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Abstract: In this study, a series of 3-(3-pyridyl)-oxazolidone-5-methyl ester derivatives was synthe-
sized and characterized by 1H NMR, 13C NMR, and LC-MS. The conducted screening antibacterial
studies of the new 3-(3-pyridyl)-oxazolidone-5-methyl ester derivatives established that the methyl
sulfonic acid esters have broad activity spectrum towards Staphylococcus aureus, Streptococcus pneumo-
niae, Bacillus subtilis and Staphylococcus epidermidis. Among them, compound 12e has the most potent
activity, with an MIC of 16 µg/mL against B.subtilis, and could reduce the instantaneous growth rate
of bacteria. Furthermore, molecular docking studies were also simulated for compound 12e to predict
the specific binding mode of this compound. In addition, anthelmintic activity of these compounds
was also evaluated against adult Indian earthworms (Pheretima posthuman). The results showed that
compound 11b had the best effect. These results above can provide experimental reference for the
development of novel antibacterial and anthelmintic drugs.

Keywords: pyridinyl-oxazolidinone derivatives; synthesis; antibacterial activity; molecular docking;
anthelmintic activity

1. Introduction

With bacterial resistance comes a grave threat to global public health security. Owing
to the rapid growth of clinical drug-resistant bacteria, the number of effective anti-infective
drugs has declined, and patient mortality is increasing [1–5]. It is estimated that about
10 million people all over the world will die from drug-resistant bacterial infections, which
will become the leading cause of human disease death, and lead to the loss of global
GDP of US $100 trillion by 2050 [6]. Therefore, how to effectively deal with the bacterial
resistance crisis is a challenging question. Many new therapies, such as those utilizing
nanoparticles, phages, and protic ionic liquids, are being developed [7–11]. However, these
technologies are still immature and have not been effectively used clinically [12–14]. At
present, chemosynthesized antibacterial agents still play an indispensable role in clinical
practice. Therefore, for pharmaceutical chemists all over the world, the discovery of novel
active antibacterial compounds is an urgent mission and the direction of continuous efforts.

Linezolid, an oxazolidinone antibacterial agent, has been widely used in the treatment
of infection caused by multi-drug-resistant Gram-positive bacteria since it was approved
for clinical use in 2000. However, with clinical use gradually increasing, many linezolid-
resistant strains have also been reported [15–18]. To find novel, safe and effective antibacte-
rial drugs, there have been many studies in recent years on the structural modification of
linezolid [19–25]. Among them, many have focused on the modification of five-position
side chains of oxazolidine and the morpholine ring, while a few have explored the benzene
ring of linezolid. In addition, anthelmintic properties of linezolid derivatives have also
been found [26].
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The pyridine heterocyclic ring has been widely used in the medicine field because
of its distinctive aromatic and electronegative properties [27–31]. In our previous stud-
ies, a series of pyridine heterocyclic derivatives were evaluated to have good biological
activities [32–34]. Among them, compound 1 showed good antibacterial and anthelmintic
activities in vitro. Based on previous research and theory [35], here we replaced the benzene
ring with pyridine and a nitrogen atom with an oxygen atom at the 5-position side chain of
the oxazolidone ring. A series of 3-(3-pyridyl)-oxazolidinone-5-methyl ester derivatives
were designed and synthesized (Figure 1), and their antibacterial and anthelmintic effects
in vitro were evaluated.

Figure 1. Design strategy of 3-(3-pyridyl)-oxazolidone-5-methyl ester derivatives.

2. Results and Discussion
2.1. Chemistry

The general synthetic route for the target compounds is illustrated in Scheme 1.
The commercially available 2-chloro-5-nitropyridine was reacted with morpholine to pro-
duce intermediate 2. Then, the nitro group was reduced to prepare amine 4. After the
introduction of the Cbz group, intermediate 6 was cyclized with (R)-(-)-butylglycidyl ester
under the condition of −78 ◦C and n-butyllithium (n-BuLi) to produce oxazolidinone
intermediate 9. Finally, ester derivatives 11a–i were prepared with intermediate 9 and
different acids, sulfonyl chlorides and isocyanates. Compounds 12a–h were obtained by
similar methods.

Scheme 1. Synthesis route of the target compounds.
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2.2. Antibacterial Activity Assay
2.2.1. Screening of Antibacterial Activity

All twelve synthesized compounds were tested against four Gram-positive strains,
including S. aureus (ATCC25923), S. pneumoniae (ATCC49619), B. subtilis (BNCC109047) and
S. epidermidis (BNCC186652) by broth dilution method with linezolid as the standard drug,
and the MIC values are listed in Table 1.

Table 1. In vitro antibacterial activity of target derivatives (MIC: µg/mL).

Compound
Antimicrobial Screening MIC (µg/mL)

S. Aureus
Atcc 25923

S. Pneumoniae
Atcc 49619

B. Subtilis
Bncc 109047

S. Epidermidis
Bncc 186652

11a 128 >256 256 >256
11b 128 >256 128 >256
11c >256 >256 128 >256
11d >256 >256 256 >256
11e >256 >256 >256 >256
11f 256 128 128 128
11g >256 256 >256 128
11h 128 128 64 128
11i >256 256 >256 >256
12a 32 32 32 16
12b 128 128 128 128
12c 64 32 32 32
12d 32 64 64 64
12e 32 32 16 32
12f 128 128 64 64
12g 128 32 32 128
12h 128 128 128 128

Linezolid 2 2 2 2
MIC: minimal inhibit concentration.

Initially, keeping the morpholine ring of linezolid in our structure, compounds 11a–i
were synthesized and evaluated for antibacterial activity against four gram-positive strains.
Unfortunately, the activity of most compounds was generally weak, with only compounds
11f and 11h showing a broad-spectrum effect.

