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Cuproptosis is a novel and unique cell death mode that has attracted

significant interest in recent years. Little is currently known about

whether cuproptosis-related genes (CRGs) are associated with the

pathophysiology and survival of patients with lung adenocarcinoma

(LUAD). The present study sought to characterize the transcriptional and

genetic alteration of CRGs in LUAD and its potential significance in the tumor

microenvironment and predicting the prognosis of LUAD. The secondary

eventual aim was to study the role of CRGs in predicting immunotherapy

response and its clinical value combined with the TNM stage. We found that

several CRGs, including FDX1, DLD, SLC31A1, and MTF1, were enriched in

macrophages in our single-cell RNA-seq data. Three distinct molecular

subtypes were identified and correlated with clinicopathological

characteristics, prognosis, biological pathways, and tumor

microenvironment (TME) in LUAD. We developed a cuproptosis-related

gene score (CRG_score) and validated it in three independent cohorts

and clinical subtypes. The low CRG_score group, characterized by a

greater immune score, immunophenoscore (IPS), lower tumor immune

dysfunction and exclusion (TIDE) score, and T-cell dysfunction score, had

a better prognosis, suggesting that the low CRG_score group responded

more favorably to immunotherapy, which was validated in the anti-PD-1/

L1 immunotherapy cohort (IMvigor210). In contrast, the high CRG_score

group was more sensitive to targeted therapy and chemotherapy, with a

higher cancer stem cell (CSC) index and lower half-maximal inhibitory

concentration (IC50) for many drugs. Given the established crosstalk

between CRG_score and tumor TNM stage, we developed an accurate

nomogram for clinical application of the CRG_score. Taken together, our

rigorous and comprehensive examination of CRGs in LUAD identified their
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potential functions in TME, clinicopathological characteristics, drug

sensitivity, and prognosis. These findings improve the current

understanding of cuproptosis in LUAD, paving the way for more accurate

prognosis assessment and tailored treatment for this patient population.

KEYWORDS

cuproptosis, lung adenocarcinoma, tumor microenvironment, immunotherapy, drug
sensitivity

Instruction

Lung cancer (LC) is one of the most prevalent types of

cancer and the main cause of cancer-related mortality globally

(Cancer Genome Atlas Research, 2014). LC is classified into

two primary subtypes based on histologic type: small cell lung

cancer (SCLC) and non-small cell lung cancer (NSCLC),

which account for 15% and 85% of LCs, respectively (Chen

et al., 2016). Current evidence suggests that the prevalence of

LUAD has increased in recent years compared to other lung

cancer subtypes (Meza et al., 2015). TNM staging of tumors

has long been widely used to predict the prognosis of LC, but it

has been shown that there are differences in survival in

patients with the same stage of lung cancer due to tumor

heterogeneity (Hensing et al., 2014). As a result, a biomarker

capable of reliably predicting the prognosis of lung cancer is

urgently needed. Notwithstanding that substantial

breakthroughs have been achieved in immunotherapy for

advanced lung cancer, there is still a lack of reliable clinical

biomarkers to identify which lung cancer patient populations

are most likely to derive benefit (Reck et al., 2019; Gadgeel

et al., 2020). Accordingly, it is essential to find a biomarker that

can accurately predict the response to immunotherapy of lung

cancer patients.

Copper levels have been demonstrated to act as a “double-

edged sword” for cell viability. On the one hand, low

intracellular copper concentrations are essential for cellular

homeostasis. On the other hand, the accumulation of free

intracellular copper is detrimental to cells, and occasionally

even moderate intracellular copper concentrations can be

toxic and eventually result in cell death (Kim et al., 2008).

Copper-induced cell death, also known as cuproptosis, is a

unique mechanism of cell death distinct from documented

programmed cell deaths (PCD), such as apoptosis, pyroptosis,

necroptosis, and ferroptosis. Copper can reportedly combine

with thioredoxin in the tricarboxylic acid cycle (TCA) of

mitochondrial respiration, resulting in abnormal

thioredoxin oligomerization, reducing the levels of iron-

sulfur (Fe-S) clusters, and causing proteotoxic stress

response and ultimately cuproptosis (Tsvetkov et al., 2022).

Recent research indicated that imbalanced copper

homeostasis could impair tumor growth and result in

irreparable harm (Li, 2020). A previous study also

demonstrated that copper could induce activation of

various cell death pathways, including apoptosis and

autophagy, as well as the formation of reactive oxygen

species, proteasome inhibition, and anti-angiogenesis (Jiang

et al., 2022). Therefore, cuproptosis may play an important

role in tumor development. FDX1, DLAT, and LIAS are

reportedly essential for cuproptosis (Tsvetkov et al., 2022).

In a previous study, knockdown of FDX1 was found to alter

tumor cell metabolism, thereby affecting tumor-associated

inflammation and changes in the immune

microenvironment (Zhang et al., 2021a). Moreover, DLAT

could acetylate the k76 site of 6-phosphogluconate

dehydrogenase (6PGD), thereby promoting the

proliferation and growth of H1299 lung cancer cells (Shan

et al., 2014). Besides, LIAS has been shown to regulate HIF-1α
activity and may have broad implications for epigenetic

regulation and tumorigenesis (Burr et al., 2016). However,

the synergistic effects of multiple CRGs in lung

adenocarcinoma have not been reported.

