNA abundance of interacting LR pairs (Figure 1C). For
initial affinities of high variances, SPROUT replaces the
initial cell-cell affinity matrix with the precision matrix to
reduce the indirect correlations for subsequent procedures
(Figure 1D). SPROUT reduces the pseudo affinities from

the initial affinity matrix by imposing spectral graph spar-
sification and spatial coordinates refinement on the affin-
ity matrix (Figure 1D). SPROUT adopts a local fuzzy set
(LFS) embedding method to embed the processed affin-
ity matrix in a low-dimensional space. The LFS step first
builds a fuzzy topological representation from the processed
affinity matrix, limiting the number of neighbors required
by the second assumption (Figure 1E, top panel). Subse-
quently, the LFS step optimizes the representation in the
low-dimensional space by minimizing the fuzzy set cross-
entropy between the two representations (Figure 1E, bot-
tom panel). SPROUT can take the curated single-cell aggre-
gates, yielding the reconstructed quasi-structure for down-
stream analyses (Figure 1F). The embedding result, that
is, the reconstructed quasi-structure by SPROUT, facili-
tates further evaluation of discovering dominant ligand–
receptor pairs between neighboring cells at single-cell res-
olution (Figure 1G). Furthermore, with proper sparsifica-
tion, SPROUT is capable of de novo reconstruction from
the single-cell transcriptome. In the head and neck can-
cer (HNC) scRNA-seq dataset, SPROUT recapitulates the
quasi-structure features which are commonly observed in
the partial epithelial to mesenchymal transition (p-EMT)
process: (a) p-EMT cells located at the interface between
malignant cells and cancer-associated fibroblasts (CAF)
cells; (b) CAF-1 cells presenting at closer proximity to the
p-EMT cells compared to CAF-2 cells; (c) malignant cells
showing minimum interactions with immune cells due to
immune evasion (Figure 1H).

Assessing the performance of SPROUT in processing ST
datasets

Benchmarking SPROUT on real and simulation datasets.
We apply SPROUT to public mouse cortex scRNA-seq (50)
and ST datasets from 10× (51). The scRNA-seq data con-
tains 4785 cells from 15 types. The ST dataset contains
1075 spots. We then compared SPROUT on a mouse cor-
tex dataset with three additional resolution enhancement
methods: (i) BayesSpace (10), which imposes a Bayesian
model on the spatial neighborhoods of spots to enhance
the resolution of spots; (ii) CellTrek (49), which achieves
single-cell spatial mapping by the embedding of spatial and
single-cell transcriptomics profiles and metric learning and
(iii) spots (26), which maps cells by optimally transporting.
SPROUT and CellTrek reconstructed the original spatial
pattern of the mouse cortex, while BayesSpace enhanced
the resolution in situ and SpaOTsc captures only a part
of spatial structure (Figure 2A). Compared with CellTrek,
the reconstruction of SPROUT spread evenly and has a
higher density, which has high consistency, r = 0.99, with
its coupling ST spot structure, regarding the pairwise dis-
tance. The cell-type proximity summarized by cell locations
is vital for downstream analyses. Thus, the recapitulation
of such information should also be a metric for evaluating
the reconstructed quasi-structure. Specifically, we use KL-
divergence to assess the difference in the cell-type proximity
between the original and reconstructed structure. SPROUT
achieves the lowest KL-divergences among the four ap-
proaches. Moreover, we calculate the K-distance between
neuron cells of all layers to the L2/3 IT cells. The gradually
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Figure 1. Schematics of SPROUT. (A–C) Workflow of the preprocessing module. (A) The preprocessing module of SPROUT adopts existing deconvolution
software to decompose cell-type mixtures of ST profiles. (B) The preprocessing module selects a designated amount of cells from the single-cell candidate
library, equal to the estimated cell number per cell type in each spot. (C–E) Workflow of the SPROUT. (C) SPROUT derives the initial cell-cell affinity
graph from the single-cell profiles by the LR interactions. (D) SPROUT applies partial correlation, spectral graph sparsification, and spatial coordinates
refinement on the cell-cell affinity graph to reduce pseudo affinities. (E) SPROUT utilizes LFS embedding to embed interactions into a low-dimensional
space. (F) The 2D embedding of the selected single cells reconstructed by SPROUT. (G) The determination of dominant ligand–receptor pairs between
neighboring cells at single-cell resolution. (H) The 3D embedding of the HNC data reconstructed by SPROUT.

rising K-distance results of SPROUT and CellTrek showed
a well-captured spatial structure of the mouse cortex lay-
ers, while BayesSpace fails due to the overspread of L5 PT
cells (Figure 2B). The cell-cell connection between layers
in SPROUT’s reconstruction shows a clear connection be-
tween each anatomically adjacent layer while CellTrek fails
to fully capture (Figure 2C). The feature genes of the main
layers (Calb, Fam19al, Crym, Cplx3) also express in the cor-
responding regions in the quasi-structure (Figure 2D).