Therefore, while maintaining the methyl sulfonyl group on the C-5 side chain, com-
pounds 12a–h were synthesized by replacing the morpholine ring with a piperazine ring
and modifying the side chain further. Their activity was significantly improved and they
all had broad-spectrum antibacterial action. Among these compounds, compounds 12a
and 12e had the best antibacterial activity, with the lowest MIC values reaching 16 µg/mL,
indicating that the flexible substituents linked with piperazine had stronger antibacterial
activity. The activity of 12c and 12d was slightly weaker than that of 12a and 12e, probably
due to the presence of long-chain substituents, which were less binding than flexible rings,
but their long chains were morphologically consistent with the target. Conversely, rigid
rings, such as 12b, reduced antibacterial activity. Compared with our previous work, these
compounds still retain antibacterial activity after changing the core structure to oxazolidi-
none [34]. Here the antibacterial activity of the synthesized compounds was not as good as
linezolid, which may be due to its reduced affinity with the target caused by the structural
changes. In addition, a bacterial inhibitory zone test of 12e against S. aureus was provided
to visually observe bacteriostatic effects of 12e (Figure 2). It can be seen from the figure that
the bacteriostatic zone increased with the increase of drug concentration, and the diameter
of the zone was similar to that of linezolid at a concentration of 20 ×MIC.
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Figure 2. Bacteriostatic zone of 12e against S. aureus at different concentrations. (MIC: minimal
inhibit concentration).

2.2.2. Bacterial Growth Kinetic Study

The growth curve of bacteria directly shows the process and rule of the change of
bacterial concentration with time, while the growth inhibition curve of bacteria can directly
reflect the influence of drugs on the growth process of bacteria [36]. The growth inhibition
curve of compound 12e against Bacillus subtilis is shown in Figure 3.

Figure 3. Inhibition of the growth of Bacillus subtilis by different concentrations of compound 12e.
(MIC: minimal inhibit concentration; O. D.: optical density.)

Without treatment (red) or the presence of 1/4 MIC (blue) of 12e, the bacteria increased
sharply in the log phase (2–10 h). With the increase in concentration, the lag phase was
prolonged and the duration of the logarithmic phase was shortened. The significantly
change was that the decreased instantaneous growth rate led to the plateau phase concen-
tration reduction, which was manifested by the difference of the final turbidity of bacterial
liquid. Until 2 ×MIC of 12e (green) and linezolid (yellow), there was no obvious growth
of bacteria.

These findings revealed that 12e was an excellent bactericidal agent in a concentration-
dependent manner, and mainly disturbed the instantaneous growth rate of bacteria in the
logarithmic phase.

2.3. Binding Mode Study

To explore the mechanism of the active compound 12e, Auto-Dock software was used
to perform docking analysis with the 50S ribosomal subunit (PDB ID: 3CPW).

The docking result from Figure 4 demonstrated that 12e was inclined to locate in a
long and narrow channel with a fully extended state. The five-position side chain of the
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oxazolidine ring was binding to a relatively small cavity (yellow), which could only accom-
modate a small group. This might be the reason for the moderate activity of compound
11h. In addition, it was discovered that the 4′-position side chain of the piperazine ring
extended into a deep cavity (red), which could accommodate bigger structural groups
after containing the flexible cyclohexyl group. Presumably, compounds 12a–h had better
antibacterial effect than 11a–i, because they were suitable for the narrow cavity (yellow),
and occupied the larger and deeper region (red) at the same time, making them more
closely combined with the target.

Figure 4. Binding pocket of compound 12b with the 50S ribosomal subunit.

The specific mechanism of action is shown in Figure 5; the oxygen atoms of the
sulfonyl group formed two hydrogen bonds with A2473. It followed that the sulfonyl
group presumedly had better ability to form hydrogen bonds than the carbonyl group,
which explained why 11h had the best antibacterial activity among 11a–i. In addition, the
piperazine-linked urea group of 12e extended into the deep cavity forming a hydrogen
bond with G2283, making 12b more effective.

Figure 5. Binding mode of compound 12e to the ribosomal subunit 50S.

2.4. Anthelmintic Activity Assay

Anthelmintic activity assay of 17 target compounds was performed using adult Indian
earthworm (Pheretima posthuman) with albendazole as the positive standard drug. Efficacy
was assessed by counting the paralysis and death time, and the results are shown in Table 2.
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Table 2. Anthelmintic Activities of Target Compounds.

Compound Mean Paralysis Time/Min Mean Death Time/Min

11a 11.0 ± 1.8 35.9 ± 5.2
11b 3.6 ± 0.2 8.1 ± 0.8
11c 28.3 ± 5.8 >60
11d 8.6 ± 1.4 35.6 ± 6.0
11e 13.0 ± 0.4 >60
11f 11.6 ± 1.0 >60
11g 13.7 ± 1.7 52.1 ± 7.0
11h 14.8 ± 0.9 >60
11i 18.8 ± 2.7 >60
12a 17.4 ± 1.7 55.2 ± 2.9
12b 22.6 ± 4.3 >60
12c 19.5 ± 2.2 50.3 ± 1.9
12d 18.3 ± 2.1 55.2 ± 5.0
12e 33.1 ± 2.3 >60
12f 35.8 ± 2.3 >60
12g 32.6 ± 3.6 >60
12h 15.6 ± 1.7 >60

Albendazole 15.0 ± 1.5 40.8 ± 4.3

For compounds 11a–i, the paralysis time of most compounds was less than 15 min,
and the death time was more than 50 min, indicating that these compounds had significant
paralysis effect on earthworms, but poor insecticidal action. In terms of shorter paralysis
time (3.6 ± 0.2 min) and death time (8.1 ± 0.8 min), the anthelmintic effect of compound
11b was better than albendazole and our previous compounds, indicating that it has
potential to be developed into a new anthelmintic drug [34]. For compounds 12a–h, the
paralysis time was more than 15 min and death time was not discovered within 50 min,
indicating that these compounds had poor anthelmintic activity, even though they had
good antibacterial activity.

3. Materials and Methods
3.1. Chemical Reagents and Instruments

Before using, tetrahydrofuran (THF) was dried with sodium under reflux, dichloromethane
(DCM) was dried with CaH2 under reflux and triethylamine (TEA) was dried with molecular
sieve. All the reagents above were chemically pure (Tianjin Tianli Chemical Reagent Co., Ltd.,
Tianjin, China). All the other reagents and compounds used in this study were commercially
available analytically pure (AR) without further purification.

