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Is human cytomegalovirus a target in cancer therapy?
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ABSTRACT:
Human cytomegalovirus (HCMV) is a herpesvirus that is prevalent in the human 
population. HCMV has recently been implicated in different cancer forms where 
it may provide mechanisms for oncogenic transformation, oncomodulation and 
tumour cell immune evasion. Moreover, antiviral treatment against HCMV has been 
shown to inhibit tumour growth in preclinical models. Here we describe the possible 
involvement of HCMV in cancer and discuss the potential molecular impact expression 
of HCMV proteins have on tumour cells and the surrounding tumour microenvironment.

INTRODUCTION

The interplay between cancer cells and the 
surrounding microenvironment is essential for the growth 
and spread of a tumour. The development of malignant 
tumours requires a microenvironment that supports the 
uncontrolled proliferation and spread of cancer cells but 
also conditions that avoid destruction from the various 
arms of the immune system must be present. The immune 
system represents an important tool for the destruction of 
the majority of cancer cells and precancerous conditions 
in the human body. However, malignant growing 
tumours have in most, if not all, cases developed immune 
evasion strategies to avoid destruction by immune 
cells. One essential immune evasion strategy that can 
be induced or applied by tumour cells is the formation 
of an inflammatory microenvironment.  Tumour cells 
can induce inflammation directly through oncogenes 
that induce transcriptional programs responsible for the 
production of pro-inflammatory eicosanoids, cytokines 
and chemokines that attract different cells of the 
immune system to the microenvironment. Also chronic 
inflammation caused by viral or microbial infections, 
autoimmune diseases, dietary products or inflammatory 
conditions caused by unknown reasons can create an 
inflammatory microenvironment that support tumour 
growth [1]. Immune cells that are recruited to the tumour 
are generally disabled to eliminate tumour cells.  Indeed, 
tumour-related inflammation is regarded as one enabling 

characteristic crucial for the tumour cell to sustain a 
proliferative state, evade apoptosis, increase angiogenesis, 
invasion, metastasis and suppression of immune responses 
[2]. 

Although it has been both experimentally difficult 
and heavily debated, it is today well accepted that 
approximately 20% of the global cancer burden can be 
linked to infectious agents including viruses, bacteria 
and parasites [3]. Recent studies indicate that the list 
of infectious agents linked to certain cancer forms will 
increase in the future. 

Human cytomegalovirus (HCMV) is a beta-
herpesvirus that is common in the human population. 
Although HCMV is not currently causally implicated 
in human cancer, a number of recent evidence suggests 
that HCMV may be specifically associated with some 
human malignancies. HCMV nucleic acids and proteins 
have been detected in 90-100% of glioblastomas and 
medulloblastomas, prostate, breast and colon cancers and 
in mucoepidermoid carcinomas of salivary glands [4-12]. 
Consistently, HCMV proteins are not detected in healthy 
tissues surrounding HCMV positive tumors. HCMV 
protein expression is restricted to the tumour; mainly 
in tumour cells, but virus proteins are sometimes found 
in endothelial cells and inflammatory cells within the 
tumour. However, infectious virus is not recovered from 
primary tumours. There is also a discrepancy between the 
number of protein positive cells and DNA positive cells 
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within the tumour. 
We have consistently observed that HCMV proteins 

are widespread and easily detected in a majority of tumour 
samples, whereas viral DNA is detected only in few cells 
within the tumour ([12] and unpublished observations). 
Recently, Ranganathan et. al. sequenced viral DNA from 
20 different HCMV gene regions in samples obtained from 
glioblastoma patients and also found that only a minority 
of the cells in the tumour harbour the virus genome 
[13]. The authors suggested that HCMV may enhance 
the growth or survival of a tumour through mechanisms 
that are distinctly different compared to classic tumour 
viruses that express transforming viral oncoproteins in 
the tumour cells. Thus, it is not likely that HCMV is an 
opportunistic virus capable of reactivating in the tumour 
and then only infects cells within in the tumour. Instead, 
HCMV proteins, rather than a productive infection may 
aid the development of HCMV positive tumours through 
yet undiscovered mechanisms. 

