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Abstract: The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway reg-
ulates cell proliferation, differentiation, and migration, along with angiogenesis and metabolism.
Additionally, it could mediate skin development and homeostasis. There is much evidence to suggest
that dysregulation of PI3K/Akt pathway is frequently associated with several human cutaneous ma-
lignancies like malignant melanoma (MM), basal cell carcinoma (BCC), and cutaneous squamous cell
carcinoma (SCC), as well as their poor outcomes. Nevertheless, emerging roles of PI3K/Akt pathway
cascade in a group of common non-malignant skin disorders including acne and psoriasis, among
others, have been recognized. The enhanced understanding of dysfunction of PI3K/Akt pathway
in patients with these non-malignant disorders has offered a solid foundation for the progress of
updated therapeutic targets. This article reviews the latest advances in the roles of PI3K/Akt pathway
and their targets in the skin homeostasis and progression of a wide range of non-malignant skin
disorders and describes the current progress in preclinical and clinical researches on the involvement
of PI3K/Akt pathway targeted therapies.

Keywords: PI3K/Akt signaling pathway; skin; homeostasis; non-malignant disorders; targeted
therapies

1. Introduction

The skin is the largest sensory organ affected by major environmental factors such
as ultraviolet (UV) exposure, wounds, oxidative stress, and microbial infection, covering
the surface of the body [1,2]. As to restore damaged tissues or cells and replace aging
cells, various stem cell pools residing in the skin facilitate the maintenance and repair
the different part of skin, including epidermis, dermis, hair follicles, etc., [3,4], which are
maintained by a variety of signaling pathways like Wnt [5], transforming growth factor
β (TGF-β) [6], Notch and Hedgehog (HH), PI3K/Akt pathway, etc., [7,8]. The classical
PI3K/Akt pathway is related to the regulation of a variety of physiological activities,
including cell proliferation, differentiation, apoptosis, angiogenesis, metabolism, and
protein synthesis [9–12]. In skin, the activation of the PI3K/Akt pathway is responsible for
maintaining the skin homeostasis. In addition to the skin tumors like melanoma, BCC, and
SCC, dysregulation of the PI3K/Akt pathway cascade is also reported to be involved in
a group of non-malignant skin disorders including acne, psoriasis, vitiligo, scleroderma,
et al. [13]. In this article, we present a comprehensive and novel understanding of the
emerging roles and therapeutic targets of the PI3K/Akt pathway in skin homeostasis and a
group of non-malignant skin disorders.
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2. The Skin Structure and Function

The skin is a relatively complex organ structure outside the body as shown in Figure 1,
which composes of the epidermis, dermis, subcutaneous layer, as well as blood vessels and
nerves. These components are combined to protect the body from trauma, environmental
stimulus, and microbial infection. The skin is also viewed as the neuroendocrine organ
that can generate the signals to produce rapid (neural) or slow (humoral or immune)
responses at the local and systemic level exposed to hostile environments. The sensory and
regulatory function of the skin are integrated into the skin immune, pigmentary, epidermal,
and adnexal system, and their connection with the neuroendocrine system to maintain
local and systemic homeostasis [14–17]. Ultraviolet (UV) exposure, as a key determinant
factor in life, makes a great impact on the skin biology and pathology, as well as the whole
organism, which could not be separated with the skin neuroendocrine capabilities. UV
radiation (UVR), mainly UVB, can upregulate local neuroendocrine axes that comprise
of cytokines, corticotropin-releasing hormone, urocortins, proopiomelanocortin-peptides,
enkephalins, or others. They can also exert systemic effects through the circulative release,
including activation of the central hypothalamic-pituitary-adrenal axis, immunosuppres-
sion, and independent of vitamin D synthesis [18]. The skin barrier generally refers to
the epidermis barrier. It mainly comprises of keratinocytes with different differentiation
degrees from the basal cell layer to the stratum corneum. Keratinocytes are generated and
renewed by the stem cells residing in the basal layer as a result of epidermis replacement
every 28 days. Keratinocytes produce keratins, structural proteins that form the epider-
mis cytoskeleton. Filaggrin, transformed from profilaggrin, aggregates keratin filaments
into tightly compressed parallel bundles that form the matrix in the stratum corneum.
Thereby, any structural damage of epidermis probably leads to skin barrier damage, which
induces a various of skin disorders [19,20]. Melanocytes compose approximately 10%
of cells in the basal cell layer. The general population almost have the same number of
melanocytes. The variations in melanin are responsible for the different degree of skin
color [21,22]. The cutaneous melanin pigment is known to protect the skin from harmful
influences of solar exposure. Melanin is synthesized from tyrosine among several steps
that require the enzyme tyrosinase. The mechanisms of melanogenesis regulation is rela-
tively complex, involving the transcriptional regulation, intracellular signal transduction
pathways and dual function of L-tyrosine and L-DOPA. The L-tyrosine and L-DOPA has
been substantiated to serve as substrates and intermediates of melanogenesis, as well as
acting as positive regulators of melanogenesis and other cellular functions. The hormonal
and nutritional regulation functions in the melanogenesis consistent with the old theory
that receptors or amino acid-derived hormones arose from the receptors or those amino
acids, and that nuclear receptors evolved from primitive intracellular receptors binding
nutritional factors or metabolic intermediates [23,24]. Recent studies concerning the role of
melanogenesis in regulation of melanoma behavior had demonstrated dramatic changes in
the cells metabolism both on biochemical and on molecular levels, which were accompa-
nied with dramatic stimulation of HIF-1a and HIF-independent attendant pathways [25,26].
Vitiligo is associated with melanocyte deficiency. Multiple theories have been proposed
to explain melanocyte destruction, including genetics basis, autoimmunity, melanocyte
self-destruction hypothesis, oxidative stress hypothesis, neural hypothesis, and melanocyt-
orrhagy hypothesis. Among these, autoimmunity and oxidative stress hypothesis are best
supported by existing research [27,28].