We next evaluate the performance of SPROUT and its
preprocessing module on simulated datasets. The spot in-
ternal density varies according to the tissue density and
the spot diameter, thus the spot internal density varies
(24,51,56). We generated the simulated datasets to reflect
the validity and robustness of SPROUT under two simula-
tion conditions: spot internal density and cell mixing ratio
within the spot.

We perform SPROUT and its preprocessing module with
both paired and unpaired single-cell candidate libraries. We
quantitatively evaluated the performance of SPROUT by
the expression correlation between the summed expression
of selected cells and its corresponding simulated spatial ex-
pression, and the shape correlation of pairwise distance be-
tween SPROUT reconstruction and simulated spatial struc-
ture. Under different simulation conditions, the summed ex-
pression profiles of each single-cell aggregate achieve an av-
erage Pearson correlation coefficient r = 0.94 with their cor-
responding ST profiles for the paired library, and r = 0.90
for the unpaired library (Supplementary information, Sup-
plementary Figure S2A). Meanwhile, the difference in aver-
age MSE of genes is higher in the unpaired datasets (Sup-
plementary information, Supplementary Figure S2A). The
expression correlation increase with the growth of the ac-
tual cell number per spot, since the fault tolerance of choos-
ing a similar cell increased. Moreover, to assess the stabil-
ity of choosing different parameters �s, we perform the pre-

processing module with parameters �s of 5, 10, 20 and 40
on the simulated ST dataset generated with ten cells per
spot. The expression correlation between the simulated ST
datasets and sc aggregates under various choices of �s has a
small difference (Supplementary information, Supplemen-
tary Figure S2B).

Subsequently, SPROUT reconstructs the quasi-structure
from the selected single-cell aggregates. The quasi-structure
has a concordant inter-spot organization as the cells origi-
nating from the same spot remain in the same compartment
(Supplementary information, Supplementary Figure S2C).
The quasi-structure of each simulation reached a high av-
erage shape correlation of r = 0.97 with the simulated spot
organization (Supplementary information, Supplementary
Figure S2D). Furthermore, we compare the shape correla-
tion between various parameters, the average correlations
decrease with the increase in cell number per spot (Sup-
plementary information, Supplementary Figure S2D). The
shape correlation of the paired data dropped from 0.97 to
0.95 in 40 cells per spot, which may caused by the over-
crowding in the spot. Furthermore, the expression pattern
of Apoe and Ppp3ca, the feature gene of astrocytes and neu-
rons, is concordant in the spatial structure and the recon-
structed quasi-structure, achieving expression correlation at
0.96 and 0.93 (Supplementary information, Supplementary
Figure S2E). The high-quality single-cell aggregates and the
quasi-structure demonstrate the accuracy and robustness of
the preprocessing module of SPROUT.

SPROUT reconstructed a high-quality quasi-structure for
the mouse hippocampus dataset. We apply SPROUT to re-
construct the single-cell resolution quasi-structure for the
mouse hippocampus dataset. The spatial data provided by
stereoscope (21) contains 609 spots, and the single-cell can-
didate library from the mousebrain.org contains 8449 cells,
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Figure 2. Benchmarking SPROUT on reconstructing the spatial organization in a mouse cortex tissue. (A) Comparison of SPROUT, BayesSpace, CellTrek,
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re-clustered and annotated by stereoscope, covering 56 sub-
types across seven major groups.

We use the deconvolution software package to infer ps,t.
Based on the deconvolution result of stereoscope (21), the
preprocessing module of SPROUT then selects 6071 cells
that constitute 609 single-cell aggregates (�s = 10) from
the single-cell candidate library to represent the expres-
sion profile of ST spots. Then SPROUT reconstructs the
quasi-structure from the selected single-cell aggregates (Fig-
ure 3A). The reconstructed quasi-structure of SPROUT
achieves a 0.97 Pearson correlation with its coupling ST
spots in the pairwise distance (Supplementary information,
Supplementary Table S1).