All the chemical reactions were detected by thin-layer chromatography (TLC), which
was conducted on silica gel G plates (Taizhou Luqiao Sijia Biochemical Plastic Products
Factory, Taizhou, China). The plates were observed under a Zf-2 tri-use ultraviolet analyzer
(Shanghai Anting Electronic Instruments Factory, Shanghai, China). Most of the reaction
mixtures were purified by column chromatography carried out on 200–300 mesh sieve
specifications Silica Gel (Qingdao Ocean Chemical Co., Ltd., Qingdao, China).

All the purified compounds underwent the following tests to verify their purity and
structure: a WRS-1A melting point apparatus (Shanghai Shinuo Physical Optical Instru-
ment Co., Ltd., Shanghai, China) was used to assess the compounds’ melting points.
The 1H-NMR and 13C-NMR of each compound were recorded on an NMR spectrometer
(Varian, Salt Lake City, UT, USA) in DMSO-d6 with tetramethyl-silane (TMS) as an inter-
nal standard. The mass spectra (MS) of each compound were registered in an Agilent
1100 liquid chromatography-mass spectrometry (LC/MS) instrument (Agilent Technolo-
gies Co., Ltd., Santa Clara, CA, USA).

In addition, all the work in the biological activity test was completed in a DL-CJ-2N high-
performance aseptic test stand (Beijing Donglian Haer Instrument Manufacturing Co., Ltd.,
Beijing, China). All biological media such as Mueller–Hinton (MH) broth medium, Luria–
Bertani (LB) broth medium and Nutrient Agar (Qingdao High-tech Park Haibo Biotech-
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nology Co., Ltd., Qingdao, China) were all dissolved directly with deionized water then
sterilized by a vertical autoclave (Zealway Instrument Co., Ltd., Xiamen, China). Bac-
teria used in this experiment were grown in an MCO-20AIC carbon dioxide incubator
(SANYO Co., Ltd., Osaka, Japan).

3.2. Synthesis of the Target Compounds

Intermediates 2–10 were synthesized according to the steps in the literature [31–34].

3.2.1. General Procedure for the Preparation of Compounds (11a–e)

Take compound (R)-(3-(6-morpholinopyridin-3-yl)-2-oxooxazolidin-5-yl) methyl ac-
etate (11a) as an example. To a solution of compound 9 (0.29 mmol), 4-dimethyl aminopy-
ridine (DMAP, 0.06 mmol) and 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDCI,
1.5 mmol) in 4 mL DCM, was added drop of acetyl chloride (0.38 mmol) and stirred
overnight. After the reaction completed, the reaction mixture was extracted with water
and DCM (5 mL × 3). The combined organic phase was dried with anhydrous Na2SO4
and concentrated under reduced pressure. The target compound (11a) was separated by
column chromatography (PE/EA, 3/1). Yield 72%. A white solid, m. p. 92.9–95.1 ◦C; 1H
NMR (600 MHz, DMSO-d6) δ 8.23 (d, J = 3.0 Hz, 1H, H2-pyridine), 7.83 (dd, J = 9.0, 3.0 Hz, 1H,
H4-pyridine), 6.89 (d, J = 9.0 Hz, 1H, H5-pyridine), 4.94–4.90 (m, 1H, H5-oxazolidone), 4.31–4.24
(m, 2H, OCH2), 4.12–4.10 (m, 1H, H4-oxazolidone), 3.80–3.77 (m, 1H, H4-oxazolidone), 3.72–3.68
(m, 4H, morpholine), 3.42–3.37 (m, 4H, morpholine), 2.06 (s, 3H, CH3); 13C NMR (150 MHz,
DMSO-d6) δ 170.7, 156.8, 154.9, 139.2, 130.0, 126.8, 107.5, 71.1, 66.4, 64.8, 47.0, 46.0, 21.0; ES-MS:
m/z calcd. for C15H19N3O5 [M + H]+: 322.1; found: 322.110.

(R)-(3-(6-morpholinopyridin-3-yl)-2-oxooxazolidin-5-yl)methyl cyclohexanecarboxylate (11b).
A pink solid; yield 65%; m. p. 96.6–99.1 ◦C; 1H NMR (600 MHz, DMSO-d6) δ 8.24 (d,

J = 3.0 Hz, 1H, H2-pyridine), 7.83 (dd, J = 9.0, 3.0 Hz, 1H, H4-pyridine), 6.90 (d, J = 9.0 Hz,
1H, H5-pyridine), 5.03–4.96 (m, 1H, H5-oxazolidone), 4.23–4.18 (m, 1H, OCH2), 4.04–3.92
(m, 2H, OCH2 and H4-oxazolidone), 3.76–3.74 (m, 1H, H4-oxazolidone), 3.72–3.68 (m, 4H,
morpholine), 3.42–3.38 (m, 4H, morpholine), 3.09–3.05 (m, 4H, cyclohexane), 1.20–1.18 (m,
7H, cyclohexane); 13C NMR (150 MHz, DMSO-d6) δ 175.8, 159.3, 154.4, 146.4, 135.1, 114.8,
106.7, 78.9, 65.8, 44.8, 43.8, 41.5, 28.6, 25.3, 25.2, 14.1; ES-MS: m/z calcd. for C20H27N3O5
[M + H]+: 390.2; found: 390.204.

((R)-3-(6-morpholinopyridin-3-yl)-2-oxooxazolidin-5-yl)methyl tetrahydrofuran-2-carboxylate (11c).
Red oil; yield 51%; 1H NMR (600 MHz, DMSO-d6) δ 8.23 (d, J = 3.0 Hz, 1H, H2-pyridine),

7.83 (dd, J = 9.0, 3.0 Hz, 1H, H4-pyridine), 6.90 (d, J = 9.0 Hz, 1H, H5-pyridine), 4.97–4.93
(m, 1H, H5-oxazolidone), 4.48–4.27 (m, 3H, tetrahydrofuran), 4.15–4.12 (m, 1H, OCH2),
3.82–3.73 (m, 3H, OCH2 and H4-oxazolidone), 3.73–3.66 (m, 4H, morpholine), 3.44–3.38 (m,
4H, morpholine), 2.17–2.11 (m, 1H, tetrahydrofuran), 1.93–1.70 (m, 3H, tetrahydrofuran);
13C NMR (150 MHz, DMSO-d6) δ 173.1, 159.4, 154.4, 146.4, 135.1, 114.7, 106.7, 78.5, 77.6,
68.5, 65.8, 44.8, 41.4, 37.2, 30.0, 24.8; ES-MS: m/z calcd. for C18H23N3O6 [M + H]+: 378.2;
found: 378.138.