In this work, we aimed to evaluate the molecular alterations

and clinical relevance of CRGs in LUAD. Our data emphasized

the significance of CRGs in the pathogenesis of LUAD and

established the groundwork for the accurate prediction of

LUAD prognosis and immunotherapy response.

Materials and methods

Data sources

The study’s flow diagram is depicted in Figure 1. We

retrieved 16 CRGs from a published article (Supplementary

Table S1) (Tsvetkov et al., 2022). The Gene Expression

Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) and

The Cancer Genome Atlas (TCGA) databases were utilized

to obtain RNAseq data and corresponding clinical

characteristics of LUAD. Finally, a total of 1972 LUAD

samples were enrolled, including 30 from GSE29013 (Xie

et al., 2011), 85 from GSE30219 (Rousseaux et al., 2013),

226 from GSE31210 (Okayama et al., 2012), 106 from

GSE37745 (Botling et al., 2013), 127 from GSE50081 (Der

et al., 2014), 443 from GSE68465 (Director’s Challenge

Consortium for the Molecular Classification of Lung

Adenocarcinoma et al., 2008), 442 from GSE72094

(Schabath et al., 2016) and 513 from TCGA-LUAD cohort.

Frontiers in Pharmacology frontiersin.org02

Pan et al. 10.3389/fphar.2022.934722

https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.934722


As previously described, RNAseq data (transcripts per

kilobase million, TPM) could be combined with RNAseq in

the microarray by batch correction (Conesa et al., 2016; Song

et al., 2021). The “ComBat” method was used to avoid the

batch effect. The batch effect was eliminated after the

combination, as shown in Supplementary Figure S1.

1972 LUAD samples from the merged cohort were retained

for subsequent analysis. The anti-PD1/PD-L1 treatment

cohort (Imvigor210) was also collected from a previously

published study (Mariathasan et al., 2018). Moreover, we

downloaded the TCGA somatic mutation from GDC

[GDC(cancer.gov)] and the copy number variation (CNV)

from UCSC Xena (https://xenabrowser.net).

Data sources for each scoring system

TIDE, T cell dysfunction, and T cell exclusion were obtained

from the TIDE website (http://tide.dfci.harvard.edu). The IPS

was derived from a published article (Charoentong et al., 2017).

RNAs served as a measure for the degree of similarity between

tumor cells and stem cells and thus could be used to quantify

cancer stem cells (CSCs) (Malta et al., 2018). RNAs were obtained

from the UCSC website [UCSC Xena(xenabrowser.net)].

Establishment of the regulatory network
between transcription factors and
cuproptosis-related genes

Transcription factor (TF) binding motifs for humans were

acquired from the RcisTarget database (https://resources.

aertslab.org/cistarget/). The network was constructed using the

“visNetwork” R package (Peng et al., 2019).

Single-cell RNA-Seq data processing

Our single-cell RNA-Seq data were obtained from three

LUAD patients and three control patients. All patients signed

an informed consent form and met the inclusion criteria. The

single-cell RNA-seq data were deposited at NODE under the

project ID: OEP000943 (https://www.biosino.org/node/). The

“Seurat” R package was utilized for downstream analysis of

FIGURE 1
The flow diagram showed the entire analytical process of the study.
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single-cell RNA profiles (Hao et al., 2021). The R package

“singleR” was used to automatically annotate cell subsets.

Consensus clustering analysis of
cuproptosis-related genes

LUAD samples were categorized using unsupervised

clustering analysis. This clustering was performed by applying

the following criteria. The curve of cumulative distribution

function (CDF) was plotted by gradually increasing the k

value and there were no groups with a small sample size.

Finally, the optimal number of clusters was characterized by

an increased intra-group correlation and decreased inter-group

correlation. The above procedure was conducted with the R

package “ConsensusClusterPlus” and repeated 1,000 times to

ensure the classification’s stability (Wilkerson and Hayes, 2010).

Establishment and validation of the
cuproptosis-related gene_score

DEGs among different cuproptosis molecular subtypes were

identified using the screening criteria: fold-change of 1.2 and an

adjusted p-value of 0.05. Using univariate/multivariate Cox

regression analysis, the prognostic genes most strongly related

to LUAD OS were determined. To minimize the risk of

overfitting, the prognosis-related DEGs were included in the

LASSO regression analysis, and the scoring signature was

constructed using multivariate cox regression analysis as

follows: CRG_score = (Expi * coefi), where Coefi and Expi

denote the risk coefficient and expression of each gene,

respectively. The merged cohort and all independent

validation sets were categorized as high- or low-risk groups

based on the median risk score. Next, we validated the value

of the CRGs signature in mortality risk identification,

classification, and prognostic ability in the three independent

datasets.

Tissue samples

Six pairs of LUAD and adjacent non-tumor tissues were

obtained from patients with LUAD at the Renmin Hospital of

WuhanUniversity. All participants in this study provided written

informed consent. The Ethics Committee of Wuhan University’s

Renmin Hospital approved this study.

Real-time fluorescence quantitative PCR

Total RNA was extracted from LUAD patient tissues using

TRIpure Total RNA Extraction Reagent (ELK Biotechnology,

EP013), and cDNA was synthesized using EntiLink™ first

Strand cDNA Synthesis Kit (ELK Biotechnology, EP003).

SYBR-Green assays (ELK Biotechnology, EP001) were used

to perform RT-qPCR. The expression levels of target genes

were uniformly normalized to GAPDH. The primer sequences

used for RT-qPCR in this study are listed in Supplementary

Table S2.