HCMV; A PROMOTER OF CELLULAR 
TRANSFORMATION OR AN ONCOGENIC 
VIRUS?

As of today, HCMV is not considered to have direct 
oncogenic properties; its potential role in cancer seems 
to be oncomodulatory, which imply that expression 
of HCMV gene products in cancer cells may promote 
tumour growth by enabling different hallmarks of 
cancer [2, 14, 15]. However, numerous recent data also 
indicate that several HCMV encoded proteins have 
biological properties that are directly related to cellular 
transformation and tumour development.

The US28 chemokine receptor encoded by HCMV 
has several characteristics resembling a viral oncoprotein 
[16-19]. Expression of US28 in NIH3T3 cells render 
these cells tumourigenic when injected into nude mice 
and transgenic mice with targeted expression of US28 
to intestinal epithelial cells results in the development 
of intestinal neoplasia, which can be enhanced by 
inflammation [16]. US28 targeted expression in intestinal 
cells inhibits glycogen synthase-3β (GSK-3β) function 
resulting in increased β-catenin activity and induced 
expression of Wnt target genes, including cyclin D, 
survivin and c-myc, that are involved in the control of 
cell proliferation [16] . These findings provide a direct 
molecular link between the expression of US28 and 
oncogenesis. In addition, US28 has also been shown to 
activate the transcription factor nuclear factor κB (NF-κb) 
that is a critical regulator of immunity, stress responses, 
apoptosis and differentiation [19, 20]. 

In glioblastoma cells, we found that the HCMV 
IE72 protein directly interacts with the hTERT promoter 
at SP1 binding sites to induce telomerase activity and 
telomere lengthening [4]. We also found that HCMV-IE72 
and hTERT were co-expressed in primary glioblastoma 

samples [4]. Enhanced telomerase activity is necessary 
for tumour cells to divide indefinitely and is commonly 
induced by oncogenic viruses [21]. Recently, Melnick 
et al. suggested that HCMV fulfils the criteria of Koch´s 
Postulates as revised for viruses and cancer, and that 
HCMV therefore should be designated as an “oncovirus” 
[9]. They demonstrated cell specific localization of HCMV 
in 97% of mucoepidermoid carcinomas of salivary glands. 
HCMV IE and pp65 were expressed in tumour cells, but 
not in non-tumour cells and positively correlated with 
severity. HCMV protein expression correlated with 
activation of known oncogenic pathways such as epidermal 
growth factor receptor (EGFR), cyclooxygenase-2 (COX-
2), Erk and amphiregulin. They also used a mouse salivary 
gland organ culture model and showed that murine CMV 
infection induces dysplasia through an upregulation of Erk 
phosphorylation. Phosphorylation of the ErbB receptor 
family members and downstream signalling may therefore 
be relevant targets for drug discovery also of HCMV 
positive tumours [9, 22].

The interaction of HCMV with its cellular receptor 
ligands, like integrins, during infection results in the 
activation of the PI3K/Akt signalling pathway and 
expression of IE72 protein in glioblastoma cells induces 
constitutive activation of Akt [23, 24]. HCMV has been 
shown to also activate the PI3K/Akt signalling cascade 
via binding of HCMV proteins to platelet-derived 
growth factor receptor alpha (PDGFR) and by selective 
phosphorylation of the cellular focal adhesion kinase 
(FAK) in glioblastoma and prostate cancer cells [25-27] 
. Furthermore, HCMV UL38 was shown to interact with 
tuberous sclerosis complex resulting in dysregulation of 
the mammalian target of rapamycin complex 1 [28].  