(R)-(3-(6-morpholinopyridin-3-yl)-2-oxooxazolidin-5-yl)methyl benzoate (11d).
A red solid; yield 62%; m. p. 97.4–100.0 ◦C; 1H NMR (600 MHz, DMSO-d6) δ 8.24 (d,

J = 3.0 Hz, 1H, H2-pyridine), 7.83 (dd, J = 9.0, 3.0 Hz, 1H, H4-pyridine), 7.30–7.12 (m, 5H,
benzene), 6.89 (d, J = 9.0 Hz, 1H, H5-pyridine), 4.92–4.89 (m, 1H, H5-oxazolidone), 4.35–4.24
(m, 2H, OCH2), 4.13–4.08 (m, 1H, H4-oxazolidone), 3.79–3.72 (m, 1H, H4-oxazolidone),
3.72–3.67 (m, 4H, morpholine), 3.45–3.34 (m, 4H, morpholine), 2.85–2.82 (m, 2H, CH2),
2.68–2.64 (m, 2H, CH2); 13C NMR (150 MHz, DMSO-d6) δ 171.9, 159.4, 154.5, 146.4, 141.2,
135.2, 128.2, 128.1, 125.8, 114.8, 106.7, 78.9, 65.9, 44.8, 42.0, 41.6, 36.8, 31.1; ES-MS: m/Z calcd.
for C22H25N3O5 [M + H]+: 412.2; found: 412.148.

(R)-(3-(6-morpholinopyridin-3-yl)-2-oxooxazolidin-5-yl)methyl nicotinate (11e).
A red solid; yield 65%; m. p. 120.3–121.0 ◦C; 1H NMR (600 MHz, DMSO-d6) δ 9.05

(d, J = 1.8 Hz, 1H, pyridine), 8.82 (dd, J = 4.8, 1.8 Hz, 1H, pyridine), 8.29–8.23 (m, 2H,
pyridine (B ring) and pyridine), 7.84 (dd, J = 9.0, 3.0 Hz, 1H, H4-pyridine (B ring)), 7.57 (dd,
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J = 7.8, 4.8 Hz, 1H, pyridine), 6.90 (d, J = 9.0 Hz, 1H, H5-pyridine (B ring)), 5.13–5.06 (m, 1H,
H5-oxazolidone), 4.66–4.53 (m, 2H, OCH2), 4.23–4.22 (m, 1H, H4-oxazolidone), 4.01–3.99
(m, 1H, H4-oxazolidone), 3.72–3.68 (m, 4H, morpholine), 3.42–3.38 (m, 4H, morpholine);
13C NMR (150 MHz, DMSO-d6) δ 165.3, 159.4, 154.5, 151.9, 148.4, 146.5, 135.2, 135.0, 129.7,
123.4, 114.7, 106.7, 78.5, 65.9, 44.8, 42.6, 37.5; ES-MS: m/z calcd. for C19H20N4O5 [M + H]+:
385.1; found: 385.133.

Raw data for the above products are presented in Supplementary Materials (Figures S1–S16).

3.2.2. General Procedure for the Preparation of Compounds (11f–i and 12a–h)

Take compound (R)-(3-(6-morpholinopyridin-3-yl)-2-oxooxazolidin-5-yl) methyl cy-
clohexylcarbamate (11f) as an example. To a solution of compound 9 (0.29 mmol), TEA
(0.58 mmol) in 4 mL DCM was added drop of isocyanatocyclohexane (0.44 mmol) under
0 ◦C, then the mixture was raised to room temperature and stirred overnight. After the
reaction completed, the mixture was extracted with water and DCM (5 mL × 3). The com-
bined organic phase was dried with anhydrous Na2SO4 and concentrated under reduced
pressure. The mixture was recrystallized with petroleum ether (PE) and ethyl acetate (EA)
to obtain compound (11f). Yield 65%. A red solid, m. p. 200.7–203.0 ◦C; 1H NMR (600 MHz,
DMSO-d6) δ 8.24 (d, J = 3.0 Hz, 1H, H2-pyridine), 7.83 (dd, J = 9.0, 3.0 Hz, 1H, H4-pyridine),
7.27 (d, J = 7.8 Hz, 1H, NHCO), 6.89 (d, J = 9.0 Hz, 1H, H5-pyridine), 4.89–4.85 (m, 1H,
H5-oxazolidone), 4.28–4.16 (m, 2H, OCH2), 4.11–4.08 (m, 1H, H4-oxazolidone), 3.86–3.72
(m, 1H, H4-oxazolidone), 3.71–3.69 (m, 4H, morpholine), 3.40–3.39 (m, 4H, morpholine),
1.75–1.59 (m, 4H, cyclohexane), 1.55–1.49 (m, 2H, cyclohexane), 1.29–1.20 (m, 3H, cyclohex-
ane), 1.18–1.06 (m, 1H, cyclohexane), 1.04–0.96 (m, 1H, cyclohexane); 13C NMR (150 MHz,
DMSO-d6) δ 159.3, 157.4, 154.6, 146.4, 135.2, 114.8, 106.7, 79.7, 65.8, 47.6, 44.8, 42.4, 36.9, 33.2,
25.3, 24.4; ES-MS: m/z calcd. for C20H28N4O5 [M + H]+: 405.2; found: 405.174.