Estimation of drug sensitivity

Downloads from CellMiner (https://discover.nci.nih.gov/

cellminer/home.do) included two data labeled “RNA: RNA-seq”

and “Compound activity: DTP NCI-60". We further investigated the

connection between FDA-approved drug Z scores with cuproptosis-

related DEGs. A lower IC50 indicated higher drug sensitivity in cells.

We computed the IC50 of commonly cancer-fighting drugs using

the R package “pRRophetic” (Geeleher et al., 2014).

Pathway and function enrichment analysis

Hallmark gene sets were obtained from theMSigDB database

[GSEA(gsea-msigdb.org)], which included 50 marker gene lists

that define biological states and processes (Supplementary Table

S3). Gene set variation analysis (GSVA) (Hanzelmann et al.,

2013), a nonparametric and unsupervised approach for

examining the biological pathways of various populations, was

performed to analyze these 50 biological pathways. Metascape

(https://metascape.org/gp/index.html#/main/step1) is a web-

based portal created to perform pathway and function

enrichment analyses on gene lists (Zhou et al., 2019). The

DEGs among molecular subgroups were analyzed using

Metascape, Gene Ontology (GO), and the Kyoto Encyclopedia

of Genes and Genomes (KEGG).

Estimation of the tumor
microenvironment and immune
landscape

TME refers to the local environment composed of tumor

cells, stromal cells, immune cells, cytokines, and chemokines

(Balkwill et al., 2012). To obtain a better understanding of TME

in various subgroups, we assessed immune cells using various

methods, including single sample GSEA (ssGSEA) (Barbie et al.,

2009), TIMER (Li et al., 2017), CIBRESORT (Newman et al.,

2015), QUANTISEQ (Finotello et al., 2019), MCPcounter (Becht

et al., 2016), XCELL (Aran et al., 2017), and EPIC (Racle and

Gfeller, 2020). The ESTIMATE algorithm (Becht et al., 2016) was

used to estimate the amount of stromal and immune cells in

malignant tumors and compute immune scores, stromal scores,

and estimate scores.
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Establishment and validation of a
prognostic nomogram

A predictive nomogram was constructed based on clinical

variables and risk scores (Iasonos et al., 2008). The nomogram

scoring system was used to assign a score to each variable, and

the overall score was calculated by summing the scores of all

variables. The predictive value of the nomogram was

compared with the TNM stage for the 1, 3, 5, and 10-year

survival probability using time-dependent ROC. The

nomogram calibration plot was used to compare the

predicted 1-, 3-, and 5-year survival events to the actual

outcomes.

Statistical analysis

A p-value <0.05 was statistically significant. R 4.0.2 (https://

www.r-project.org) and OriginPro2021 were utilized to analyze

data and generate tables and figures.

Results

Transcriptional and genetic alterations
associated with cuproptosis and
transcription factor regulation and drug
targets

Cancer is widely acknowledged as a highly heterogeneous

disease with distinct gene expression patterns. Our study

showed considerable differences in genetic profiles and

expression levels of CRGs, implying that CRGs may

potentially participate in the pathogenesis of LUAD. We

examined the differential expression of 16 CRGs in the

TCGA dataset. As seen in Figure 2A, 11 CRGs were

differentially expressed between tumor and normal tissues,

with eight upregulated and three downregulated in LUAD

(Figure 2B; Supplementary Table S4). FDX1, LIPT1, and

DLAT were related to prognosis, with FDX1 and

LIPT1 being independent prognostic factors (Supplementary

Figures S2A,B). Further research revealed that decreased

FDX1 and DLAT expression was associated with improved

OS, while increased LIPT1 expression was associated with

worse OS (Supplementary Figures S2C–E). Intriguingly,

based on our single-cell RNA-seq data, we classified TME

cells in lung cancer into seven main cell types and

discovered that FDXL, DLD, SLC3A1, and PDHA1 were

differentially expressed in macrophages (Supplementary

Figure S3). A low mutation frequency of CRGs was observed

(Figure 2C). Only 92 (16.4%) of the 561 LUAD samples

harbored 16 CRGs somatic mutations, with ATP7A and

CDKN2A being the most frequent mutations. Subsequently,

we analyzed the CNVs of all CRGs. MTF1, SLC31A1, DLD,

LIAS, and LIPT1 CNVs were consistently increased, whereas

DLAT, FDX1, CDKN2A, GCSH, PDHA1, and PDHB CNVs

generally decreased in LUAD (Figure 2D). CNV gain in DLD,

LIAS, and LIPT1 boosted gene expression, and CNV loss in

FDX1 resulted in a substantially reduced gene expression. In

comparison, other CRGs with high CNV loss or gain exhibited

opposing expression patterns, suggesting that CNV is not the

only significant factor impacting mRNA expression (Sebestyen

et al., 2016). A previous study demonstrated that other factors,

such as DNA methylation and transcription factors, may

regulate gene expression (Koch et al., 2018). As a result, we

further investigated the transcription factor motifs profile of

CRGs and identified the top 4 related transcription factor

motifs using the RcisTarget database (Figure 2E). Moreover,

we found that the drug sensitivity of several compounds was

substantially related to these 11 differentially expressed CRGs

(Figure 2F; Supplementary Table S5).