The dermis varies in thickness between 1 and 4 mm, which comprises of abundant
cells (fibroblasts, histiocytes, etc.), collagen fibers, reticular fibers, elastic fibers, blood
vessels, hair follicles, sweat, and sebaceous glands that nourish and support the epidermis
and subcutaneous layer. Fibroblasts is responsible for collagen synthesis. The quantity and
functional changes of fibroblasts and collagen might result in a group of skin disorders like
keloid and scleroderma [29].
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Figure 1. Skin microstructure and function.

The subcutaneous layer located underneath the dermis is composed of adipose tissue,
blood vessels, nerves, and cutaneous appendages like sweat glands, sebaceous glands,
and hair follicles, which helps the body regulate temperature. The sebaceous glands
that mainly comprise of sebocytes secret sebum, which moisturize the skin’s surface and
inhibit microbial reproduction. Normal secretion of sebocytes is necessary to maintain
skin homeostasis, mainly regulated by the level of androgen. Excessive sebum secretion is
associated with the pathogenesis of acne or seborrheic dermatitis. Epithelial–mesenchymal
interactions are crucial for hair follicle development and growth, which could simply be
divided in into three phages: initiation, organogenesis, and cytodifferentiation. Various
types cells and tissues are involved in the three stages. Once the homeostasis of hair follicles
is broken, it might result in a series of hair disorders.

3. The PI3K/Akt Signaling Pathway

According to its function and structure, PI3K could be divided into three types, of
which the most widely investigated is the type I PI3K. It is a heterodimer composed of
a catalytic subunit and a regulatory subunit. The regulatory subunits contain SH2 and
SH3 domains that bind with target proteins with appropriate sites. The subunit mentioned
above is usually called p85, referring to the first isotype discovered, and there currently
exists six known regulatory subunits, ranging in size from 50 to 110 kDa. Additionally,
there exists four categories of catalytic subunits, namely p110α, β, δ, and γ, respectively.
The δ is confined to leukocytes, and others are widely distributed in different cells [30].

