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Objective: The aim of this study was to investigate the utilization of a portable functional
near-infrared spectroscopy (fNIRS) system, the fNIRS PioneerTM, to examine team
experience in high-fidelity simulation-based crisis event management (CEM) training for
anesthesiologists in operating rooms.

Background: Effective evaluation of team performance and experience in CEM
simulations is essential for healthcare training and research. Neurophysiological
measures with wearable devices can provide useful indicators of team experience
to compliment traditional self-report, observer ratings, and behavioral performance
measures. fNIRS measured brain blood oxygenation levels and neural synchrony can
be used as indicators of workload and team engagement, which is vital for optimal
team performance.

Methods: Thirty-three anesthesiologists, who were attending CEM training in two-
person teams, participated in this study. The participants varied in their expertise
level and the simulation scenarios varied in difficulty level. The oxygenated and de-
oxygenated hemoglobin (HbO and HbR) levels in the participants’ prefrontal cortex
were derived from data recorded by a portable one-channel fNIRS system worn
by all participants throughout CEM training. Team neural synchrony was measured
by HbO/HbR wavelet transformation coherence (WTC). Observer-rated workload and
self-reported workload and mood were also collected.

Results: At the individual level, the pattern of HbR level corresponded to changes
of workload for the individuals in different roles during different phases of a scenario;
but this was not the case for HbO level. Thus, HbR level may be a better indicator
for individual workload in the studied setting. However, HbR level was insensitive to
differences in scenario difficulty and did not correlate with observer-rated or self-reported
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workload. At the team level, high levels of HbO and HbR WTC were observed during
active teamwork. Furthermore, HbO WTC was sensitive to levels of scenario difficulty.

Conclusion: This study showed that it was feasible to use a portable fNIRS system
to study workload and team engagement in high-fidelity clinical simulations. However,
more work is needed to establish the sensitivity, reliability, and validity of fNIRS measures
as indicators of team experience.

Keywords: functional near-infrared spectroscopy (fNIRS), neural synchrony, team engagement, workload, clinical
simulation

INTRODUCTION

Simulation Training in Healthcare
Simulation is “a technique that uses a situation or environment
created to allow persons to experience a representation of a real
event for the purpose of practice, learning, evaluation, testing,
or to gain understanding of systems or human actions” (Huang
et al., 2008). Simulation has been widely used in complex work
system domains, such as aviation, ground transportation, process
control, military command and control, and healthcare (Rosen,
2008; Vincenzi et al., 2009; Salas and Maurino, 2010; Fisher et al.,
2011; Skjerve and Bye, 2011). In healthcare, simulation exists in
many different forms, from verbal simulations with role-playing
“what if ” discussions, standardized patient visits which involve
actors to simulate clinical conversations, part-task trainers
which utilize anatomical models, screen-based simulations which
involve interactive software-based computer patients, to high-
fidelity simulations with replica of the clinical environments
and settings (Gaba, 2007; Rosen, 2008). Simulations have been
used to address aspects of the clinicians’ knowledge, skill,
attitude, behavior, and other characteristics in training, human
factors research, and performance assessment (Gaba, 2007;
Weinger et al., 2017).

Simulation-based training enables the trainees to learn and
practice patient care away from the bedside and without putting a
patient at risk (Okuda et al., 2009). This is particularly important
for crisis event management (CEM) training, which aims to
prepare the trainees for dynamic decision-making and teamwork
in high-risk, stressful situations in which the patient’s life is at
stake (Gaba et al., 2001; Lighthall et al., 2003; Easdown et al.,
2013). A randomized control trial showed that trainees who
participated in high-fidelity simulation training performed better
in real-life cardiopulmonary bypass than those who participated
in traditional interactive seminar (Bruppacher et al., 2010).