Validation of the expression levels of
cuproptosis-related genes

The expression levels of 16 CRGs were measured in six

LUAD tissues and six adjacent normal tissues by RT-qPCR.

As demonstrated in Supplementary Figure S4 and

Supplementary Table S6, the expression levels of LIPT1, LIAS,

GCSH, DLAT, PDHA1, PDHB, and CDKN2A were elevated,

while those of FDX1, SLC31A1 and MTF1 were downregulated

in LUAD tissues compared to normal tissues.

Identification of cuproptosis molecular
subtypes in lung adenocarcinoma

For classification of cuproptosis into molecular subtypes

based on CRGs, unsupervised cluster analysis was performed

on these 1972 LUAD samples of the merged cohort. LUAD was

classified into three cuproptosis molecular subtypes (k = 3) by

increasing the clustering variable (k) from 2 to 9

(Supplementary Figure S5). These three subtypes were

labeled as cluster A (n = 698), cluster B (n = 645), and

cluster C (n = 558) (Figure 3A). Principal component

analysis (PCA) verified the clustering results (Figure 3B),

and tSNE yielded similar findings (Supplementary Figure

S6). Kaplan-Meier analysis revealed that the three molecular

subtypes had significantly different prognoses, with cluster A

having the best survival outcomes (Figure 3C). The heatmap

illustrated the clinical characteristics of various molecular

subtypes, substantiating that LUAD can be categorized into

three distinct molecular subtypes based on CRGs (Figure 3D).

Furthermore, most CRGs were significantly differentially

expressed among these three molecular subtypes (Figure 3E).
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FIGURE 2
Transcriptional and genetic alterations of CRGs, regulatory networks of transcription factors, and sensitive drugs. (A) Heatmap showing the
expression pattern of 16 CRGs in LUAD (N: tumor, T: tumor; red represents high expression, blue represents low expression). (B) 11 CRGs were
differentially expressed in normal and tumor tissues. (C) Somatic mutations of CRGs. (D) Themutation frequency of CNV is prevalent in CRGs. (E) The
top 4 transcription factor motifs that mostly possibly regulate the CRGs. (F) Correlation of 11 differentially expressed CRGs with sensitive drug Z
scores (blue: negative correlation, orange: positive correlation; thickness of the line represents the strength of the correlation).
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Characteristics of tumor
microenvironment cell infiltration and
biological function in the cuproptosis
molecular subtypes

It was discovered that distinct molecular subtypes had

different biological pathways and immunological landscapes,

which may contribute to their drastically different survival

probabilities. GSVA analysis was performed to investigate the

functional and biological differences among these three

molecular subtypes (Figures 4A–C). The results revealed

that Cluster A was primarily enriched in immune

activation-related pathways, such as T cell co-stimulation,

APC co-stimulation, and Cytolytic activity, whereas Cluster B

FIGURE 3
Identification of three cuproptosis molecular subtypes in the merged cohort. (A) Unsupervised consensus clustering identified three molecular
subtypes of cuproptosis. (B) PCA verified that the merged cohort could be well classified into three molecular subtypes. (C) Kaplan-Meier analysis
showed significant differences in overall survival between the three molecular subtypes. (D) Heatmap demonstrating differences in CRGs transcript
and clinical features among three molecular subgroups (blue, low expression level; red, high expression level). (E) Thirteen CRGs were
differentially expressed among three molecular subgroups. *, **, and ***, represent p < 0.05, p < 0.01, and p < 0.001, respectively.
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FIGURE 4
Differences in biological pathways and tumor microenvironment among three cuproptosis molecular subtypes of LUAD. GSVA analyzed the
biological pathways of three cuproptosis subtypes. Red represents activation of biological pathways, and blue represents inhibition of biological
pathways. (A) Cluster A vs. Cluster C; (B) Cluster B vs. Cluster C. (C) The immune-related pathway differences in Clusters A–C. Two algorithms
demonstrated the abundance of TME cell infiltration for three cuproptosis subtypes (D) by ssGSEA; (E) by CEBERSORT. Statistical differences
between the three clusters were analyzed by a one-way ANOVA test. (F) Tumor microenvironment scores between the three cuproptosis subtypes,
including Stromal score, Immune score, and Estimated score. (G) Differential expression of different immune checkpoint genes among the three
cuproptosis subtypes.*, **, and ***, represent p < 0.05, p < 0.01, and p < 0.001, respectively.
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exhibited opposite results, with significant enrichment for

lower immune activation pathways. Cluster C was enriched in

more immunological pathways, such as T cell co-stimulation

and inflammation-promoting pathways, several cell

proliferation and oncogenic pathways, including MYC

targets v1, MYC targets v2, G2M checkpoint, and E2F

targets signaling pathways. We then employed ssGSEA of

the “GSVA” R package to evaluate the enrichment scores of

16 immune cells (Supplementary Table S7). Activated DCs,

Macrophages, Mast cells, Neutrophils, TIL, and Treg cells

were the most prominent immune infiltrating cells in Cluster

A. CD8+ T cells were the most enriched in Cluster C, while

immune cells were the least enriched in Cluster B (Figure 4D).

CIBERSORT yielded similar results to ssGSEA (Figure 4E). As

predicted, Cluster A had the highest immune and stromal

scores, while Cluster B had the lowest in TME (Figure 4F).