HCMV encodes several proteins that interfere with 
the cellular apoptotic machinery. Direct anti-apoptotic 
activity of HCMV proteins has been located to transcripts 
encoded by the HCMV UL36-UL38 genes [29]. CMV 
blocks apoptosis mediated by death receptors and 
encodes a mitochondria-localized inhibitor of apoptosis 
that suppresses apoptosis induced by diverse stimuli. 
The HCMV UL37 gene product inhibits Fas-mediated 
apoptosis downstream of caspase-8 activation and Bid 
cleavage in the mitochondria through inhibition of the pro-
apoptotic Bcl-2 family members Bax and Bak [30, 31]. 
The HCMV UL36 gene product inhibits Fas-mediated 
apoptosis by binding to and inhibiting the function of 
caspase-8. [32].  HCMV infection has also been shown to 
inhibit apoptosis and induce drug resistance by induction 
of the p53 tumour suppressor homologue gene product 
ΔN-p73α, resulting in abnormal neural cell survival 
[33]. The HCMV IE86 protein binds to p53 and inhibits 
its transactivating function and suppresses p53-mediated 
apoptosis after DNA damage [26, 34-37]. The HCMV 
UL97 protein is a viral homologue of cellular cyclin-
dependent kinases (CDK) that phosphorylates and 
inactivates the retinoblastoma (Rb) tumour suppressor 
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protein resulting in cell cycle progression and inhibition 
of apoptosis in mammalian cells [38]. 

The functional inhibition of the p53 and Rb families 
of tumour suppressor proteins by HCMV encoded proteins 
implicates that HCMV is able to promote cell cycle 
progression, increase DNA synthesis and block apoptosis 
resulting in increased chromosomal instability [39-43]. In 
neuroblastoma cells HCMV induces expression of Bcl-2 
resulting in inhibition of apoptosis and chemoresistance, 
a process that can be reversed by treatment of 
neuroblastoma cells with the antiviral drug ganciclovir 
[44]. Interestingly, case reports of neuroblastoma 
patients have shown increased HCMV antibody titers 
and detection of HCMV in urine of small children with 
neuroblastoma[45]. HCMV DNA also has been detected 
in neuroblastoma tissue sample [45-47]. Unpublished 
results from our laboratory demonstrate HCMV DNA, 
RNA and proteins in the majority of neuroblastoma tissue 
samples and in neuroblastoma cell lines. Treatment of 
neuroblastoma cells with the anti-viral drug ganciclovir in 
vitro or in vivo inhibits tumour growth (Wolmer-Solberg 
2011, submitted). 

Hence, HCMV encodes for a number of different 
proteins that have profound effects on cellular processes 
leading to increased proliferation, inhibition of apoptosis, 
stimulation of cellular migration, the release stimulatory 
factors, induction chemotherapeutic resistance and 
increased telomerase activity.

HUMAN CYTOMEGALOVIRUS; AN 
ENHANCER OF INFLAMMATION AND 
INDUCER OF IMMUNE EVASION IN THE 
TUMOUR MICROENVIRONMENT 

Symptoms of a primary HCMV infection are 
usually mild or asymptomatic in immunocompetent 
individuals but can cause severe disease in fetuses and 
immunocompromised patients such as transplant recipients 
and AIDS patients. The virus is spread through all bodily 
fluids and establishes a life-long latent/persistent infection. 
Reactivation from latency appears to be triggered by 
inflammation, which the virus can initiate by inducing 
cytokine and chemokine production and by enhancing the 
synthesis of pro-inflammatory eicosanoids. Indeed, the 
biological responses elicited by HCMV reactivation mimic 
those seen in leukocyte dysfunction, wound healing and 
chronic inflammation [14]. HCMV reactivation has also 
been shown to stimulate the expression of VEGF that can 
induce angiogenesis [17, 18] and inhibit the expression of 
the potent anti-angiogenic protein thrombospondin-1 [48].