As is shown in Figure 2, the serine/threonine kinase Akt is a proto-oncogene with
functions that regulate different cell activities, including proliferation, growth, survival,
apoptosis, metabolism, transcription, and protein synthesis. The components that can acti-
vate the Akt signal cascade, including receptor tyrosine kinases, integrins, B cell and T cell
receptors, cytokine receptors, G protein-coupled receptors, and other phosphatidylinositol
three Kinase (PI3K), elicit a stimulus to produce (3,4,5) phosphatidylinositol triphosphate
(PIP3). The PIP3, transformed from PIP2 by the stimulus of PI3K, could activate the Akt
signal cascade. PI3K-related kinase (PIKK) family members like DNA-PK can also phos-
phorylate Akt at the site of serine 473. The Akt could also be dephosphorylated by the
protein phosphatase 2A (PP2A) and PH-domain rich leucine-repeat-containing protein
phosphatase (PHLPP1/2) [31,32].The PTEN is a crucial upstream molecule of the PI3K/Akt
pathway, which could inhibit cell proliferation and enhance cell sensitivity to apoptosis.
The major substrate of PTEN is PIP3, which can dephosphorylate PIP3 at site D3 to generate
PIP2, and negatively regulate the PI3K/Akt pathway. The inactivation of PTEN elicits the
continuous activation of PI3K/Akt.
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Figure 2. The PI3K/Akt signaling pathway and a group of non-malignant skin disorders; IGF-1,
insulin-like growth factors-1; IRS-1/2,insulin receptor substrate-1/2; AKT, protein kinase B; IGF-
1, insulin-like growth factors-1; IRS-1/2,insulin receptor substrate-1/2; FoxO1, Forkhead box O1;
GSK3, glycogen synthase kinase 3; GPCR, G-protein-coupled receptors; IRS-1/2,insulin receptor
substrate-1/2; IKK, IkB-kinase; MAD1, MAX dimerization protein 1; MDM2, murine double minute 2;
MLK3, mixed lineage kinase 3; mTORC1/2, mTOR complex 1/2; PDK1, phosphoinositide-dependent
protein kinase 1; PI3K, phosphatidylinositol 3-kinase; PIP2, phosphatidylinositol 4,5-biphosphate;
PIP3, phosphatidylinositol 3,4,5-triphosphate; PTEN, Phosphatase and tensin homologue; RTK,
receptor tyrosine kinases; SREBP, sterol regulatory element-binding proteins; TSC1/2, tuberous
sclerosis complex 1/2; AGA, Androgenic alopecia.

Additionally, PI3K/Akt binds the various downstream molecules to function in cell
motility. The Bcl-2 family members like Bcl-2-associated death promoter (BAD) are re-
sponsible for the regulation of cell apoptosis. Akt down-regulates the BAD to inhibit
cell apoptosis and promote cell survival [33]. Akt can also directly phosphorylate and
inactivate Caspase-9 at the site S196 and inhibit Caspase-9-mediated cell apoptosis. The
mTORC1 regulates the translation initiation and ribosome synthesis, then promotes cell
growth and proliferation [34,35]. The Akt could directly phosphorylate the mTOR2448
to then activate mTORC1. It can also directly phosphorylate TSC2 S939 and T1462 to
inhibit TSC2 function, and then indirectly activate mTORC1 through Rheb-GTP. The Akt
activates endothelial cell growth factor and phosphorylates endothelial NO synthase S1177
to increase the production of NO of endothelial cells and then stimulate the growth and
proliferation of endothelial cells, increase vascular permeability, and promote angiogenesis.
The downstream protein p70S6K of mTOR can promote cell movement after activation,
The PI3K/Akt can also up-regulate the mRNA expression of matrix metalloproteinase-
2(MMP-2), which can degrade the extracellular matrix and promote cell invasion and
metastasis.

The forkhead box O (FOXO) belongs to the transcription factor family, which is an es-
sential downstream factor of the PI3K/Akt pathway [36]. The members of the mammalian
FOXO family include FOXO1, 3, 4, and 6, which have highly similar structure, function,
and regulation. They mainly differ in tissue expression. In the nucleus, FOXOs mediate a
wide range of transcription of target genes associated with cellular physiological events,
including apoptosis, cell-cycle control, glucoses metabolism, oxidative stress resistence,
wound healing, and longevity [37]. Thereby, the FOXOs proteins are also involved in the
pathogenesis of several skin disorders like acne, psoriasis, etc.
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4. Emerging Roles in Skin Homeostasis
4.1. The PI3K/AKT Pathway Is Necessary to Maintain the Epidermal Barrier Function

The epidermal tissue is the primary environmental barrier that protects against dam-
age from pathogens, allergens, and ultraviolet exposure. The terminally differentiated,
anuclear keratinocytes act as the major factor constituting the epidermal barrier [38]. Mice
without the Akt1 and Ak2 isoforms have no stratum corneum and die neonatally, possibly
due to the defects of the barrier, and Akt has been identified to have a function in the dif-
ferentiation and survival of keratinocytes [39]. Heat shock proteins B1(HspB1), also known
as Hsp27, is a well-established Akt substrate [40,41]. It was found that Akt-mediated
phosphorylation of HspB1 elicits a transient interaction with filaggrin and intracellular
redistribution. The filaggrin acts as a key protein in the formation of stratum corneum
and is essential for maintaining the function of the epidermal barrier. Additionally, Akt
signaling increased as the barrier wave crossed the epidermis and Jun was then transiently
dephosphorylated several days before birth [42]. The acquisition of a developmental
barrier was regulated by Pp2a regulation of Jun dephosphorylation and downstream of
Akt signaling [43]. Manar et al. [44] discovered that temporal deficiency of pelota protein
contributes to neonatal lethality before the acquisition of an epidermal barrier as the result
of perturbations in permeability barrier formation. It is a corresponding outcome of failure
of processing profilaggrin into filaggrin monomers, which can promote the constitution
of a protective epidermal layer outside the body. They also found that pelota protein
functions as a negative component to regulate the activities of the PI3K/Akt pathway
in the epidermis. Furthermore, increased activity of the PI3K/Akt signaling pathway
in skin deficient in pelota might impact the dephosphorylation of profilaggrin, which in
turn influences its correct evolvement into filaggrin monomers and eventually epidermal
differentiation.