What’s more, immune checkpoint genes were differentially

expressed among these three molecular subtypes, with

CTLA4 and PD1 (PDCD1) exhibiting higher expressions in

Cluster C than in Clusters A and B (Figure 4G).

Identification of cuproptosis phenotype-
associated subtypes

To explore the biological activity of cuproptosis, we

identified 194 DEGs associated with cuproptosis molecular

subtypes using the “limma” R package. The functional

enrichment analysis showed that these genes were

significantly enriched in immune-related biological activities

and metabolic pathways (Figure 5A). GO and KEGG analyses

also showed significant enrichment in immunological and

cancer-related pathways (Supplementary Figure S7),

suggesting that cuproptosis is essential for immune control

of TME (Figure 5B). The heatmap demonstrated a strong

correlation between genotype A vs. P53 mutation, genotype

B vs. STK11 mutation, advanced TNM stage vs. KRAS

mutation, and genotype C vs. EGFR mutation (Figure 5C).

Additionally, the Kaplan-Meier plot demonstrated that patients

with genotype A had the worst overall survival while those with

genotype C had the greatest OS (log-rank test, p < 0.001,

Figure 5D).

Construction of the cuproptosis signature

A CRG_score signature was constructed based on

194 DEGs. Figure 6A depicts the distribution of patients in

the three molecular subtypes, three genotypes, and two

CRG_score groups. Univariate/multivariate Cox regression

analysis yielded 17 prognostic genes (Supplementary Table

S8). Using Lasso and multivariate Cox analyses, the

CRG_score signature was constructed, with the risk

coefficient for each gene shown in Supplementary Table S9.

Finally, the above 17 genes were incorporated into our

CRG_score signature (Figure 6B). The LUAD patients were

classified as high-risk (n = 949) or low-risk groups (n = 950)

based on the median risk score. Using Kaplan-Meier analysis,

we discovered that patients in the high-risk group had a

significantly worse OS than in the low-risk group (p < 0.001,

Figure 6C). Given that TCGA-LUAD, GEO72094, and

GEO68465 had relatively large LUAD samples and

corresponding clinical data, they were used to assess the

reliability of our CRG_score signature from four aspects,

including OS difference, mortality risk identification,

classification, and prognostic ability. These results indicated

that our signature exhibited a good performance (Figures 6D–F;

Supplementary Figure S8). Although it is widely acknowledged

that the tumor TNM staging substantially influences patient

survival, patients with same stage LUAD can have a

considerably variable prognosis, which may be connected to

lung cancer heterogeneity. We observed that combining our

CRG_score with TNM staging may identify patients with a poor

prognosis more accurately. These findings indicated that

individuals with low-risk and stage I/II had the best

prognosis, while those with high-risk stage and III/IV had

the worst (Figure 6I).

Cuproptosis-related gene_score was an
independent risk factor, with the ability to
predict the OS of lung adenocarcinoma
patients

To explore the ability of the CRG_score signature to

stratify clinical characteristics, we investigated the

relationship between CRG_score and various clinical

variables (age, gender, smoking status, TNM stage, EGFR

status, BRAF status, KRAS status, STK11 status, and

P53 status). As shown in Supplementary Figure S9, Kaplan-

Meier curves showed that OS was significantly longer in the

low-risk group than in the high-risk group patients with

different ages (p < 0.01), sex (p < 0.001), smoking history

(p < 0.001), TNM stage (I/II p < 0.001, III/IV p = 0.002 for

stage III/IV), EGFR status (p < 0.001 for WT, p = 0.007 for

Mut), Kras status (p < 0.001 for WT, p < 0.026 for Mut),

STK11 status (p < 0.001 for WT, p = 0.879 for Mut),

TP53 status (p < 0.001 for WT, p = 0.062 for Mut),

indicating that our CRG_score exhibited good performance

in patient stratification. To explore whether this CRG_score

could independently predict OS, we performed univariate and

multivariate Cox regression analyses combining their clinical

characteristics and risk score. As shown in Figures 6G,H, the

CRG_score was an independent risk factor (p < 0.001, HR:

3.124, 95% CI: 2.099-4.651). Similar results were obtained in

three independent cohorts (Supplementary Figure S10).
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The characteristics of cuproptosis
signature in the cancer genome atlas
cohort

The somatic mutations were compared in high and low

CRG_score groups, and the top 30 genes with the greatest

mutation frequency were identified (Figures 7A,B). It was

observed that the high CRG_score had higher mutation

frequencies, such as TP53 and KRAS mutations, strongly

associated with cancer. The high CRG_score group displayed a

greater tumor mutation burden (TMB) than the low CRG_score

group (Figures 7C,D). Then, the correlation between these risk

groups and immune checkpoint-related genes was explored. PD-1

and LAG3 expressions were significantly greater in the low CRG

FIGURE 5
Identification of three cuproptosis-related genetic subtypes. (A) The enrichment of biological pathways based on differentially expressed genes
(DEGs) in three cuproptosis molecular subtypes. (B) The 1972 LUAD samples in the merged cohort were classified into three genetic subtypes based
on these DEGs using unsupervised clustering analysis (k = 3). (C)Heatmap showing differences in DEGs and different clinical features in three genetic
subtypes. (D) Kaplan Meier Analysis showed differences in overall survival among three genetic subtypes.*, **, and ***, represent p < 0.05, p <
0.01, and p < 0.001, respectively.
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score group, but PD-L1 (CD274), CTL4, and PD-2 (PDCD1LG2)