(R)-(3-(6-morpholinopyridin-3-yl)-2-oxooxazolidin-5-yl)methyl (4-chlorophenyl)carbamate (11g).
A red solid; yield 58%; m. p. 185.0–187.9 ◦C; 1H NMR (600 MHz, DMSO-d6) δ

8.90 (s, 1H, NHCO), 8.25 (d, J = 3.0 Hz, 1H, H2-pyridine), 7.84 (dd, J = 9.0, 3.0 Hz, 1H,
H4-pyridine), 7.50–7.46 (m, 2H, benzene), 7.35–7.31 (m, 2H, benzene), 6.89 (d, J = 9.0 Hz,
1H, H5-pyridine), 4.99–4.96 (m, 1H, H5-oxazolidone), 4.12–4.35 (m, 2H, OCH2), 4.15–4.12
(m, 1H, H4-oxazolidone), 3.85–3.82 (m, 1H, H4-oxazolidone), 3.71–3.69 (m, 4H, morpholine),
3.43–3.38 (m, 4H, morpholine); 13C NMR (150 MHz, DMSO-d6) δ 156.7, 154.9, 153.5, 152.8,
139.1, 129.9, 129.1, 126.8, 126.0, 120.3, 107.5, 71.5, 66.4, 65.1, 46.8, 46.0; ES-MS: m/z calcd. for
C20H21ClN4O5 [M + H]+: 433.1; found: 433.098.

(R)-(3-(6-morpholinpyridin-3-yl)-2-oxooxazolidin-5-yl)methyl methanesulfonate (11h).
A yellow solid; yield 75%; m. p. 184.2—185.9 ◦C; 1H NMR (600 MHz, DMSO-d6),

δ: 8.23 (d, J = 3.0 Hz, 1H, H2-pyridine), 7.82 (dd, J = 9.0, 3.0 Hz, 1H, H4-pyridine), 6.90
(d, J = 9.0 Hz, 1H, H5-pyridine), 5.02–4.96 (m, 1H, H5-oxazolidone), 4.53–4.44 (m, 2H,
OCH2), 4.17–4.12 (m, 1H, H4-oxazolidone), 3.80–3.76 (m, 1H, H4-oxazolidone), 3.71– 3.68
(m, 4H, morpholine), 3.41– 3.39 (m, 4H, morpholine), 3.26 (s, 3H, CH3); 13C NMR (150 MHz,
DMSO-d6) δ 156.8, 154.7, 139.2, 130.1, 126.6, 107.5, 70.8, 70.3, 66.4, 46.6, 45.9, 37.3; ES-MS:
m/z calcd. for C14H19N3O6S [M + H]+: 358.1; found: 358.096.

(R)-(3-(6-morpholinpyridin-3-yl)-2-oxooxazolidin-5-yl)methyl benzenesulfonate (11i).
Red oil; yield 55%; 1H NMR (600 MHz, DMSO-d6) δ 8.13 (d, J = 3.0 Hz, 1H, H2-pyridine),

7.94 (dd, J = 9.0, 3.0 Hz, 1H, H4-pyridine), 7.85–7.80 (m, 1H, benzene), 7.63–7.59 (m, 2H,
benzene), 7.36–7.26 (m, 2H, benzene), 7.16 (d, J = 9.0 Hz, 1H, H5-pyridine), 5.00–4.95 (m,
1H, H5-oxazolidone), 4.41–4.33 (m, 1H, OCH2), 4.19–4.11 (m, 1H, OCH2), 3.83–3.79 (m, 2H,
H4-oxazolidone), 3.74–3.72 (m, 4H, morpholine), 3.51–3.48 (m, 4H, morpholine); 13C NMR
(150 MHz, DMSO-d6) δ 159.9, 154.9, 146.9, 141.0, 135.7, 132.9, 129.7, 126.9, 115.1, 107.2, 79.1,
66.3, 46.1 45.2, 37.6; ES-MS: m/z calcd. for C19H21N3O6S [M + H]+: 420.2; found: 420.111.

(R)-(3-(6-(4-(cyclohexanecarbonyl)piperazin-1-yl)pyridin-3-yl)-2-oxooxazolidin-5-yl)methyl
methanesulfonate (12a).

A white solid; yield 73%; m. p. 111.3–112.5 ◦C; 1H NMR (600 MHz, DMSO-d6) δ
8.23 (d, J = 3.0 Hz, 1H, H2-pyridine), 7.84 (dd, J = 9.0, 3.0 Hz, 1H, H4-pyridine), 6.94
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(d, J = 9.0 Hz, 1H, H5-pyridine), 5.02–4.98 (m, 1H, H5-oxazolidone), 4.54–4.44 (m, 2H,
OCH2), 4.15–4.13 (m, 1H, H4-oxazolidone), 3.82–3.73 (m, 1H, H4-oxazolidone), 3.61–3.59
(m, 4H, piperazine), 3.50–3.48 (m, 4H, piperazine), 3.26 (s, 3H, CH3), 1.77–1.65 (m, 11H,
cyclohexane); 13C NMR (150 MHz, DMSO-d6) δ 174.1, 154.7, 139.2, 130.3, 128.9, 126.5, 107.9,
70.8, 70.3, 46.6, 46.0, 45.4, 44.8, 37.3, 29.6, 26.1, 25.6; ES-MS: m/z calcd. for C21H30N4O6S
[M + H]+: 467.5; found: 467.183.

(R)-(2-oxo-3-(6-(4-(4-(trifluoromethyl)benzoyl)piperazin-1-yl)pyridin-3-yl)oxazolidin-5-yl)methyl
methanesulfonate (12b).

A white solid; yield 72%; m. p. 164.2–165.3 ◦C; 1H NMR (600 MHz, DMSO-d6) δ
8.24 (d, J = 3.0 Hz, 1H, H2-pyridine), 7.87–7.82 (m, 3H, H4-pyridine and benzene), 7.68
(d, J = 7.8 Hz, 2H, benzene), 6.94 (d, J = 9.0 Hz, 1H, H5-pyridine), 5.02–4.98 (m, 1H,
H5-oxazolidone), 4.54–4.44 (m, 2H, OCH2), 4.17–4.13 (m, 1H, H4-oxazolidone), 3.80–3.60
(m, 5H, H4-oxazolidone and piperazine), 3.49–3.36 (m, 4H, piperazine), 3.26 (s, 3H, CH3);
13C NMR (150 MHz, DMSO-d6) δ 168.3, 166.4, 156.3 (d, J = 231.1 Hz), 154.8, 140.5, 139.3,
130.2, 128.3, 126.6, 126.0, 107.8, 70.8, 70.3, 46.6, 41.7, 40.5, 37.3.; ES-MS: m/z calcd. for
C22H23F3N4O6S [M + H]+: 529.5; found: 529.104.