Furthermore, we calculate the expression correlation of
each gene between ST and single-cell aggregates. Cnp, Plp1
and Ppp3ca, achieve high expression correlations, r = 0.71,
r = 0.70, r = 0.65, between ST spots and single-cell aggre-
gates (Figure 3B, Supplementary information, Supplemen-
tary Table S3). Meanwhile, the aggregated expression pro-
file of each single-cell aggregate achieves a median Pearson
correlation coefficient r = 0.66 with their corresponding ST

profiles (Supplementary information, Supplementary Fig-
ure S3).

The quasi-structure achieves a low KL-divergence, 0.067,
in the cell-type proximity (Figure 3C, Supplementary in-
formation, Supplementary Table S2). Moreover, we assess
the effectiveness of each step in SPROUT by comparing
the KL-divergence with different combinations of embed-
ding and sparsification methods (Figure 3 C). Comparing
the LFS embedding that SPROUT utilizes with constrained
t-SNE used by CSOmap, the lower median KL-divergence
and higher shape correlation in the combination of LFS em-
bedding with a sparsification method is demonstrated (Fig-
ure 3C, Supplementary information, Supplementary Fig-
ure S4). For sparsification methods, spectral graph sparsi-
fication partially reduces the pseudo affinities in the cell-
cell affinity matrix, hence achieving a smaller median KL-
divergence compared to the hard-filtering method of keep-
ing the top fifty high-affinity edges for each node. The ad-
ditional distance metric provided by spatial information ef-
fectively reduces more pseudo affinities in the cell-cell affin-
ity graph, leading to a smaller median KL-divergence. The
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Figure 3. The reconstructed quasi-structure of mouse hippocampus. (A) The 2D visualization of the ST spots (left) and the reconstructed quasi-structure
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(D) The pie charts of the LR pair contributions to the interactions of astrocytes with all other cells (top) and with only immune cells (bottom).

smallest KL-divergence, 0.067, is acquired in the combina-
tion of LFS embedding and dual sparsification, which sug-
gests the validity of each step in SPROUT.

The well-captured neighboring information in the recon-
structed quasi-structure enables identifying the driver LR
pairs mediating interactions between cell types. We only
consider the cell-cell communication between neighboring
cells, which increases the credibility of the evaluation of the
dominant force in cell-cell communication. In the recon-
structed quasi-structure, we observe that the interactions
between lipoprotein receptor-related protein 1 (Lrp1) and
apolipoprotein E (apoE) is the leading interactions among
neurons, vascular cells, and astrocytes (Figure 3D, Sup-
plementary information, Supplementary Figure S5). LRP1
mediates the metabolism of Amyloid-beta (A�), whose ac-
cumulation is a vital pathogenic element of Alzheimer’s dis-
ease. Yet apoE can block the LRP1-mediated pathway in
astrocytes, hindering the clearance of A� (57). Hence, cer-
tain immunotherapy targeting apoE has been applied to
APP/PS1 mice to meliorate the accumulation of A� (58).
The reveal of the fundamental interaction between Lrp1
and apoE in our quasi-structure consolidates the validity
of SPROUT and, therefore, its capability of providing valu-
able biological insights.

SPROUT uncovers the dominating LR pairs mediating in-
tercellular interactions in human diseases. High-quality
reconstructions of SPROUT help reveal the underlying
molecular mechanisms of human diseases. To evaluate the
performance of SPROUT processing heterogeneous tissues,

we apply SPROUT on two spatial datasets paired with
scRNA-seq data from pancreatic ductal adenocarcinoma
(PDAC) and human squamous cell carcinoma (SCC) pa-
tients. The spatial data of the PDAC dataset contains 428
spots, and the scRNA-seq data contains 1926 cells anno-
tated by 17 cell types from Moncada et al.’s work (24). The
spatial data of the SCC dataset contains 666 spots, and the
matching scRNA-seq data contains 2689 cells across 14 cell
types (25). The ST and scRNA-seq data are processed from
the same malignant tissue.