4.2. Activation of the PI3K/Akt Pathway Could Induce Hair Follicle Regeneration by Promoting
the Differentiation and Proliferation of HFSCs

Interactions between mesenchymal cells and epithelial stem cells are crucial for
morphogenesis of hair follicles. Hair follicle stem cells (HFSCs) have multidirectional
differentiation potential, which can differentiate into skin, hair follicles, and sebaceous
glands [45,46].The transcriptome analysis conducted by Chen et al. [47] demonstrated the
various different expressed genes upon crosstalks between them that were enriched in a
variety of pathways, among which is the PI3K/Akt pathway. The expression of various
growth factors and cytokines, including FGFs, IL6, and oncostatin M that potentially ac-
tivate PI3K/Akt pathway, were upregulated in both cell types. The results also showed
that the pathway was significant to establish the interaction between the two cell types
in the regeneration of hair follicle. Another study revealed that the PI3K/Akt pathway
plays a vital role in the transformation of wounding-induced hair follicle telogen into
anagen, and deficiency of Pten in Lgr5+ HFSCs cause the proliferation of stem cells, which
contributes to hair follicle regeneration. The exosomes in platelets-rich plasma (PRP) were
also demonstrated to promote hair follicle stem cells survival via the Akt/Bad cascade
pathway [48]. The activation of the PI3K/Akt pathway is supposed to act as a promising
therapeutic target related to hair regeneration, based on the available direct evidence of the
function of PI3K/Akt in hair follicle regeneration and the potential role of Akt activation
in PRP therapy. Long non-coding RNAs (lncRNAs), identified as non-coding transcripts
(>200 nucleotides), are known to be essential for the differentiation and proliferation of
various stem cells, including HFSCs [49]. CAI et al. [50] discovered that lncRNA5322 could
target the miR-21-mediated PI3K-Akt signaling pathway to promote the proliferation and
differentiation of HFSCs.
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4.3. Activation of PI3K/Akt/mTOR Pathway Could Promote EMT Process and then Enhance Skin
Wound Healing

Skin wound healing is a comprehensive and complex process involving inflammation
response, new tissue formation, and tissue remodeling that consists of proliferation and
migration of various cell types (inflammatory cells, keratinocytes, fibroblasts, platelets) to
restore the integrity of the skin barrier [51–56]. It is already recognized that the PI3K/Akt
pathway is strongly associated with the formation of an epidermis barrier that mainly
depends on keratinocyte’s proliferation and differentiation. The study conducted by
Chen et al. [57] demonstrated that miR-126 binding to its target gene PLK2 promotes the
proliferation and migration of keratinocytes, thereby playing a significant role in skin
wound healing via activation of the PI3K/Akt pathway. Jiang et al. [58] also indicated
that miR-26a could reduce the migration of keratinocytes by regulating its target gene,
ITGA5, thereby inhibiting wound healing. Epithelial–mesenchymal transition (EMT) is
demonstrated to involve in skin wound healing and activation of PI3K is considered to
activate the mTOR via Akt to accelerate the EMT [59–61]. Xiao et al. [62] also found that the
treatment of ozone oil accelerated activation of the PI3K/Akt/mTOR pathway to promote
the EMT process and then enhance wound healing. In future, the targeting therapies of the
PI3K/Akt/mTOR pathway may offer new hope for skin wound healing.