expressions showed no difference (Figure 7E). The CSC index was

significantly higher in the high-risk group than in the low-risk group

(Figure 7F). A positive association was found between CRG_score

andCSC index (R = 0.4, p< 0.001, Figure 7G), indicating that LUAD

patients with higher CRG_score exhibited more evident stem cell

features and reduced cell differentiation. Considering the important

role of CRGs in tumor immunity and tumor microenvironment, we

further explored the relationship between CRG_score and

immunotherapy. As a predictor of immunotherapy response, the

IPS exhibited a better performance in identifying patients who

benefit from immunotherapy. The IPS was significantly higher in

the low CRG_score group than in the high CRG_score group

(Figures 7G,H). Lower TIDE scores, T-cell exclusion scores, and

FIGURE 6
Construction of a CRG_score signature in the merged cohort and validation in three independent datasets. (A) The alluvial diagram showed the
changes in LUAD molecular clusters, genetic subtypes, CRG_score, TNM stage, and survival status. (B) The Lasso regression analysis identified
17 LUAD prognosis-related genes to construct the CRG_score signature. The difference in overall survival between high and low CRG_score groups
in (C)merged cohort; (D) TCGA; (E)GSE72094; (F)GSE68465 (p < 0.001). (G,H)Univariate andmultivariate Cox regression analyses showed the
prognostic value of the CRG_score in the merged cohort. (I) Kaplan Meier curve revealed the relationship among TNM stage, CRG_score, and
survival probability.
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FIGURE 7
Characteristics of CRG_score in TCGA cohort and predicting immunotherapy response. (A,B) Thewaterfall plot depicts the heterogeneity in the
somatic mutation landscape of tumors across groups with low and high CRG_score. (C,D) Significant differences of TMB in high and lowCRG_score
groups and correlation with the risk score. (E) Differential expression of immune checkpoint-related genes in high and low CRG_score groups. (F,G)
Significant differences of RNAss (cancer stemness cells index) in high and low CRG_score groups and correlation with the risk score. (H,I)
Significant differences of TIED score in high and low CRG_score groups and correlation with the risk score. (J) The boxplot demonstrated that IPS
was significantly higher in the high CRG_score group than in the low CRG_score group. (K) The TME score in the high and low CRG_score group. (i)
23 TME cells infiltration for the two risk groups. *, **, and ***, represent p < 0.05, p < 0.01, and p < 0.001, respectively.
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higher T-cell dysfunction scores were associated with better

responses to anti-PD-1 and anti-CTLA-4 immune checkpoint

blockers (ICBs) (Jiang et al., 2018). TIDE and T-cell exclusion

scores were significantly higher in the high CRG_score group,

While the T-cell dysfunction scores were lower (Figures 7I,J;

Supplementary Figures S11D–G). Given that TME can also

influence immunotherapy, we examined immune cell infiltration

in distinct CRG_score groups. The results indicated that the low-risk

group had higher immune and ESTIMATE scores (Figure 7K) and

greater infiltration of the majority of immune cells (Figure 7L;

Supplementary Figures 10A–C). Interestingly, the clinically widely

used drugs for LUAD, such as Paclitaxel, Docetaxel, Cisplatin, and

Gefitinib, had a lower IC50 in the high-risk group, implying that the

high-risk group was more sensitive to these drugs (Supplementary

Figure S12).

Relationship between the cuproptosis-
related gene_score and the effect of
immunotherapy in the IMvigor210 cohort

The value of the CRG_score in predicting response to

immunotherapy was further studied in an anti-PD1/PD-

L1 treatment cohort (IMvigor210). Patients were classified into

high and low CRG_score subgroups based on the optimal

CRG_score cut-off value. Figure 8A depicts the clinical features

of the IMvigor210 data. Patients with a low CRG_score had a better

prognosis (Figure 8B). Additionally, there was a higher risk score in

the SD/PD group compared to the CR/PR group (Figures 8C,D).

Next, the association between the CRG_score and the tumor-

infiltrating immune cells (IC) and tumor cells (TC) immune

types was examined. The CRG score was substantially lower in

IC2 than in IC0 or IC1, but no significant difference was observed

across TC immune types (If the IC was <1%, ≥1% but <5%, ≥5%
but < 10%, or ≥10% in PD-L1 positive patients, the specimens were

scored as IHC IC0, IC1, IC2, or IC3, respectively. In PD-L1 positive

patients, if TC in the specimens was <1%, ≥1% but <5%, ≥5%
but <50%, or ≥50%, they were graded as IHC TC0, TC1, TC2, or

TC3, respectively) (Figures 8E,F). Compared to the high-risk

subgroup, the low-risk subgroup exhibited an almost threefold

higher response rate (complete response or partial response)

(32% vs. 12%) and a lower SD/PD (PD, Progressive Disease; SD,

Stable Disease) rate (Figures 8G,H). Taken together, our findings

implied that the CRG_score could be a reliable predictor of

immunotherapy response.

The construction of a nomogram for
predicting OS

Given that we established the clinical utility of the CRG_score in

predicting the survival of LUADpatients, we established a nomogram

incorporating the CRG_score and TNM staging to predict the

survival of LUAD patients at 1, 3, 5, and 10 years (Figure 9A).