(R)-(2-oxo-3-(6-(4-(3-phenylpropanoyl)piperazin-1-yl)pyridin-3-yl)oxazolidin-5-yl)methyl
methanesulfonate (12c).

A yellow solid; yield 74%; m. p. 133.0–135.0 ◦C; 1H NMR (600 MHz, DMSO-d6) δ 8.22
(d, J = 3.0 Hz, 1H, H2-pyridine), 7.82 (dd, J = 9.0, 3.0 Hz, 1H, H4-pyridine), 7.31–7.24 (m, 5H,
benzene), 6.91 (d, J = 9.0 Hz, 1H, H5-pyridine), 5.014.97 (m, 1H, H5-oxazolidone), 4.54–4.44
(m, 2H, OCH2), 4.16–4.13 (m, 1H, H4-oxazolidone), 3.79–3.77 (m, 1H, H4-oxazolidone),
3.58–3.51 (m, 4H, piperazine), 3.43–3.40 (m, 4H, piperazine), 3.26 (s, 3H, CH3), 2.86–2.76
(m, 2H, CH2), 2.70–2.62 (m, 2H, CH2).; 13C NMR (150 MHz, DMSO-d6) δ 170.6, 156.3, 154.7,
141.9, 139.4, 130.2, 128.9, 128.7, 126.4, 126.3, 107.7, 70.8, 46.6, 45.6, 44.9, 41.1, 37.3, 34.5, 31.2;
ES-MS: m/z calcd. for C23H28N4O6S [M + H]+: 489.56; found: 489.163.

(R,E)-(2-oxo-3-(6-(4-(3-(pyridin-3-yl)acryloyl)piperazin-1-yl)pyridin-3-yl)oxazolidin-5-yl)methyl
methanesulfonate (12d).

A yellow solid; yield 75%; m. p. 104.5–106.7 ◦C; 1H NMR (600 MHz, DMSO-d6) δ 8.91
(d, J = 2.4 Hz, 1H, pyridine), 8.56 (dd, J = 4.8, 1.8 Hz, 1H, pyridine), 8.25 (d, J = 3.0 Hz, 1H,
H2-pyridine (B ring)), 8.23–8.20 (m, 1H, pyridine), 7.88–7.83 (m, 1H, H4-pyridine (B ring)),
7.58–7.46 (m, 3H, pyridine and alkene), 6.98–6.95 (m, 1H, H5-pyridine (B ring)), 5.02–4.79
(m, 1H, H5-oxazolidone), 4.54–4.46 (m, 1H, OCH2), 4.19–4.05 (m, 1H, OCH2), 3.88–3.66 (m,
6H, H4-oxazolidone and piperazine), 3.56–3.51 (m, 4H, piperazine), 3.27 (s, 3H, CH3). 13C
NMR (150 MHz, DMSO-d6) δ 164.7, 156.1, 155.1, 150.6, 150.0, 138.8, 135.1, 131.4, 130.2, 130.0,
126.9, 124.3, 120.8, 107.8, 73.0, 72.2, 70.8, 59.2, 46.9, 37.3; ES-MS: m/z calcd. for C22H25N5O6S
[M + H]+: 488.5; found: 489.181.

(R)-(3-(6-(4-(cyclohexylcarbamoyl)piperazin-1-yl)pyridin-3-yl)-2-oxooxazolidin-5-yl)methyl
methanesulfonate (12e).

A white solid; yield 61%; m. p. 195.0–197.6 ◦C; 1H NMR (600 MHz, DMSO-d6) δ
8.22 (d, J = 3.0 Hz, 1H, H2-pyridine), 7.82 (dd, J = 9.0, 3.0 Hz, 1H, H4-pyridine), 6.93
(d, J = 9.0 Hz, 1H, H5-pyridine), 6.25 (d, J = 7.8 Hz, 1H, NHCON), 5.02–4.97 (m, 1H,
H5-oxazolidone), 4.54–4.43 (m, 2H, OCH2), 4.18–4.13 (m, 1H, H4-oxazolidone), 3.80–3.77
(m, 1H, H4-oxazolidone), 3.46–3.37 (m, 8H, piperazine), 3.27 (s, 3H, CH3), 1.78–1.73 (m, 2H,
cyclohexane), 1.71–1.67 (m, 2H, cyclohexane), 1.60–1.55 (m, 1H, cyclohexane), 1.29–1.13 (m,
5H, cyclohexane), 1.12–1.03 (m, 1H, cyclohexane); 13C NMR (150 MHz, DMSO-d6) δ 157.3,
156.6, 154.7, 139.4, 130.1, 126.3, 107.7, 70.8, 70.3, 49.6, 46.6, 45.4, 43.5, 37.3, 33.6, 25.9, 25.6;
ES-MS: m/z calcd. for C21H31N5O6S [M + H]+: 482.2; found: 482.203.

(R)-((3-(6-(4-(4-chlorophenyl)carbamoyl)piperazin-1-yl)pyridin-3-yl)-2-oxooxazolidin-5-yl)methyl
methanesulfonate (12f).