4.4. PTEN/PI3K/Akt Pathway Functions in the Skin Senescence and Self-Renewal of hSKPs

The PI3K/Akt signaling pathway cascade is closely related to aging and lifespan
regulation for the whole organism, since it can profoundly alter the activity and number
of different types of stem cells [63,64]. The previous in vivo and in vitro investigations
have demonstrated a pivotal role of the PI3K-Akt pathway in the neural stem/progenitor
cells’ self-renewal and differentiation [65–67]. The skin-derived precursors (SKPs) were
identified to have great value in the reconstitution of skin and hair follicle [68–71]. Liu
et al. [72] discovered the significant role of the PI3K/Akt pathway in the senescence and
self-renewal of hSKPs. Reactive oxygen species (ROS) is mainly derived from oxidative
cell metabolism and is necessary for both chronological aging and skin photoaging [73,74].
The PTEN, a type of tumor suppressor, could dephosphorylate the lipid second messenger,
phosphoribosyl 3,4,5-trisphosphate (PIP3), an enzymatic product of PI3K, acting as a nega-
tive element to regulate the survival signaling mediated by the PI3K/Akt pathway [75,76].
Noh et al. [77] discovered that downregulation of PTEN expression and following activa-
tion of PI3K signaling led to activation of PKC, which then increased ROS production via
NADPH oxidase expression and its activity regulation in reproductive senescent HKFs.

4.5. Activation of PI3K/Akt Pathway Protects Melanocytes from Oxidative Stress

Melanocyte homeostasis is also an important part of skin homeostasis. Hyperprolifer-
ation of melanocytes lead to nevi melanoma and destruction of melanocytes is associated
with depigmented skin disorders like vitiligo. Accumulative ROS induces melanocytes
apoptosis and therefore promotes its destruction. Activation of the PI3K/Akt pathway
protects the melanocytes from apoptosis induced by oxidative stress [78–80]. The Bcl-2
and caspase family both are crucial downstream molecules of the PI3K/Akt signaling
pathway, participating in the apoptotic process induced by ROS. Increased expression
of the anti-apoptotic protein, Bcl-2, and decreased expression of apoptotic proteins like
Bax (also a member of Bcl-2 family) and caspases 3 and 9 are the result of activation of
the PI3K/Akt pathway [81]. The effect is supposed to be reversed by the PI3K inhibitor
LY294002 [82]. Additionally, the upstream element, overexpression of PTEN, could in-
hibit activation of the PI3K/Akt pathway and then lead to the melanocyte destruction
or death [83]. However, excessive and continuous activation of the PI3K/Akt pathway
induced by the down-regulated expression of PTEN might cause the occurrence and de-
velopment of melanoma [84,85]. Taken together, normally activated PI3K/Akt pathway is
crucial to maintain the melanocyte homeostasis.
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5. Emerging Roles in Non-Malignant Skin Disorders
5.1. The PI3K/Akt Pathway Is Involved in the Formation of Acne by Inhibiting Lipogenesis

Acne vulgaris is a common recurrent inflammatory skin disease with a complicated
mechanism [86,87]. The major hormones like androgens, insulin, and insulin-like growth
factor-1(IGF-1) are responsible for the occurrence and development of acne vulgaris [88].
Insulin and IGF-1 activate the PI3K/Akt cascade, which upregulates the nuclear export of
forehead box protein O1 (FoxO1), as a key component in the process of acne formation,
antagonizing the expression of SREBP-1c and suppressing the transactivation of AR to
inhibit lipogenesis [89–91]. Additionally, FoxO1 also elicits the activation of the adenosine
5′-monophosphate-activated protein kinase (AMPK) pathway to negatively regulate the
mTORC1, another key downstream element of the PI3K/Akt pathway [92,93]. Taken
together, insulin and IGF-1 both enhance lipid synthesis by regulating the attenuation of
FoxO1 inhibition. Some existing drugs impact lipid synthesis via Akt/FoxO1/mTOR or
AMPK signaling. For instance, epigallocatechin-3-gallate (EGCG) inhibits IGF-induced
lipogenesis in SZ95 sebaceous grand cells by downregulating the level of mTOR and S6
ribosomal protein, which are both crucial downstream elements in the PI3K/Akt path-
way [94]. EGCG also decreases the production of sebum by activating the AMPK-SREBP-1
pathway [93]. It is recognized that the oral isotretinoin is an excellent agent for most
patients of severe recalcitrant acne; it has been approved by the FDA [95]. It promotes
the apoptosis of sebaceous gland cells to reduce the production of serum, because it up-
regulates the nuclearFoxO1 and FoxO3 proteins expression [96]. It is known that tumor
necrosis factor-alpha (TNF-a) is involved in the formation of acne and increasing cases
has reported the efficacy of anti-TNF-a agents in the management of moderate to severe
acne [97–99]. However, the definite mechanism is unclear. Choi et al. [100] clarified that
TNF-a could induce the activation of SREBP-1 and increase lipogenesis via the PI3K/Akt
pathway and c-jun N-terminal kinase (JNK) in human sebocytes. Moreover, they suggested
that anti-TNF-a agents is supposed to become potential therapeutic strategies to control
seborrhea, which is also a common skin inflammatory disease, characterized by excessive
secretion of sebum by sebocytes, similar to acne.