Based on the deconvolution result of stereoscope (21),
the preprocessing module of SPROUT curates 4289 and
6625 cells with replacement (�s = 10), constructing single-
cell aggregates to represent the expression profile of each
spot in the spatial data for PDAC and SCC dataset. The
feature gene of the main regions identified in Moncada
et al.’s work, CRISP3, PRSS1, TM4SF1, also express in the
corresponding regions in the quasi-structure (Figure 4 A).
Moreover, we calculated the expression correlation of each
gene between ST and single-cell aggregates (Supplemen-
tary information, Supplementary Table S3). Several cell-
type marker genes annotated in Andrew et al.’s work, for
example, CALML5, SPRR1B, KRT2, achieve high expres-
sion correlations, r = 0.79, r = 0.65, r = 0.61, between ST
spots and single-cell aggregates (Figure 4B).

Subsequently, SPROUT rebuilds the quasi-structure
from the curated single-cell aggregates. Given the high vari-
ance in the affinity values of the PDAC dataset, SPROUT
reconstructs the quasi-structure of the curated single-cell
aggregates with the precision matrix form of affinity ma-
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trix. The reconstructed quasi-structures achieve high simi-
larity, r = 0.93 and r = 0.91, of the pairwise distance with
its coupling spatial data for PDAC and SCC datasets (Sup-
plementary information, Supplementary Figure S6, Supple-
mentary information, Supplementary Table S1). Further-
more, the quasi-structure achieves low KL-divergence of
0.13 and 0.42 in the cell-type proximity between the orig-
inal and the quasi-structure for the PDAC and SCC dataset
(Figure 4C, Supplementary information, Supplementary
Table S2). When comparing across different combinations
of embedding and sparsification methods, SPROUT also
achieves the smallest median KL-divergence while combin-
ing dual sparsification and LFS embedding, which empha-
sizes the stability of SPROUT on cancer datasets. The pre-
processing procedure of SPROUT used 20 minutes to pro-
cess the PDAC dataset, the average runtime of one embed-
ding is 9.59 s (Supplementary information, Supplementary
Table S4).

Tumor heterogeneity has been an obstacle to cancer ther-
apy since mutant clones escape and thrive from the tar-
geted therapy. Our spatially informed single-cell transcrip-
tome can characterize the driver interactions between dis-
tinct subpopulations. Leveraging the high-quality quasi-
structure SPROUT reconstructed for the PDAC dataset, we
observe that the interaction between HLA-A and APLP2
contributes around 16% to the overall interaction potential
in both TM4SF1- and S100A4-expressing cancer cells (Fig-
ure 4D). APLP2 can cause a reduction in the expression
of the total cell surface major histocompatibility complex
(MHC) class I (59), which is a crucial molecule for cancer

cell recognition and elimination. The high interaction be-
tween HLA-A and APLP2 observed in the quasi-structure
indicates a potential immune escape mechanism adopted by
both TM4SF1- and S100A4-expressing cancer cells. Expect
for the mutual LR interactions, we also found distinct dom-
inating LR pairs in these two cancer types (Figure 4D). The
LR pair ITGB1-SPP1 is a major contributing factor to the
interaction for TM4SF1-expressing cancer cells. SPP1 has
been proved to abet immune escape in lung adenocarcinoma
through its mediation on macrophage polarization (60). Ex-
periments have also revealed how ITGB1-SPP1 interaction
incites the cancer progression in ovarian cancer (61). Our
finding suggests that the interaction between ITGB1 and
SPP1 potentially triggers the immune escape of TM4SF1-
expressing cancer cells. However, in S100A4-expressing can-
cer cells, the interaction between ITGA3 and CALR is more
prevalent (Figure 4D, right). ITGA3 has been identified as a
biomarker for diagnosing and prognostic predicting pancre-
atic cancer (62). The LR pair ITGA3-CALR has also been
predicted as a poor-prognostic LR pair by other datasets
from the same tissue in the recent work of Suzuki et al. (63).
These discoveries demonstrate that researchers can char-
acterize tumor heterogeneity with the high-quality quasi-
structure by revealing the driver interactions between dis-
tinct subpopulations.