During evolution HCMV has coevolved with the 
human host and the virus has developed several immune 
evasion strategies to allow persistent infection and viral 
spread without harming its host. HCMV contains a 250 
kb ds DNA genome that has 252 open reading frames 

and encodes approximately 200 proteins, of which only 
about 50 are essential for viral replication [49]. Hence, 
the majority of HCMV encoded proteins have other 
functions in the viral lifecycle and many of these proteins 
are involved in immune evasion. For instance, the US11, 
US2 and US3 gene products prevent host cell MHC class 
I antigen expression that is required for CD8+ cytotoxic 
tumour killing. HCMV also induces a specific block in 
presentation of peptides of the HCMV encoded IE1 
protein; one of the earliest immunodominant HCMV 
epitopes [50-52]. US3 and US8 inhibit presentation of 
MHC class II molecules on the cell surface and thereby 
inhibit CD4 + T cell responses [53, 54]. The HCMV pp65 
protein encoded by the UL83 gene redirect HLA class 
II molecules to lysosomes where the alpha chain of the 
HLADR molecule is degraded [55]. HCMV inhibits NK 
mediated lysis by several different strategies; the virus 
encodes for an MHC class I homologue that prevents 
NK cells to become activated through the missing self-
hypothesis. The viral protein UL16 retains the NKG2D 
ligands ULBP1, 2 and MIC-B in the ER that are essential 
to activate an NK cell response (reviewed in [56]). UL16 
also protects the cells from lysis mediated by cytotoxic 
peptides [57]. Thus, cancer cells expressing UL16 would 
be protected against the action of both NK cells and T 
cells. Interestingly, the HCMV encoded UL83 protein 
pp65 and IE1/IE2 are frequently detected in both gliomas 
and medulloblastomas [11, 12]. 

We recently showed that HCMV nucleic acids and 
proteins are present in the majority of medulloblastoma 
primary tumours and cell lines. We also found that US28 
(the HCMV encoded chemokine receptor homologue 
with potential oncogenic functions) was expressed in 
medulloblastoma and induced expression of COX-
2 in these tumours [12]. Microarray analysis of US28 
transfected cells and HCMV infected cells showed that 
the expression of COX-2 is highly up-regulated in these 
cells as compared to mock-transfected or HCMV negative 
cells [17, 39]. Moreover, transgenic mice with targeted 
expression of US28 to intestinal epithelial cells exhibit 
a hyperplastic intestinal epithelium resulting in tumour 
development, indicating that US28 is involved in tumour 
initiation and progression [16]. 

COX-2 is over- expressed in a number of different 
adult cancers of epithelial origin as well as in gliomas 
where high expression often is correlated with poor 
prognosis (reviewed in [58-60]). In paediatric solid 
tumours high expression of COX-2 has been found in 
neuroblastoma [61, 62] , medulloblastoma [63, 64]  and 
sarcomas [65]. COX-2 is one of the major enzymes 
responsible for the conversion of arachidonic acid to the 
pro-inflammatory eicosanoid, prostaglandin E2 (PGE2). 
Increased levels of prostaglandin E2 (PGE2) are perceived 
in malignancies of different origin, including brain 
tumors [66-68]. PGE2 exerts its physiological effects by 
interacting with a subfamily of four distinct G-protein– 
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coupled receptors designated EP1, EP2, EP3, and EP4. 
PGE2 promotes tumour growth in an autocrine and/or 
paracrine manner by stimulating EP receptor signalling 
with subsequent enhancement of cellular proliferation, 
promotion of angiogenesis, inhibition of apoptosis and 
stimulation of invasion [58]. In addition, PGE2 is an 
important mediator for the interaction between tumour 
cells and cells in the tumor microenvironment where 
PGE2 contributes to the generation of a tumor promoting 
inflammatory microenvironment that suppress the activities 
from cells in the immune system [58].