5.2. Dysregulation of PTEN, FOXO, and mTOR of the PI3K/Akt Signaling Cascade Are
Associated with the Occurrence of Psoriasis

Psoriasis is a commonly chronic inflammatory cutaneous disorder; one of its typical
distinctions is excessive proliferation and abnormal apoptosis of keratinocytes [101]. The
elements of the PI3K/Akt pathway cascade, including PTEN, FOXO, and mTOR, are all
believed to involve the growth, survival, and proliferation of keratinocytes.

The mRNA expression and protein levels of PTEN in skin lesions of psoriasis were
found to be decreased, compared with normal skin [102]. The overactivation of Akt induced
by the decreased expression of PTEN could contribute to the psoriatic lesion by promoting
the abnormal proliferation and apoptosis of keratinocytes [103]. While in normal skin, the
normal PI3K/Akt pathway activation is crucial for cell proliferation and multiplication in
the basal epidermis and for terminal differentiation in the upper layers [104].

Previous studies have indicated that the PI3K/Akt/mTOR pathway is highly ex-
pressed in human and murine psoriatic lesions. It is observed in psoriasis that PI3K binds
to Akt and thereby in turn activites the mTOR to promote keratinocyte hyperproliferation
and inhibite differentiation [105–108]. It has also been reported that the dysregulation
of cytokines and growth factors like IL-17 and IL-12 could activated the mTOR pathway,
which is an essential factor to regulate the proliferative and inflammatory process in psori-
asis [109–111]. Additionally, the PI3K/Akt/mTOR pathway is a key upstream autophagy
signal transduction pathway. Defects in autophagy induces the occurrence and develop-
ment of psoriasis by promoting the production of inflammatory cytokines [112]. Recently,
the PI3K/Akt/mTOR pathway was reported to function in Th1/Th2/Th17 imbalance,
which is key in the occurrence and development of psoriasis [113].



Cells 2021, 10, 1219 8 of 16

It is recognized that overexpression of PI3K could induce excessive activation of AKT
and then in turn phosphorylate the downstream target proteins like FOXO to promote cell
proliferation. In the psoriatic keratinocytes, FOXO expression is mostly found in the cyto-
plasm but not in the nucleus in keratinocytes of uninvolved skin of psoriasis and normal
skin [114]. Moreover, P-Akt, which induces the suppression of FOXO1 expression, is highly
expressed in the psoriatic lesion, compared with normal skin [115]. Therefore, excessive ac-
tivation of P-Akt might alter the cellar location of FOXO from the nucleus to the cytoplasm,
losing the function to inhibit cell proliferation with keratinocyte hyperproliferation [116].

Since the PI3K/Akt cascade pathway is recognized in the pathogenesis of psoriasis,
it is expected to be a promising anti-psoriatic target. Recently, topical rapamycin and
delphinidin, a dietary antioxidant found abundantly in pigmented fruits and vegetables as
therapeutic agents of psoriasis have been identified to alleviate psoriatic lesions in the im-
iquimod (IMQ)-induced psoriasis phenotype in mice via suppressing the PI3K/Akt/mTOR
pathway [117–119]. The results of the study conducted by Yue et al. [120] demonstrate
that PSORI-CM02 inhibited the proliferation of HaCaT cells by suppressing the autophagy
process induced by the PI3K/Akt/mTOR pathway. Additionally, there are studies show-
ing that matrine may inhibit keratinocytes proliferation via PI3K/Akt/FOXO signaling
pathways and silibinin exerts its influences through negative regulation of PI3K/Akt path-
ways [121,122]. Taken together, it is expectable that targets of PI3K/Akt could be developed
into successful agents to manage psoriasis.