A white solid; yield 53%; m. p. 210.5—212.9 ◦C; 1H NMR (600 MHz, DMSO-d6) δ
8.73 (s, 1H, NHCON), 8.24 (d, J = 3.0 Hz, 1H, H2-pyridine), 7.84 (dd, J = 9.0, 3.0 Hz, 1H,
H4-pyridine), 7.55–7.50 (m, 2H, benzene), 7.31–7.27 (m, 2H, benzene), 6.97 (d, J = 9.0 Hz,
1H, H5-pyridine), 5.03–4.98 (m, 1H, H5-oxazolidone), 4.53–4.46 (m, 2H, OCH2), 4.17–4.14
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(m, 1H, H4-oxazolidone), 3.81–3.78 (m, 1H, H4-oxazolidone), 3.58–3.56 (m, 4H, piperazine),
3.53–3.51 (m, 4H, piperazine), 3.27 (s, 3H, CH3); 13C NMR (150 MHz, DMSO-d6) δ 156.5,
155.3, 154.7, 140.0, 139.4, 130.2, 128.7, 126.4, 125.8, 121.5, 107.8, 70.8, 70.3, 46.6, 45.4, 43.8,
37.3; ES-MS: m/z calcd. for C21H24ClN5O6S [M + H]+:510.1; found: 510.122.

(R)-(3-(6-(4-((4-fluorophenyl)sulfonyl)piperazin-1-yl)pyridin-3-yl)-2-oxooxazolidin-5-yl)methyl
methanesulfonate (12g).

A white solid; yield 58%; m. p. 215.7—218.3 ◦C; 1H NMR (600 MHz, DMSO-d6) δ 8.19
(d, J = 3.0 Hz, 1H, H2-pyridine), 7.87–7.82 (m, 2H, benzene), 7.81 (dd, J = 9.0, 3.0 Hz, 1H,
H4-pyridine), 7.53–7.46 (m, 2H, benzene), 6.90 (d, J = 9.0 Hz, 1H, H5-pyridine), 5.00–4.96
(m, 1H, H5-oxazolidone), 4.52–4.42 (m, 2H, OCH2), 4.14–4.11 (m, 1H, H4-oxazolidone),
3.77–3.75 (m, 1H, H4-oxazolidone), 3.60–3.55 (m, 4H, piperazine), 3.26 (s, 3H, CH3), 3.00–2.98
(m, 4H, piperazine); 13C NMR (150 MHz, DMSO-d6) δ 165.2 (d, J = 252.2 Hz), 155.7, 154.7,
138.9, 131.2, 130.2, 126.8, 117.3, 108.1, 70.8, 70.3, 46.5, 45.9, 44.9, 37.3; ES-MS: m/z calcd. for
C20H23FN4O7S2 [M + H]+: 515.1; found: 515.107.

(R)-(3-(6-(4-((2,4-difluorophenyl)sulfonyl)piperazin-1-yl)pyridin-3-yl)-2-oxooxazolidin-5-yl)methyl
methanesulfonate (12h).

A white solid; yield 71%; m. p. 214.6—215.6 ◦C; 1H NMR (600 MHz, DMSO-d6) δ 8.20
(d, J = 3.0 Hz, 1H, H2-pyridine), 7.82 (dd, J = 9.0, 3.0 Hz, 1H, H4-pyridine), 7.72–7.67 (m,
1H, benzene), 7.11 (dd, J = 12.6, 2.4 Hz, 1H, benzene), 6.98 (dd, J = 9.0, 2.4 Hz, 1H, benzene),
6.91 (d, J = 9.0 Hz, 1H, H5-pyridine), 5.01–4.96 (m, 1H, H5-oxazolidone), 4.52–4.41 (m, 2H,
OCH2), 4.15–4.11 (m, 1H, H4-oxazolidone), 3.82–3.68 (m, 1H, H4-oxazolidone), 3.58–3.56
(m, 4H, piperazine), 3.26 (s, 3H, CH3), 3.10–3.07 (m, 4H, piperazine). 13C NMR (150 MHz,
DMSO-d6) δ 165.3, 160.2 (d, JC-F = 253.1 Hz), 155.9, 154.7 (d, J = 176.7 Hz), 139.1, 132.8,
130.1, 126.7, 115.4, 111.5, 108.1, 103.8, 70.8, 70.3, 56.8, 46.5, 45.6, 45.1; ES-MS: m/z calcd. for
C20H22F2N4O7S2 [M + H]+: 533.5; found: 533.206.

Raw data for the above products are presented in Supplementary Materials (Figure S17-S52).

3.3. Antibacterial Activity Assay
3.3.1. Minimum Inhibitory Concentration (MIC) Study

According to the standard procedure recommended by the Clinical Laboratory Stan-
dards Institute (CLSI) [37], the minimum inhibitory concentration (MIC) in vitro of all
synthesized compounds for Gram-positive strains was evaluated on 96-well microplates
by the broth microdilution technique to screen for antibacterial activities. In Mueller–
Hinton (MH) sterile medium, a series of compound solutions was prepared by double-fold
dilution method from 0.5 to 256 µg/mL. After that, 100 µL diluted standard inoculum
(1 × 106 CFU/mL) was added into the gradient solution. The 96-well plates were cultured
at 37 ◦C for 16–18 h, and the MIC of each well was considered to be the lowest concentration
that could significantly inhibit the growth of bacteria. The untreated inoculum was used as
a negative control and linezolid was used as a positive control [38].

3.3.2. Bacterial Inhibitory Zone Test

The bacterial inhibitory zone of 12e against S. aureus (ATCC 25923) was determined
by pore diffusion method [39]. A total of 100 µL of fresh culture was dispersed on sterile
petri dishes containing nutrient AGAR media. The holes were made in the petri plates
using 100 µL micro pipette tips and injected with varied concentrations of 12e (160, 320,
640, and 1600 µg/mL) and 40 µg/mL of control (linezolid), following which the petri plates
were kept overnight at 37 ◦C. After incubation, a band was formed around the holes by
inhibiting biological growth.

3.3.3. Growth Kinetic Study

Based on the previous result of antibacterial activity, compound 12e was selected
for further research. According to the literature [36], the growth kinetics of Bacillus sub-
tilis (BNCC 109047) was determined after treatment with compound 12e and linezolid.
The log-phase strain was diluted to 106–107 CFU/mL in LB broth containing compound



Molecules 2022, 27, 1103 11 of 14

12e at a series of concentrations (0, 1/4, 1/2, 1 and 2 ×MIC), then incubated at 37 ◦C and
150 rpm. Linezolid at the concentration of 2 µg/mL was used as a positive control. At the
beginning, culture mixture (3 mL) was removed from each sample solution at intervals of
1 h, and turbidity was measured by ultraviolet spectrophotometer at 600 nm. When the
O.D. value became stable, the time interval was gradually increased and the time–kill curve
was drawn.