During complex high-tempo, high-risk, and multi-
person work, effective teamwork is essential to manage and
monitor individual and team workload, allocate tasks, and
maintain situation awareness. The ability of operating room
(OR) teams (i.e., surgeons, anesthesia providers, nurses, techs,
and other OR staff) to deliver high quality, safe care to patients
depends on acting quickly and effectively, both individually
and as a team. Effective training and evaluation must go
beyond individual skills to include interactions among team
members, and how those interactions transfer to operational
environments. In addition, teamwork is a learned skill that

can be improved with training (Easdown et al., 2013). The
Anesthesia Crisis Resource Management curriculum emphasize
the training of individuals to work in teams (Howard et al., 1992;
Gaba et al., 2001).

Measuring Performance and Experience
in High-Fidelity Simulations
A recent review of simulation-based training research in
healthcare concluded that outcome measurement was one of
the greatest challenges in the field (McGaghie et al., 2010).
There are four main methods to measure team performance
and experience in high-fidelity simulations in healthcare:
observer ratings, self-reports, behavioral performance measures,
and neurophysiological indicators (McGaghie et al., 2010;
Doumouras et al., 2012; Forsyth et al., 2017; Robertson et al.,
2017). There are advantages and disadvantages for each method.
Observer-rated measurement systems, such as the Anaesthetists’
Non-Technical Skills (ANTS) (Fletcher et al., 2003) and
the Observational Teamwork Assessment for Surgery (OTAS)
(Hull et al., 2011), usually require experienced clinicians or
researchers to observe the participants’ behaviors, compare those
behaviors with the provided behavioral markers, and produce
standardized ratings. However, some systems are easier to use
that others (Watkins et al., 2017) and these ratings are subject
to potential biases from cognitive, social and environmental
sources (Williams et al., 2003). Self-reported measures, such
as the Surgery-specific Task Load Index, SURG-TLX (Wilson
et al., 2011), and the Perceived Stress Scale (Cohen et al., 1983;
Larkin et al., 2010), can provide an understanding of participants’
subjective experience. However, they have to be administered
after the fact because except for very brief tools (e.g., the Borg
workload scale; Weinger et al., 2004), completing them during a
simulation can influence native task performance and even the
domain being measured (e.g., workload) (Weinger and Slagle,
2002). Behavioral performance measures and neurophysiological
indicators are usually technology-based assessment methods.
Behavioral performance can be obtained through haptic sensors
or optical systems embedded in the simulator (Rutherford
et al., 2015). For example, D’Angelo et al. (2015) used
optical motion tracking and analysis to capture the hand
movement path length and suture time to show how participants
improved their performance over time in a simulated suturing
task. Neurophysiological indicators can measure participants’
cognitive states, such as attention and stress. For example,
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heart rate, respiration rate, and electrodermal activity can
be used to measure stress levels (Rutherford et al., 2015).
However, these methods are rarely used to measure team-
level experience.

Feasible approaches to address the measurement issue in
high-fidelity simulations are to integrate multiple measurement
methods and to continue to develop new methods, especially
technology-based assessment methods (Forsyth et al., 2017).
Traditional physiological measures, such as cardiovascular and
electrodermal activity measures, are influenced by cognitive,
affective, physical movement, and other systemic physiological
factors (Boucsein and Backs, 2000). As a result, it is difficult to
establish their validity and sensitivity in realistic environments
(Xu et al., 2017). Direct measurement of brain activity
may be more useful in measuring cognitive status. Recent
advances in neuroergonomics, which consider the neural
mechanisms of human performance (Parasuraman and Mehta,
2015), and portable neurophysiological sensing technologies
provided promising new methods to study human cognition and
performance in realistic environments. One of those methods is
to use functional near-infrared spectroscopy (fNIRS) to measure
the participants’ level of brain activation as an indicator of
workload and team engagement.