5.3. The PI3K/Akt Pathway Is Involved in the Onset and Exacerbation of Atopic Dermatitis

Similar to psoriasis, atopic dermatitis (AD) is one of the most common chronic recur-
rent inflammatory cutaneous disorders related to T cell [123]. Xiao et al. [124] designed a
study to explore the PI3K/Akt pathway activity in the peripheral T cells of patients with
AD and its clinical value. They found that the PI3K/Akt pathway is aberrantly activated in
peripheral T cells from patients of AD, and its activation corresponds to T cell proliferation
and cytokine secretion like IL-6 and IL-10. Chronic AD is always presented with lichenified
thickening lesion as the result of thickening epidermis and dermis. Moriya et al. [125]
indicated that the IL-13, reported to be increased in the skin tissue of human AD, could
downregulate the expression of MMP-13 both in the level of mRNA and protein to induce
the thickened dermis by decreasing collagen degradation. However, IL-3 upregulate the
MMP-13 expression via inhibiting the PI3K/Akt pathway.

5.4. The PI3K/Akt Signaling Pathway Is Associated with the Pathologic Fibrosis of Human
Scleroderma

Scleroderma is mainly characterized by progressive dermal fibrosis, as a result of
overexpression of profibrotic cytokines and excessive deposition of collagen [126]. Under
the hypoxic condition, the PI3K/Akt/mTOR pathway cascade is activated through the
Akt phosphorylation occurred at Ser473 and Thr308 sites and mTOR at Ser2448 site in
scleroderma fibroblasts [127]. Zhou et al. [128] found that inhibitor of PI3K/Akt, LY294002,
and the classic mTOR inhibitor rapamycin could both significantly suppress the HIF-1a
up-regulation [129], CTGF [130], and collagen I, are all conceived as crucial cytokines
involved in the dermal fibrosis of scleroderma, demonstrating that PI3K/Akt/mTOR/HIF-
1a-mediated fibrogenesis was critically participated in the activation of SSc fibroblasts. The
2-methoxyestradiol (2-ME), a natural endogenous metabolite of 17b-estradio, reduced HIF-
1a, CTGF, and collagen I induced by hypoxia via PI3K/Akt/mTOR/HIF-1a and inhibited
the proliferation of fibroblasts, which is expectable to become a promising agent to treat
scleroderma [131].

Periostin, a type of matricellular protein, is known to have various functions that
may be associated with skin fibrosis [132]. Yang et al. [133] found that periostin could
accelerate pathologic fibrosis in human scleroderma. Additionally, the results of their
study demonstrated that rmPeriostin can in vitro accelerate mouse dermal fibroblasts
proliferation, partially through the periostin-PI3K/Akt signaling pathway.
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5.5. The PI3K/AKT Pathway Is Involved in the Formation of Keloid via Promoting the
Proliferation, Migration, Expression Levels of EM-Related Proteins in HKFs

Distinct with hypertrophic scars (HS), keloids (KD) are characterized by high rates of
recurrence after surgery and invasion, which coincides with the features of tumors. Human
keloid fibroblasts (HKFs) are the major effector cells participating in the pathogenesis of
keloids [134]. LV et al. [135] found that compared with human dermal fibroblasts (HDFs)
and normal skin tissues, the expression levels of Runx2 were significantly upregulated
both in HKFs and keloid tissues. The result of enrichment analysis of the KEGG signaling
pathway demonstrated that the PI3K/Akt pathway is a major one in keloids, where differ-
ently expressed genes were mainly involved in. The phosphorylation levels of PI3K and
Akt were significantly reduced after si-Runx2 transfection, suggesting that the PI3K/Akt
pathway participated in maintaining the HFK functions. Runx2 deletion in HKFs inhibited
cell proliferation, migration, expression levels of EM-related proteins via the suppression of
the PI3K/Akt pathway activation. Zhu et al. [136] revealed that the expression trend of 26
miRNAs was transformed in KDs but not in HSs, where they discovered that miR-188-5p is
probably involved in the enlargement and invasion of KDs. The expression and activity of
MMP-2 and MMP-9 were downregulated while miR-188-5p was upregulated in KFs. They
are both influenced by the PI3K/Akt pathway. The results of their study also demonstrated
that after treating KFs with miR-188-5pmimic and transfecting HSFs with miR-188-5p
inhibitor, the expression levels of PI3K and phosphorylated Akt proteins were significantly
decreased in KFs, while the expression was enhanced after downregulating miR-188-5p
in HSFs. Taken together, the miR-188-5p may influence the proliferation, migration, and
invasion of scar fibroblasts through the PI3K/Akt/MMP-2/9 signal transduction pathway.