Subsequently, by evaluating the LR contribution to the
cell-cell affinity in the SCC dataset, we identify the LR
pair HLA-B-CANX as a driving force behind the interac-
tion of T cells, constituting about 29% of the T cell affini-
ties. Our finding is supported by a report regarding an
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impaired CD8+ T cell-mediated immune response due to
the disturbance in HLA-B-CANX interaction in colorec-
tal cancer (64). Moreover, we investigate the dominating
LR pairs facilitating the crosstalk between T and epithe-
lial cells. We identify that the interaction between HMGB1
and SDC1 contributes around 30% to the affinity between
T and epithelial cells. HMGB1 and SDC1 have been re-
ported to associate with drug resistance in glioma (65). Fur-
thermore, the increase in HMGB1 promotes tissue invasion
and metastasis of cancer (66), and SDC1 influences the mi-
gration of mouse keratinocytes (67). Our finding connects
HMGB1 with SDC1, indicating that the reported promo-
tion of metastasis may result from the interaction between
HMGB1 and SDC1. These discoveries demonstrate that the
high-quality quasi-structure reconstructed by SPROUT fa-
cilitates disclosing the decisive LR interaction underneath
the cell-cell communications. We also discover the spatial-
temporal distribution of acinar cells (Figure 4F), which in-
dicates the developmental trajectory of the acinar cells.

Evaluating the effectiveness of SPROUT on de novo recon-
struction of single-cell datasets

We have demonstrated that the quasi-structure can be re-
constructed from cell–cell affinity with proper sparsifica-
tion. Therefore, we further evaluate the validity of SPROUT
in reconstructing the spatial organization of scRNA-seq
data without prior spatial structure.

SPROUT outperforms CSOmap on the hepatocellular carci-
noma (HCC) dataset. We apply SPROUT on the HCC
dataset consisting of 1329 cells from Ren et al.’s work,
for which the reconstruction of CSOmap obtains a Spear-
man correlation of r = 0.69 in the cell-type proximity
with the IHC image of the same tumor sample. Given
the large variance in the initial affinity values of the HCC
dataset, SPROUT rebuilds the quasi-structure with the pre-
cision matrix form of the affinity matrix. Compared with
CSOmap, the reconstructed quasi-structure of SPROUT is
visually less compact (Figure 5A) and achieves higher cell-
type proximity, that is, a Spearman correlation of r = 0.89,
with its IHC image reference (Figure 5B).

Subsequently, we evaluate the performance of combina-
tions in embedding and sparsification methods regarding
the cell-type proximity similarity (Figure 5B, Supplemen-
tary information, Supplementary Table S5). A higher cor-
relation is observed in the combination of LFS embedding
and any sparsification method when comparing LFS em-
bedding with constrained t-SNE. Moreover, spectral graph
sparsification reduces the pseudo affinities, achieving a
higher correlation than the hard-filtering method. The com-
parison between different combinations reveals the collab-
orative contribution of LFS embedding and spectral graph
sparsification for reconstruction.

The high-quality reconstructed structure enables investi-
gations on intercellular regulatory mechanisms. The inter-
action between regulatory T cells (Tregs) and CD8+ T cells
suggests an ongoing suppression of the immune response
(68), during which Treg cells induce the p38 and ERK1/2
signaling pathways ineffective T cells, which initiate DNA
damage, resulting in cell senescence (69). Consistent with

the previous study, we observe an increase in the mRNA ex-
pression of ERK1 in the Treg-CD8+ T cell interacting area,
indicating the potential of SPROUT in discovering the im-
mune response signals hidden in the scRNA-seq data.

Furthermore, the well-captured cell-type proximity in the
quasi-structure enables the analysis of the dominating LR
pairs contributing to the cell-cell affinity. We analyze the
main LR pairs between any two cell types. Specifically, we
identified the difference in the dominating LR pair between
Tregs and CD8+ T cells as well as between Treg and ex-
hausted T cells, which indicates a distinct regulation mech-
anism of Treg in these two types of cells. CCL5 is one of
the signature genes identified in exhausted T cells (70). The
contribution of CXCR3-CCL5 increases in the interaction
between Treg and exhausted T cells compared with CD8+
T cells. Indicating that the Tregs originated expression of
CXCR3 may trigger the exhaustion.

The discovery demonstrates that the high-quality quasi-
structure reconstructed de novo by SPROUT promotes the
reveal of the LR interaction underneath the cell-cell regula-
tory mechanism.