Different nonsteroidal anti-inflammatory drugs 
(NSAIDs) which inhibit the enzymatic function of 
cyclooxygenases and the production of prostaglandins 
and other inflammatory mediators has been shown to 
be promising agents for the prevention and treatment 
of various cancers [69]. Elevated levels of PGE2 are 
required for efficient replication of HCMV by facilitating 
the production of the HCMV immediate-early 2 protein 
[70]. Daily aspirin reduce both the risk of development 
of cancer and cancer deaths [71]; the benefit increased 
with duration of treatment [72].  Interestingly, NSAIDs 
abrogate virus-mediated production of PGE2 and reduce 
the virus burden in HCMV infected cells [70, 73]; thus 
acting as an anti-viral agent against HCMV. Moreover, 
the COX-2 specific NSAID celecoxib reduces the 
levels of PGE2 and the expression of HCMV proteins in 
medulloblastoma, as well as tumour growth in vitro and 
in vivo [12].

US28 that induces the expression of COX-2 in 
HCMV infected cells can bind different chemokines, 
including CCL2, CCL5, and CX3CL1 [74], and suppress 
the host immune responses [75]. Moreover, US28 activates 
NF- κB resulting in activation of the IL-6–JAK1–STAT3 
signalling axis and increased interleukin-6 (IL-6), VEGF 
and endothelial nitric oxide synthase (e-NOS) production 
[14, 19]. Analysis of clinical glioblastoma samples in situ 
showed co-localization of US28 with phosphorylated 
STAT3, COX-2, VEGF and e-NOS, suggesting that 
US28 in addition to promoting an inflammatory 
microenvironment also contribute to tumour invasiveness 
and angiogenesis [14, 19]. Taken together US28 could 
provide a target for therapy in HCMV-positive tumours.

HCMV establishes latency in myeloid lineage 
cells, and reactivation is dependent on inflammation 
and differentiation of monocytes into macrophages 
of dendritic cells. HCMV can also persistently infect 
monocyte/macrophage lineage cells and induce a strong 
inflammatory response in these cells [76]. In human 
breast and colon cancer HCMV protein expression has 
been detected in infiltrating inflammatory cells in the 
tumour microenvironment and in gliomas, macrophages 
and microglia cells as well as tumor cells exhibit 
positive HCMV protein staining [77, 78]. HCMV 
infection of moncyte/macrophages is associated with 
an induction of IL-1, IL-6, IL-10, TNF-α and TGF-β 

that are potent cytokines with both immune stimulating 
and immunosuppressive effects on the host anti-tumour 
response [1, 79]. In particular, CMVIL-10 and TGF-β 
would provide an immunosuppressive microenvironment 
in HCMV positive tumours [80, 81]. These evidences 
raise the prospect that a persistent HCMV infection could 
induce the same kind of “smoldering” inflammation 
at the same time as it creates an immunosuppressive 
environment, which is frequently observed in the tumour 
microenvironment [1, 78]. 

HCMV AS A GUARDIAN OF CANCER STEM 
CELLS

HCMV is a neurotropic virus that can persistently 
infect neural precursor cells. As a consequence HCMV 
is the major infectious cause of birth defects in infants, 
including sensori-neural hearing loss or neuronal migration 
disturbances during brain development, and in the most 
severe cases, microcephaly or anencephaly. We have 
demonstrated that HCMV can block the ability of neural 
progenitor cells to differentiate into neurons or astrocytes 
[82, 83]. HCMV DNA and gene products have repeatedly 
been detected by several laboratories in preneoplastic 
and neoplastic tumour cells in human glioblastoma tissue 
samples and the fractions of tumour cells infected with 
HCMV correlate significantly with tumour staging and 
patient survival [5, 84]. We recently reported that the 
majority of primary human medulloblastoma and cell lines 
propagated for years in laboratories contain HCMV DNA, 
RNA and express HCMV IE and late proteins [12]. Our 
unpublished data also demonstrate that HCMV is present 
in the majority of childhood primary neuroblastoma and 
cell lines, an observation which is consistent with other 
reports [15, 45]. 