3.4. Binding Mode Study

Molecular docking assay was performed using the AutoDock 4.2.6® software. The X-ray
crystal 3D structure of the 50S ribosomal subunit (PDB ID: 3CPW) was obtained from the
Protein Data Bank (PDB) database. The ligands and proteins were removed from the
structure and RNA chains were retained using PyMOL 1.5.0.3. The modified structure was
prepared for further molecular docking. 2D structures of the ligands were built with the
aid of ChemDraw 19.0 and the 3D structures were established by Chem3D 19.0 software.
The docking results were analyzed and visualized with PyMOL 1.5.0.3.

3.5. Anthelmintic Activity Assay

Due to the high similarity between adult Indian earthworms (P. posthuma) and intesti-
nal roundworms (A. bricoides) in terms of anatomical and physiological characteristics [40],
anthelmintic activities of all compounds were evaluated [41,42].

Before use, the earthworms with an average length of 6–10 cm and width of 0.2–0.3 cm
were cleaned with normal saline solution [41], and the target compounds and positive
control drug (albendazole) were dissolved with the minimum amount of DMSO and diluted
with normal saline solution.

Then, the tested solution with a massive concentration of 2 g/L was prepared and
placed in a Petri dish (d = 6 cm). After being divided into different groups with six (6)
worms, they were transferred to Petri dishes with sterile forceps and the paralysis and
death time were monitored and recorded with stopwatches for 1 h. Earthworms tested
in standard saline (0.9% w/v) were taken as the control group. The paralysis time was
considered as the time when the worm showed no obvious movement at rest or under
mild vibration. In a similar way, death time was considered when there was no obvious
movement after severe shaking and exposure to 50 ◦C water [41,42]. The mean paralysis
and death times were was used to reflect the anthelmintic effect of these compounds; the
shorter time, the better the effect.

4. Conclusions

Seventeen novel 3-(3-pyridyl)-oxazolidone-5-methyl derivatives were designed and syn-
thesized, and their structures were identified by 1H NMR, 13C NMR and MS. The primary
screening of antibacterial activity, which was tested on Staphylococcus aureus (ATCC25923),
Streptococcus pneumoniae (ATCC49619), Bacillus subtilis (BNCC109047) and Staphylococcus
epidermidis (BNCC186652), showed that most of the compounds had certain antibacterial
activity, among which compound 12a and 12e had the best antimicrobial activity. In a
further bactericidal kinetic assay, 12e was mainly interfering in the logarithmic phase of
bacteria in a concentration-dependent manner. Molecular docking between the 12e and
the 50S ribosomal subunit was studied to predict the mechanism of action. In addition,
the anthelmintic activity test demonstrated that the compound 11b had the most signifi-
cant anthelmintic effect. These results provide a preliminary basis for the development
of novel pyridine heterocyclic compounds as antibacterial and anthelmintic agents. Fur-
ther structural optimization and biological activity confirmation of the action model are
in progress.

Supplementary Materials: Figure S1: Structure and Numbering of 11a, Figure S2: 1H NMR Spectrum
of 11a, Figure S3: 13C NMR Spectrum of 11a. Figure S4: ES-MS for compound 11a, Figure S5: 1H
NMR Spectrum of 11b, Figure S6: 13C NMR Spectrum of 11b. Figure S7: ES-MS for compound



Molecules 2022, 27, 1103 12 of 14

11b, Figure S8: 1H NMR Spectrum of 11c, Figure S9: 13C NMR Spectrum of 11c. Figure S10: ES-
MS for compound 11c, Figure S11: 1H NMR Spectrum of 11d, Figure S12: 13C NMR Spectrum of
11d. Figure S13: ES-MS for compound 11d, Figure S14: 1H NMR Spectrum of 11e, Figure S15: 13C
NMR Spectrum of 11e. Figure S16: ES-MS for compound 11e, Figure S17: 1H NMR Spectrum of
11f, Figure S18: 13C NMR Spectrum of 11f. Figure S19: ES-MS for compound 11f, Figure S20: 1H
NMR Spectrum of 11g, Figure S21: 13C NMR Spectrum of 11g. Figure S22: ES-MS for compound
11g, Figure S23: 1H NMR Spectrum of 11h, Figure S24: 13C NMR Spectrum of 11h. Figure S25:
ES-MS for compound 11h, Figure S26: 1H NMR Spectrum of 11i, Figure S27: 13C NMR Spectrum
of 11i. Figure S28: ES-MS for compound 11i, Figure S29: 1H NMR Spectrum of 12a, Figure S30: 13C
NMR Spectrum of 12a. Figure S31: ES-MS for compound 12a, Figure S32: 1H NMR Spectrum of
12b, Figure S33: 13C NMR Spectrum of 12b. Figure S34: ES-MS for compound 12b, Figure S35: 1H
NMR Spectrum of 12c, Figure S36: 13C NMR Spectrum of 12c. Figure S37: ES-MS for compound
12c, Figure S38: 1H NMR Spectrum of 12d, Figure S39: 13C NMR Spectrum of 12d. Figure S40:
ES-MS for compound 12d, Figure S41: 1H NMR Spectrum of 12e, Figure S42: 13C NMR Spectrum
of 12e. Figure S43: ES-MS for compound 12e, Figure S44: 1H NMR Spectrum of 12f, Figure S45: 13C
NMR Spectrum of 12f. Figure S46: ES-MS for compound 12f, Figure S47: 1H NMR Spectrum of 12g,
Figure S48: 13C NMR Spectrum of 12g. Figure S49: ES-MS for compound 12g, Figure S50: 1H NMR
Spectrum of 12h, Figure S51: 13C NMR Spectrum of 12h. Figure S52: ES-MS for compound 12h.
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