SPROUT recapitulates the signal transmission process in
the developing human heart. We apply SPROUT on a hu-
man developing heart dataset consisting of 3717 cells from
the 6.5 post-conception weeks (PCW) heart (71). We ap-
ply SPROUT to reconstruct the quasi-structure of the heart
dataset. The 3D quasi-structure of the developing human
heart demonstrates a compact structure (Figure 6 A, left).
The atrial cardiomyocytes are spatially segregated from ven-
tricular cardiomyocytes (Figure 6 A, middle), which is con-
sistent with the separation of the atrium and the ventricle in
anatomy (Figure 6 A, right). Moreover, we evaluate the cell-
type proximity similarity between the quasi-structure and
the in situ sequencing data. The quasi-structure achieves a
high normalized Spearman correlation of r = 0.68 in the
cell-type proximity.

When comparing the different combinations of embed-
ding and sparsification methods, Figure 6B demonstrates
that the reconstructed quasi-structure rebuilt by the com-
bination of spectral sparsification and LFS embedding
achieves the highest resemblance in cell-type proximity
(Supplementary information, Supplementary Table S5).
The cell-type proximity SPROUT recapitulated includes fi-
broblasts and cardiac cells (Figure 6C), enabling fibrob-
lasts to modify gene and protein expression, and ultimately
cardiac function (72). Ang II activates the paracrine secre-
tion of TGF-�1 (TGFB1, transforming growth factor-�)
and endothelin-1 (EDN1) in fibroblasts, leading to the car-
diac myocyte hypertrophy (Figure 6D) (73). Angiotensino-
gen (AGT) is a precursor for angiotensin I, which will be
eventually converted to Ang II for further activities (74).
Therefore, we inspect the proximity of AGT high-express
cell and TGFB1, EDN1 high-express cell through the neigh-
boring cell pair numbers between these cells in the quasi-
structure (Figure 6D). We consider a pair of cells are neigh-
boring if the distance is less than the median distance be-
tween any cell to its third-nearest neighbor. The proximity
between cells that express critical signaling genes provides
conditions for signaling through paracrine, consistent with
the experimentally validated signaling pathway. This con-
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sistency indicates the effectiveness of the quasi-structure re-
build by SPROUT to reveal the local signal transmission
process in the tissue.

DISCUSSION

The combination of the spatial context and expression pro-
file of each cell enables our understanding of the inter-
cellular regulation mechanism of tissue homeostasis and
pathogenesis. The scRNA-seq discards the spatial context,
and ST technologies skimp the cell resolution. Therefore,
current technologies are inadequate to produce the spa-
tial structure of tissues with single-cell resolution. In this
work, we presented SPROUT to reconstruct the single-cell
resolution spatial structure from the spatial and/or single-
cell transcriptome. SPROUT rebuilds the quasi-structure
of cells by embedding the sparsified affinity graph to a
low-dimensional space. The reconstruction accuracy of
SPROUT has been demonstrated in the mouse hippocam-
pus, human heart, and tumor microenvironment of differ-
ent organs in expression similarity, shape similarity, and
cell-type proximity.

Although SPROUT relies on a comprehensive and valid
LR pair database, extensive tests across different organ-
isms and diseases demonstrate a consistent performance of
SPROUT. The recapitulation of literature-supported ma-
jor LR interactions in TMEs and immune responses also
shows the effectiveness of the default LR datasets in provid-
ing valid biological observations. However, SPROUT can