Medulloblastoma and neuroblastoma are embryonal 
tumours of the central and peripheral nervous systems, 
respectively. Compared to adult tumours, paediatric 
tumours generally have a dramatically shortened latency 
period and harbour fewer genetic aberrations causing 
oncogene activation or loss of apoptotic regulators. The 
reason for these differences is that these malignancies 
probably arise from stem or progenitor cells which 
already possess proliferative capacity as a part of the 
normal developmental process [85]. Medulloblastoma 
and neuroblastoma are linked to dysfunctional pathways 
that are operative during normal development [85]. The 
clinical presentation and treatment response also suggests 
that a tumour initiating cell population exist in these 
tumours [86-91].

Although the cellular origin of gliomas still is 
contended, recent evidence suggests that multipotent 
neural stem or progenitors of the subventricular zone 
(SVZ) are cells with the potential to form gliomas 
[92]. Subpopulations of CD133+ and/or CD15+ cells in 
both medulloblastomas and glioblastomas have been 
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recognized as potential cancer stem cells [89, 93]. In 
neuroblastoma, on the other hand, no true marker for 
potential cancer stem cells have been found, although 
CD133 and CD44 are implied as potential markers [88]. 
We have detected HCMV DNA, RNA and proteins in 
medulloblastoma, glioblastoma and neuroblastoma cell 
lines used world-wide for decades in laboratories, which 
may indicate that the virus in condemned in a stem cell 
that is maintained in culture and gives rise to tumours 
[12]. We observed that the expression of HCMV proteins 
in both medulloblastoma and neuroblastoma cell lines 
varied considerably between different sampling occasions 
over a one year period, and that protein expression 
increased when the cells were engrafted in nude mice. 
We therefore hypothesize that HCMV DNA and proteins 
are maintained in a stem-cell like phenotype. Indeed we 
observed HCMV protein expression in the majority of 
CD133+ medulloblastoma cells whereas in neuroblastoma 
this number varied between 4-34% depending on cell line 
and sampling time ([12], and unpublished observations). 
Likewise, in glioblastoma tissue samples 40-60% of the 
CD133+ cell population expressed HCMV IE1 [14] and 
our own unpublished observations). These data indicate 
that HCMV is present in tumour cells that express stem 
cell markers, and that the virus is maintained in cell lines 
over long periods of time. The fact that HCMV is able to 
inhibit the differentiation of neural progenitor cells raises 
the possibility that HCMV encoded proteins are involved 
in the maintenance of a cancer stem cell population within 
neural tumours. 

ANTI-HCMV THERAPY AS A TREATMENT 
OPTION FOR CERTAIN CANCERS

The findings that several cancer forms are HCMV 
positive, including those with a neural origin that usually 
have a dismal prognosis, opens up the possibility to treat 
these cancers with anti-viral drugs against HCMV.  In 
nude mice engrafted with human medulloblastoma cells, 
the antiviral drug valganciclovir, significantly inhibited 
tumour growth. Interestingly the treatment effect was 
extensively enhanced when valganciclovir was combined 
with the COX-2 specific inhibitor celecoxib [12], which is 
known to also inhibit HCMV infection. Importantly, the 
inhibition of tumour growth clearly corresponded with 
reduction in the expression of late HCMV proteins in 
these tumours. However, neither valganciclovir by itself 
or in combination with celecoxib was able to completely 
eliminate the HCMV presence. In sharp contrast, 
valganciclovir had no effect neither on the clonogenic 
capacity or tumour growth of two HCMV-negative cell 
lines derived from prostate and pancreas adenocarcinomas 
[12]. This strongly suggests that the inhibitory effect of 
valganciclovir on medulloblastoma growth is HCMV 
specific and not mediated by potential non-specific drug 

effects inhibiting cellular proliferation.
Medulloblastoma, neuroblastoma and glioblastoma 

tumors express high levels of COX-2 and NSAIDs, 
inhibitors of COX-2 and PGE2 production, have profound 
effects on the growth of these tumours [64, 94-96]. These 
inhibitors also efficiently prevent HCMV replication 
and reduce the growth of US28-expressing tumour cells 
[17, 18, 70, 73]. Hence, the beneficial effects seen with 
aspirin and other NSAIDs in cancer prevention studies 
could partly be due to inhibition of HCMV replication 
in pre-malignant lesions. Compared to conventional 
chemotherapeutic drugs currently used for the treatment 
of these tumours, both antiviral drugs for HCMV and 
NSAIDs are well tolerated. Hence, these drugs should 
undergo clinical testing in combination with conventional 
therapies in patients carrying HCMV-infected tumours. 