Functional Near-Infrared Spectroscopy
Measures
fNIRS technology infers changes of the oxygenated hemoglobin
(HbO) and deoxygenated hemoglobin (HbR) levels in the cortical
surface (Ferrari and Quaresima, 2012; Boas et al., 2014). fNIRS
technology takes advantage of the fact that the human tissues are
relatively transparent to near-infrared (NIR) light and the main
absorption agent of NIR light in human brain is hemoglobin.
Furthermore, HbO and HbR absorb NIRS light differently
depending on the light’s wavelength. Thus, fNIRS technology is
able to measure changes of HbO and HbR by shining NIR light
with two or more wavelengths, detecting the reflected light, and
quantifying the relative light attenuation. The measured changes
of HbO and HbR levels can be related to neuronal activity in the
corresponding region (Naseer and Hong, 2015). When a brain
region is activated due to performance of relevant tasks, the
cerebral blood flow (CBF) would increase to meet the metabolism
requirement of the brain. While neural activity is associated
with the conversion of HbO to HbR, the CBF increase provides
an oversupply of HbO and “pushes out” HbR, thus leads to
an increase of HbO and decrease of HbR in the brain region
(Scholkmann et al., 2014).

Compared to other neural activity measures, such as
electroencephalography (EEG) and functional magnetic
resonance imaging (fMRI), fNIRS has unique advantages
(Derosière et al., 2013). While hemodynamic signal measured
by fNIRS is slower in detecting neural activation than the
electrical signal measured by EEG, fNIRS provides better
space localization capability and better resistance to muscular
and movement artifacts than EEG (Naseer and Hong, 2015;
Curtin and Ayaz, 2018). fNIRS has lower spatial resolution
and penetration depth compared to fMRI, but it has higher

temporal resolution; furthermore, the data can be captured
using a portable form factor to enable studies in naturalistic
environments (Balardin et al., 2017). For example, McKendrick
et al. (2016) used a fNIRS system to evaluate portable and
wearable device users’ prefrontal cortex (PFC) hemodynamics in
outdoor navigation tasks. Yoshino et al. (2013) mounted a fNIRS
device in a vehicle to study driver brain activation in actual
highway driving.

fNIRS measures have been used as indicators of workload
in both laboratory and applied settings. Laboratory studies have
found that HbO increases and HbR decreases in the PFC region
as workload increases in both n-back working memory tasks
(Herff et al., 2014; Keshmiri et al., 2017) and mathematical tasks
(Mandrick et al., 2013; Maior et al., 2014). In applied settings,
fNIRS was used to measure workload in more complex tasks
such as web form usability testing (Lukanov et al., 2016) and
air traffic control (Harrison et al., 2014). Afergan et al. (2014)
developed an adaptive system for unmanned aerial vehicles that
can change task difficulty based on fNIRS-measured metrics
of workload. However, few studies have used fNIRS measures
as indicators of workload during acute event management in
realistic environments.

The development of hyperscanning techniques, which enable
the measurement of between-person brain activity dynamics
(Scholkmann et al., 2013), facilitated research on groups or
teams with fNIRS and other neural activity measures. Studies
have investigated neural synchrony ranging from simple tasks,
such as synchronizing button pressing or finger movements, to
more complex ones, such as music production and trust games
(Babiloni and Astolfi, 2014). Neural synchrony can be used as an
indicator of the level of collective engagement in shared activities.
For example, Osaka et al. (2015) found that pairs of singers
showed a higher level of fNIRS neural synchrony in a cooperative
singing condition than in a sing-alone condition. In face-to-
face communication, Jiang et al. (2012) found that individuals
showed higher level of fNIRS neural synchrony in conversations
than in monologs; furthermore, Zhang et al. (2018) observed that
in psychological counseling, client and counselor dyads showed
higher levels of fNIRS neural synchrony during counseling than
chatting. Other studies have used neural synchrony to predict
team performance (Funane et al., 2011; Stevens et al., 2016).
However, to our knowledge, no study to date has used fNIRS-
derived neural synchrony to study crisis management teams in
high-fidelity simulations.

The Current Study
In the current study, we aimed to investigate the utilization of
a portable fNIRS system to examine team experience in high-
fidelity simulation-based CEM training for anesthesiologists
in operating rooms. Specifically, we used PFC HbO and
HbR levels as indicators of workload on the individual level,
and neural synchrony as an indicator of team engagement
on the team level.