delineate a broader range of interactions with a higher ac-
curacy if a more extensive LR pair network is expected with
future developments. Moreover, our method is extendable
to weighted LR pairs. For example, CellPhoneDB weights
LR pairs by considering subunits in a ligand–receptor com-
plex that allows a multiple-to-multiple interaction of lig-
ands and receptors (75). In addition, the preprocessing
module benefits from a comprehensive single-cell candi-
date library. It is therefore subjected to the influence of se-
quencing depth of ST data, the imbalanced sizes, inconsis-
tent cell-type constitution, and batch effects between ST
and scRNA-seq data, and the accuracy of the estimated
cell numbers per spot. Nevertheless, our evaluations consis-
tently show that SPROUT produces high-correlation quasi-
structures across various paired and unpaired datasets with
different library sizes. In particular, we recommend using
paired datasets for disease studies to ensure an accurate
reconstruction against high heterogeneity among samples.
In contrast, unpaired datasets have little influence on nor-
mal tissues which have smaller divergence in mRNA ex-
pression across different samples. SPROUT also supports
the ST and single-cell data with their batch effects removed
by other computational approaches. Previous deconvolu-
tion methods (19–23) failed to achieve a single-cell resolu-
tion, integrative methods either fall short in dealing with
heterogeneous tissue (11,24,25) or omit single-cell datasets
without spatial reference (26), and LR-based reconstruc-
tion (14) neglected the pseudo affinities of distant or indi-
rect interacting cells. Unlike previous methods, SPROUT
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Figure 6. SPROUT recapitulates the quasi-structure of the developing human heart. (A) 3D visualization of the reconstructed quasi-structure of the de-
veloping human heart (left). Ventricular and atrial cardiomyocytes are separately displayed (middle). The tissue section of 6.5 PCW (scale bar: 1 mm),
where the ventricular and atrial cardiomyocytes are manually labeled (right). Cell type label is the same as the original data: (0): Capillary endothelium; (1):
Ventricular cardiomyocytes; (2): Fibroblast-like (related to cardiac skeleton connective tissue); (3): Epicardium-derived cells; (4): Fibroblast-like (smaller
vascular development); (5): Smooth muscle cells / fibroblast-like; (7): Atrial cardiomyocytes; (8): Fibroblast-like (larger vascular development); (9): Epicar-
dial cells; (10): Endohelium / pericytes / adventia; (12): Myoz2-enriched Cardiomyocytes; (14): Cardiac neural crest cells & Schwann progenitor cells. (B)
The normalized Spearman correlation of cell-type proximity in the result of hard-filtering and sparsified graphs embedded by constrained t-SNE (orange)
and LFS embedding (blue). (C) The normalized Spearman correlation between cell-type connections based on spots in the ST section (X-axis) and the
quasi-structure reconstructed by SPROUT (Y-axis), with biases introduced by uneven cell counts among different cell types reduced after normalization.
(D) Mechanism illustration and evaluation of the regulation network between fibroblast and cardiomyocyte. Top-left: schematic diagram of molecular
mediation between fibroblast and cardiomyocyte. Bottom-left: standardized expression of above intermediate genes. Right: heatmap of the numbers of
neighboring pairs of cells expressing different marker genes.

utilizes the single-cell transcriptome, spatial transcrip-
tome, and LR interactions to reconstruct a quasi-structure
of cells in single-cell resolution by a curated affinity
graph.

A limitation of the preprocessing module is that the ac-
tual number of cells in each spot varies according to spots
and tissues. For instance, tissue like the lung, which con-
tains many alveoli, leaves plenty of cavities in the tissue sec-
tion (76). Therefore hard to estimate the cell number in each
spot accurately. For future development, we intend to in-
clude an algorithm for accurate quantification of cell num-
bers per spot by the high-resolution histological image of
the tissue section.

SPROUT reconstructs the spatial structure in single-cell
resolution, utilizing the spatial context of each cell. The
quasi-structure facilitates the acquisition of the dominat-
ing LR pairs in each cell pair, leading to the discovery
of subpopulations based on dominating LR since cell talk
subdivides cell functions. With a precise reconstruction,
SPROUT reveals the co-occurrence of different types of
cells and divergent colonization of subpopulations, which

cannot be detected solely by scRNA-seq or ST technologies.
Besides, SPROUT can acquire the dominating LR pairs in
each cell pair, leading to the discovery of novel subpopula-
tions based on dominating LR since cell talk subdivides cell
functions. These abilities shed light on the studies on tumor
heterogeneity and immune therapy. For instance, identify-
ing the disparity of immune microenvironment around dif-
ferent cancer subpopulations could guide medication and
metastatic evaluation. Furthermore, the quantification of
intercellular interactions between the cancer cell and im-
mune cell can predicate the prognosis of patients with clin-
ical information.
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The ST and scRNA-seq data we use have been previ-
ously published (14,21,24,25,50,53,71) and are available
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GSE144240. The count matrix of the developing human
heart is available at https://www.spatialresearch.org with the
erythrocytes and immune cells removed, and the labels we
use in this work remain consistent with the original publica-
tion. The HCC dataset CSOmap used is deposited at EGA
with accession number EGAS00001003449.

The software implementation of SPROUT is available at
https://github.com/deepomicslab/SPROUT.
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