When we compared the predictive accuracy of our nomogram with

TNM staging, the nomogram showed AUC values of 0.741, 0.708,

0.736, and 0.75 for 1, 3, 5, and 10 years, respectively, compared with

0.666, 0.644, 0.675, and 0.671 for TNM staging (Figures 9B–E). The

calibration plot showed excellent agreement between our nomogram

and actual observations regarding 1-, 3-, and 5-year survival

probability (Figure 9F).

Discussion

Herein, we examined the transcriptional and genetic

alternation of CRGs. We discovered potential co-

transcription factor motifs and sensitivity drugs that target

these differentially expressed CRGs. Additionally, we

grouped LUAD into three molecular subtypes (Clusters

A–C) based on the expression of 16 CRGs, with Cluster A

having the best prognosis. Further analysis revealed substantial

differences in immune cell infiltration and TME. Significant

heterogeneity was observed between the three molecular

subtypes in cancer-related signaling pathways, including

T cell co-stimulation-induced inflammation-promoting

pathways, MYC targets v1, MYC targets v2, the G2M

checkpoint, and E2F. Based on the expression of DEGs, we

identified three genotypes and constructed a CRG_score

signature. This signature demonstrated excellent stratification

and predictive potential as an independent risk factor for

LUAD. The different risk subtypes showed significant

differences in prognosis, somatic mutations, TMB, CSC

index, TIDE score, T-cell exclusion score, T-cell dysfunction

score, TME, immune checkpoints, and drug sensitivity.

Furthermore, the CRG_score was a reliable predictor for

immunotherapy response, which was corroborated in

IMvigor210. Finally, we established a predictive model by

combining the CRG_score and TNM staging, which could

reliably predict the OS of LUAD at 1, 3, 5, and 10 years. To

summarize, our findings provide novel insights into the

molecular mechanisms driving LUAD.

Programmed cell death plays a fundamental role in various

pathological and physiologic processes, including cancer (Fuchs

and Steller, 2011). Well-established PCD forms include

apoptosis, necroptosis, pyroptosis, and ferroptosis (Pan et al.,

2022a), which play a key role in tumor immunity and treatment

strategies (Carneiro and El-Deiry, 2020; Tang et al., 2020). The

relationship between PCDs regulators and immunological

markers has also been investigated in several cancers,

including LUAD (Zhang et al., 2021b; Pan et al., 2022b; Zou

et al., 2022). In this study, we predicted the phenotype, treatment

response, and prognosis by clustering tumor patients based on

their molecular signatures, such as ferroptosis-related gene

signatures. Nonetheless, the exact role of cuproptosis in

LUAD remains largely unknown.
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Moreover, the CRGs-based signature yielded good

performance in predicting prognosis and immunotherapy

response in our research. Therefore, cuproptosis can

potentially participate in the development of LUAD.

Current evidence suggests that cuproptosis depends on the

direct binding of copper to the thioctylated proteins in TCA,

which induces abnormal oligomerization of thioctylated

proteins. In addition, copper reduces Fe-S cluster protein

FIGURE 8
The potential of CRG_score signature in anti-PD-1/L1 immunotherapy. (A) Distribution of clinical characteristics among high and low
CRG_score groups in the IMvigor210 cohort. (B) Kaplan-Meier plot showing the difference in overall survival in different CRG_score subgroups. (C,D)
The risk scores in patients with CR/PR or CD/SD (PR, Partial Response, PD, Progressive Disease; SD, Stable Disease, and CR, Complete Response). In
the IMvigor210 cohort, the difference in CRG_score between PD-L1 expression of various (E) IC and (F) TC. (G) Proportions of anti-PD-
L1 immunotherapy response in different CRG_score groups. (H) The proportion of patients having a high or low-risk score in various responses to
anti-PD-L1 immunotherapy.
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levels. These two processes subsequently induce a proteotoxic

stress response and a distinct form of cell death (Tsvetkov et al.,

2022). Cuproptosis can reportedly be rescued by knocking down

CRGs, such as FDX1, LIPT1, LIAS, DLD, DLAT, PDHA1, and

PDHB(8). FDX1, DLAT, and LIAS are widely acknowledged to

be essential for inducing cuproptosis. Ferredoxin 1 (FDX1)

converts divalent copper ions to the more deleterious

monovalent copper ions while regulating protein lipoylation.

FDX1 knockdown has been associated with protein lipoylation

deficiency of DLAT and decreased cellular respiration, consistent

with the results of LIAS knockdown (Tsvetkov et al., 2022). Zeyu

Zhang et al. found that knocking down FDX1 in A549 cells did

not suppress tumor cell growth or cause apoptosis but changed

cell metabolism (Zhang et al., 2021a), which may be attributed to

reduced cuproptosis in A549 cells after knocking down FDX1. In

another study, FDX1 was significantly associated with immune

infiltration levels and programmed cell death protein 1 (PD-1)

expression in clear cell renal cell carcinoma (Bian et al., 2022). In

the present study, FDX1 was lowly expressed, suggesting it is a

favorable prognostic factor. We hypothesized that upregulation

of the FDX1 gene leads to protein lipoylation and subsequently

disrupts mitochondrial respiration. It may inhibit the

proliferation of lung adenocarcinoma cells, thereby

suppressing tumor growth. Haozhen Lv et al. demonstrated

FIGURE 9
Construction of a nomogram based on CRG_score and TMN stage. (A) Nomogram for predicting the 1-, 3-, 5-, and 10-year OS of LUAD
patients in the merged cohort. Comparing AUCs for the nomogram and TNM stage in predicting OS at (B) 1 year, (C) 3 years, (D) 5 years, and (E)
10 years in the merged cohort. (F) Calibration plot of the nomogram for predicting the probability of the 1-, 3-, and 5-year OS.
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that LIPT1 could predict prognosis and revealed a strong

correlation between LIPT1 expression and immune infiltration

in melanoma (Lv et al., 2022). In our study, upregulated

LIPT1 expression correlated with poor outcomes of LUAD.