In a randomized double-blinded phase II study we 
are currently evaluating antiviral drugs against HCMV 
as an adjuvant therapy for glioblastoma. Results from 
this study are expected to be ready soon. Also a phase 
I/II immunotherapy clinical trial of autologous HCMV 
pp65 RNA loaded dendritic cells has been initiated in 
which 13 patients with newly diagnosed glioblastoma 
multiforme were enrolled. Initial results from this study 
are promising. Patients exhibited a median progression-
free survival of 15.4 months and overall survival of 20.6 
months, numbers which are highly significant compared to 
historical controls [97]. 

The promising preclinical and clinical results 
obtained using antiviral drugs against HCMV to treat 
tumours carrying HCMV should be extended to include 
larger controlled clinical trials. Also, developing drugs 
that specifically inhibit the functions of HCMV encoded 
US28 may be of future benefit in cancer treatment since 
the US28 protein may possess important functions in 
tumour initiation through the activation of intracellular 
signalling pathways, angiogenesis and effects on the 
tumour microenvironment. 

CONCLUSIONS AND PERSPECTIVES

The presence and functions of HCMV in cancer 
is still debated and scepticism vestiges regarding the 
relationship between HCMV and cancer. This mainly 
originates from conflicting results regarding the detection 
of HCMV in tumour samples and since HCMV by 
itself not has been shown to transform normal cells into 
cancer cells [47]. The last statement has recently been 
challenged since the HCMV encoded chemokine receptor 
homologue US28 renders NIH3T3 cells tumorigenic 
when injected into nude mice and transgenic mice with 
targeted expression to intestinal epithelial cells develop 
intestinal neoplasia [16, 18, 19]. Compared to the high 
degree of HCMV replication and protein expression seen 
in primary HCMV infections and in HCMV reactivation 
in immunocompromised individuals, the expression 
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of viral proteins in cancer cells is very low. The term 
“microinfection” has been used to describe the low levels 
of HCMV infection found in cancer [84]. Clearly, the 
infection is different in cells that replicate the virus and 
produce infectious virus compared to tumour cells in 
vivo; in spite of the fact that several HCMV proteins are 
expressed, infectious virus are not isolated from tumour 
cells of primary tumors, primary tumour cell cultures or 
established tumour cell lines. Therefore, as detection of 
HCMV in cancer cells using standard protocols developed 
for the detection of active HCMV infection associated with 
a high HCMV replication rate and high-level expression 
of HCMV proteins is usually insufficient in these cases , 
it is believed that low levels of HCMV exists in tumours 
[13, 15]. However, using flow cytometry examining fresh 
tumour cells or indirect immunofluorescence examining 
frozen tumor biopsy specimens, we demonstrated the 
feasibility of detecting HCMV proteins in primary 
tumour cells from medulloblastoma, glioblastoma and 
neuroblastoma patients (Wolmer-solberg, submitted, 
[12, 98]). Research laboratories that have shown a high 
prevalence of HCMV nucleic acids and proteins in tumour 
samples have used highly sensitive immunohistochemical 
and molecular methods in order to detect the presence of 
HCMV. 

As of today HCMV has been detected in glioma, 
medulloblastoma, neuroblastoma, breast, prostate and 
colon cancer and mucoepidermoid tumors of the salivary 
gland. Although the exact molecular functions of HCMV 
in these tumours still need to be further investigated, the 
findings that antiviral HCMV treatment inhibit the growth 
of certain tumours ([12], Wolmer-Solberg, unpublished) 
is exciting and future studies will elucidate whether these 
antiviral therapies should be included as an adjuvant 
treatment for patients having HCMV-positive tumours.
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