A typical simulation session consisted of a full-scale recreation
of a challenging medical crisis situation using a computer-based
patient mannequin, real clinical equipment and supplies, actors
trained to portray other clinicians (e.g., surgeons, nurses, and
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technicians), and closely followed scripts, all set in a realistic
clinical environment (McIvor et al., 2017; Weinger et al., 2017).
Each simulation session consisted of two stages: the 10–20 min
simulation scenario itself, which involved two and occasionally
three trainees, and a typically 10–25 min instructor-facilitated
debriefing, which included all of the trainees in the training
session. During a simulation scenario, one trainee started the
scenario on their own (the “initial provider”) while a second
trainee (the “responder”) was sequestered in a quiet conference
room to await being called to assist. Thus, data can be collected
under three different conditions: single provider phase (i.e.,
initial provider only trainee in the simulation room, responder
sequestered), team phase (both initial provider and responder
in the simulation), and a debriefing phase. Figure 1 depicts the
process of a typical simulation session.

Due to the structure of the simulation sessions and our
review of the literature, we speculated that: (1) the workload of
the initial provider (in simulation) should be higher than that
of the responder (in sequestration) during the single provider
phase; (2) the workload of the responder should be higher
during the team phase than the single provider phase; and
(3) the team should have more team engagement during the
team phase (i.e., when working together) than during the single
provider phase (not interacting). Therefore, we proposed the
following hypotheses:

H-1a: The PFC HbO (HbR) level of the initial provider will
be higher (lower) than that of the responder during the single
provider phase of the scenario.
H-1b: The PFC HbO (HbR) level of the responder will be
higher (lower) in the team phase than in the single provider
phase of the scenario.
H-2: The team’s level of neural synchrony will be higher in the
team phase than in the single provider phase of the scenario.

In addition to the hypotheses, we concurrently proposed
a series of exploratory research questions (RQs) to guide our
investigation of the use of fNIRS in the simulations. Specifically,
we were interested in questions related to the sensitivity,
convergent validity, and discriminant validity of PFC HbO and
HbR as indicators of workload on the individual level:

RQ-1a (sensitivity): Is the PFC HbO (HbR) level sensitive to
different levels of scenario difficulty?
RQ-1b (sensitivity): What is the pattern of PFC hemodynamics
across different time segments in the scenario?
RQ-1c (convergent validity): Is there a significant correlation
between the PFC HbO (HbR) and observer-rated or self-
reported workload?
RQ-1d (discriminant validity): Is there a significant correlation
between the PFC HbO (HbR) and self-reported mood?

We were also interested the sensitivity of PFC neural
synchrony as an indicator of team engagement on the team level:

RQ-2a (sensitivity): Is the PFC neural synchrony level sensitive
to different levels of scenario difficulty?
RQ-2b (sensitivity): What is the pattern of PFC neural
synchrony across different time segments in the scenario?

MATERIALS AND METHODS

Design
A typical CEM training session consisted of three simulation
sessions involving two to four trainees. At any given training
session, two to four trainees were enrolled in the study as
participants. Most of the simulation scenarios involved two
trainees and those were the target of our data collection.
The two trainees were randomly assigned as initial provider
and responder. All the scenarios included three phases: single
provider, team, and debriefing. Each scenario followed one of
the fifteen scenario scripts that required the trainees to manage
a crisis event. For example, in the “Blown Intravenous (IV)”
scenario, the trainees have to ascertain that their usual treatment
(via IV drugs) of a deteriorating patient is not working, determine
that it is due to an infiltrated IV, and institute alternative (non-
IV) treatments. In the “ENT Airway Fire” script, the trainees
have to manage a laser-instigated fire in the patient’s mouth and
determine what to do next upon extinguishing it.