Therefore, we speculate that upregulation of LIPT1 may

inhibit tumorigenesis and progression by disrupting TCA in

mitochondria, thereby triggering cuproptosis. Indeed, additional

research is required to confirm these hypotheses.

Lung carcinogenesis involves a series of complex processes

involving intrinsic genetic abnormalities in tumor tissue and the

tumor’s interaction with immune cells in the surrounding TME. It

has been established that TMEhas amajor effect on tumor growth,

progression, and resistance to treatment (Remark et al., 2015;

Hinshaw and Shevde, 2019). CD4+ Th1 cells activated CD8+

T cells, and γδ-T cells are typically implicated in type I

immune responses and are associated with a favorable

prognosis in patients with lung cancer (Schalper et al., 2015;

Bremnes et al., 2016). On the other hand, Th2, Th17, and

Foxp3+ regulatory T (Treg) cells are generally related to tumor

development and poor prognosis (Marshall et al., 2016). Tumor-

infiltrating B lymphocytes (TIBs) have been found to produce an

effective and favorable immune response in the majority of solid

tumors (Sautes-Fridman et al., 2016). Petitprez et al. (Petitprez

et al., 2020) concluded that B-cell enrichment was the strongest

predictor of prolonged survival in soft tissue sarcomas. In this

study, significant changes in TME features and tumor-infiltrating

immune cells (TIICs) were observed across the three molecular

subtypes and different CRG_score subgroups. B cells, TIL, CD4+

T cells, activated dendritic cells, and neutrophils were significantly

enriched in cluster A and the low CRG_score group, which had the

best prognosis. However, cluster B and the high CRG_score group

had a poorer prognosis due to immunosuppression. These results

imply that CRGs play a vital role in the cancer immunity of LUAD.

ICBs have broadened the therapeutic landscape for

advanced lung cancer patients and represent a standard

frontline strategy for monotherapy or in combination with

other therapies. Moreover, it has become an option in

patients with oncogene-addicted non-small cell lung

cancer (NSCLC) following the failure of targeted

therapies. However, predictive indicators are urgently

needed, as ICBs are effective in only a minority of

patients, while substantial immunotoxicity side effects are

possible. The TIDE score, which incorporates both

mechanisms of T cell dysfunction (T cells dysfunction

score) and T cell immune exclusion (T cells exclusion

score) in tumors, is a better predictor of immunotherapy

response than TMB and PD1/PD-L1 (43). A lower TIDE

score shows that tumors are more susceptible to anti-PD-1/

PD-L1 and anti-CTLA4 ICBs (Jiang et al., 2018). The TIDE

and T cells dysfunction scores were positively connected with

the CRG_score in our study, showing that the low-risk group

was more sensitive to immunotherapy, consistent with the

IPS results. We further analyzed the relationship between

CRG_score and immunotherapy efficacy in the

Imvigor210 cohort, which validated our conclusion that

the low CRG_score group was more likely to benefit from

immunotherapy. However, our study found that only PD-1

levels were significantly greater in the low CRG_score group

than in the high CRG_score group, whereas PD-L1 and

CTLA4 levels were comparable. These findings suggest

that PD-L1 or CTLA4 are not accurate predictors of

immunotherapy response. The KEYNOTE-189 study

demonstrated that patients with low PD-L1 expression

could benefit from immunotherapy (Gadgeel et al., 2020).

In the latest KEYNOTE-091 study, pembrolizumab

significantly improved disease-free survival (DFS) for lung

cancer regardless of PD-L1 expression levels. In contrast, for

the PD-L1 high expression population (TPS ≥50%) treated

with pembrolizumab, the DFS improved compared to the

placebo group, but there was no statistically significant

difference. Accordingly, our CRG score may replace this

void in terms of immunotherapy response prediction.

It has been established that the higher the CSC index, the

less differentiated the tumor is (Malta et al., 2018). In our

study, we discovered that the CSC index was significantly

higher in the high CRG_score group, and the IC50 values of

Paclitaxel, Docetaxel, Cisplatin, and Gefitinib were

significantly lower than in the low CRG_score group,

indicating that the high CRG_score group was more

susceptible to chemotherapy and targeted therapy.

Notwithstanding that our CRG_score has good classification

and predictive potential, this research has some limitations. First,

the enrolled cohorts analyzed were retrospectively collected.

Accordingly, large prospective clinical studies and further in

vivo and in vitro experimental studies are warranted. Besides,

many key clinical variables were not assessed, including surgery,

neoadjuvant chemotherapy, and radiation, which may influence

immunotherapy and cuproptosis subtype prognosis.

In summary, we comprehensively investigated CRGs to reveal

their possible role in TME, prognosis, and sensitive drugs of

LUAD. These findings provide the foothold for accurate

prognostic prediction and novel therapeutic strategies, especially

for personalized treatment of this particular patient population.
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