5.6. Activation of PI3K/Akt Protect the Melanocytes from Destruction in Vitiligo

Vitiligo is a multifactorial disorder characterized with depigmented lesions induced
by melanocyte destruction [137]. Oxidative stress is a crucial element involved in the
occurrence and development of vitiligo, because accumulative ROS causes an autoimmune
response that results in the destruction of melanocytes [138], which could be inhibited by
the activation of the PI3K/Akt pathway [80]. Zhu et al. [83] discovered vitiligo lesions
with highly expression of PTEN and in turn decreased the Akt phosphorylation, that
might elicit human melanocytes death. Mesenchymal stem cells (MSCs) could decrease the
expression of PTEN and then activate the PI3K/Akt pathway to promote the proliferation
of melanocytes and inhibit melanocytes damage from the ROS. Additionally, as a crucial
downstream factor of the PI3K/AKT pathway, Nuclear factor erythroid 2-related factor2
(Nrf2) is a master transcription factor in cellular defense against oxidative stress, which is
the key ROS-induced overexpression of antioxidant proteins. ROS are demonstrated to ac-
tivate Nrf2 through the PI3K/Akt pathway, protecting cells from oxidative stress [139,140].
Kim et al. [141] indicated that impairment of PI3K activation of keratinocytes in vitiligo
lesions are susceptible to apoptosis induced by ROS-generating chemicals owing to re-
duced Nrf2 activation. Wan et al. [142] also discovered that α-MSH-induced activation of
mTORC1, a downstream element of the PI3K/Akt pathway, helps maintain the dendrites
of melanocytes under the condition of oxidative stress.

5.7. Activation of the PI3K/Akt Pathway Is Related to the Inhibition of HFSCs Apoptosis in the
Pathogenesis of Androgenic Alopecia

Androgenic alopecia (AGA) is a common type of hair loss, which is known as the result
of interaction between 5a-DHT level and genetic predisposition [143]. Several researches
have indicated the roles of HFTs in the onset of AGA [144,145]. However, not all types of
HFTs but the specific CD200-rich and CD34-positive HFSCs are mainly in deficiency in the
bald scalp of AGA patients [146]. As a key pathway associated with apoptosis of all types
of cells, Zhang et al. [147] found that vascular endothelial growth factor (VEGF) could elicit
Akt phosphorylation. The application of the PI3K inhibitor, LY294002, prevents CD200-rich
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and CD34-positive HFSCs from apoptosis induced by 5a-DHT. Therefore, it is supposed
that VEGF prevents the target HFSCs from apoptosis via the PI3K/Akt pathway (Table 1).

Table 1. PI3K/Akt pathway-related proteins and cytokines involved in non-malignant skin disorders.

Non-Malignant Skin Disorder PI3K/Akt Pathway-Related Cytokines or Proteins

Acne IGF-1, FoxO1, mTORC1, SREBP-1c, AMPK, TNF-a

Psoriasis PTEN, IL-12, IL-17, mTOR, FOXO

Atopic dermatitis IL-6, IL-10, IL-13, MMP-13

Scleroderma Periostin, HIF-1a, CTGF and collagen I

Keloid MMP-2, MMP-9

Vitiligo PTEN, Nrf2, mTORC1

Androgenic alopecia VEGF

6. Conclusions

The PI3K/Aktpathway is a crucial signaling transduction pathway for the processes
of cell growth, proliferation, survival, cell apoptosis inhibition, lipogenesis inhibition,
et al. For the skin, the signaling pathway is crucial for the survival, growth, proliferation,
regeneration and apoptosis of keratinocytes, dermal fibrocytes, hair follicle stem cells
etc. and maintenance of their functions. Therefore, PI3K/Akt is closely associated with
the epidermal barrier function, hair follicle regeneration, skin wound healing and skin
senescence. However, a dysregulated PI3K/Akt signaling pathway could induce a series
of malignant or non-malignant skin disorders. Hence, it is important that the PI3K/Akt
signaling pathway intensity is strictly mediated during skin generation, homeostasis, and
development. For precise regulation of the PI3K/Akt pathway intensity, targeting regula-
tors of PI3K/Akt signaling are necessary, along with interaction between the PI3K/Akt
and other signal transduction pathways like AMPK pathway and mTOR. Therefore, it is
supposed that fine-tuning the intensity of a PI3K/Akt signal pathway may participate
in skin homeostasis. As mentioned above, aberrant activation of PI3K/Akt induces the
occurrence of groups of non-malignant skin disorders including acne, psoriasis, atopic
dermatitis, scleroderma, keloid, vitiligo and AGA. Thus, enhancing understanding the pre-
cise mechanisms of PI3K/Akt pathway regulation is essential to advance new therapeutic
strategies to maintain skin homeostasis. Moreover, corresponding knowledge may also
help to present new therapeutic strategies for non-malignant skin disorders mentioned
above.
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