Trainees with different levels of experience went through
different scenarios commensurate with their clinical experience.
Scenario difficulty was adjusted to optimize learning (i.e.,
scenarios for experienced physicians were more difficult than
were those for novice physicians). The relative difficulty levels of
the scenarios were determined from ratings by three simulation
instructors who were all experienced anesthesiologists and
simulation instructors. All three instructors had all taught all of
the studied scenarios. They rated each scenario’s difficulty on
a five-point scale (independent of who might do the scenario).
The intra-class correlation (ICC) among the ratings of the three
instructors was 0.77, indicating an excellent level of inter-rater
reliability (Hallgren, 2012). The rating for each scenario was then
averaged across the three instructors. Finally, by applying the
Jenks natural breaks classification method (Jenks, 1967) to the
ratings, the scenario difficulty was categorized as low, medium,
or high for the corresponding experience level of the trainees.

Thus, there were three independent variables (IVs):
scenario phase (single provider, team, and debriefing), role
(initial provider and responder), and scenario difficulty (low,
medium, and high).

Sample
This study was conducted in an academic medical center
located in Nashville, TN, United States. The participants
were resident and attending physicians in anesthesiology. An
attending physician is a board-certified physician who can
practice medicine independently. A resident physician is a
medical school graduate who is training to become an attending
physician. The participating residents were in the first, second,
or third year of their residency training program (henceforth,
they were referred as Y1, Y2, and Y3 residents). All participants
were attending scheduled CEM training sessions at the time of
study recruitment. The residents were required to attend the
training while the attending physicians chose to do the training
as part of their maintenance of certification in anesthesiology
(MOCA). Table 1 provides a summary of the characteristics of
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FIGURE 1 | The process of a simulation session in the current study.

TABLE 1 | Sample characteristics.

Experience level Year 1 residents Year 2 residents Year 3 residents Attending physicians Total

Sample size 13 5 7 8 33

Age (years) 29.54 ± 2.47a 29.20 ± 1.64 30.14 ± 0.69 42.88 ± 6.08 32.85 ± 6.65

Gender (female) 3 (23.1%) 3 (60.0%) 3 (42.9%) 1 (12.5%) 10 (30.3%)

Prior residency training (months) 7.85 ± 3.44 25.00 ± 8.22 38.57 ± 5.86 – 19.88 ± 14.54

Prior clinical experience (years)b – – – 9.88 ± 4.02 –

Prior times doing simulation training 2.54 ± 1.27 4.25 ± 0.50 11.00 ± 1.10 3.13 ± 6.88 4.55 ± 4.75

Prior night’s sleep duration (hours) 6.73 ± 1.02 7.35 ± 1.02 7.54 ± 1.81 7.37 ± 1.35 7.15 ± 1.30

Had difficulty falling asleep (“yes”) 4 (30.8%) 1 (20.0%) 3 (42.9%) 1 (12.5%) 9 (27.3%)

Had caffeinated drinks (“yes”) 11 (84.6%) 3 (60.0%) 5 (71.4%) 8 (100%) 27 (81.8%)

aData in this table are presented as Mean ± SD or Count (Percentage) when applicable. bYears of experience since becoming an attending physician.

the 33 individual participants. The study protocol was approved
by the medical center’s Institutional Review Board and by the
U.S. Army Medical Research and Materiel Command’s Office of
Research Protections.

A total number of 25 simulation sessions (11, 4, 5, and 5 for Y1
residents, Y2 residents, Y3 residents, and attending physicians,
respectively) were included in the analysis. The number of
different scenarios were 6, 2, 3, and 4 for Y1, Y2, and Y3 residents,
and attending physicians, respectively.

Procedure
Each participant was informed via email about the study
opportunity prior to their scheduled training session. Upon
arrival to the session, the study procedures and risks were
explained, any questions were answered, and interested
participants then signed a written informed consent document.
Participants then filled out a pre-study survey that included
questions about general demographics, clinical experience,
and selected factors that could affect their performance and
physiologic response to the stress of the training experience
(Table 1). The baseline fNIRS measures were taken over a
5 min period where the participant sat still and filled out the
pre-study survey.

During each scenario, using a tablet computer with a
specialized software program, a trained research assistant (RA)

noted any events of interest, including the start and end times of
each phase of the scenario session. The RA also rated the initial
provider’s workload (see section Workload and Mood) at 4–6 min
random intervals as prompted by custom computer software. At
the end of each scenario, all participants completed a survey to
report their mood and workload during the simulation.

Measures
fNIRS
We used the head-worn fNIRS PioneerTM sensor designed to
be part of the MEDIC II system (Charles River Analytics,
Cambridge, MA, United States)1 to collect HbO and HbR levels
in the PFC. The device consisted of a head-worn sensor probe
and a mobile-phone-sized hardware unit. The head-worn sensor
probe, embedded in a flexible, black headband, included two light
sources, which emitted infrared and visible light, and one light
detector. The participants wore the sensor-embedded headband
and then wore a surgical cap on top (all the trainees were required
to wear surgical caps and scrubs during the CEM training). Pilot
tests had demonstrated that this setup could hold the sensor
probe stably in place and shield it from ambient light. The probe
was secured without adhesion to the participant’s Fp2 region
of the PFC, according to the international EEG 10-20 system

1http://biosignalsplux.com/en/fnirs-sensor
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(Klem et al., 1999). Thus, the fNIRS channel was located on the
right side of the anterior PFC. Prior to placement, alcohol was
used to clean the skin surface. The probe was connected via a thin
cable to a lightweight hardware unit secured to the headband at
the back of the participant’s head. The sensor recorded data at a
sample rate of 100 Hz.

Workload and Mood
The Borg workload scale was the observer-rated workload
measure. The Borg workload scale is a visual analog scale, ranging
from 6 (no exertion) to 20 (maximum exertion), that has been
shown to yield continuous parametric data (Borg, 1982) and has
been used to assess health care providers’ overall workload in
clinical settings (Weinger et al., 1994, 1997, 2004). The Borg scale
correlates well with physiologic and other measures of workload
and stress (Weinger et al., 2004).

The NASA Task Load Index (NASA-TLX) is a self-reported
workload measure that includes six dimensions: mental demand,
physical demand, temporal demand, performance, effort, and
frustration (Hart and Staveland, 1988; Hoonakker et al., 2011).
For each dimension, participants rated their experience during
the scenario from 0 (“lowest”) to 100 (“highest”). An overall score
was calculated by summing the ratings on the six dimensions.

Self-reported mood was measured using the Positive and
Negative Affective Schedule (PANAS), a 20-item five-point Likert
scale survey instrument (Watson et al., 1988; Crawford and
Henry, 2004). A positive affect score and a negative affect score
ranging from 10 to 50 were derived from participants’ ratings.

Data Analysis
Case Segmentation
The cases were segmented to extract fNIRS data for subsequent
analysis. The first kind of segments was the 1 min period
immediately prior to each observer workload rating. The
observer typically took less than 1 min to provide the workload
rating once prompted by the computer software.

The second kind of segments involved different time points
across a scenario. The different scenario phases (i.e., single
provider, team, and debriefing) varied appreciably in duration
across cases. For example, debriefings varied from 7 to 31 min
in duration. Thus, to facilitate data analysis across cases, within
each phase, we considered data at three time points (segments):
the first minute, the middle minute, and the last minute. These
were calculated as the 60 s period at the beginning, the middle,
and the end of each scenario phase. The 1 min length was chosen
to avoid overlapping time windows as well as provide consistency
with the first kind of segmentation.

fNIRS Data Processing
The raw data from the MEDIC II fNIRS module included changes
in optical density (OD) for two channels of light with different
wavelengths. Changes in concentrations of HbO and HbR were
calculated from the OD data using the modified Beer-Lambert
Law (Cope and Delpy, 1988). We applied the wavelet-based
motion artifact removal procedure with a tuning parameter
value α = 0.15 to all HbO and HbR time series (Behnam and
Guy, 2012; Cooper et al., 2012). We accounted for global drift

(low-frequency noise) and high-frequency noise, by applying a
band-pass third-order Butterworth filter with 0.01–0.1 Hz cutoff
frequencies. After artifact removal and filtering, the data were
visually inspected to ensure data quality; no manual corrections
were made. The HbO and HbR data were then normalized within
each participant. To express HbO and HbR data at any given
moment as a relative change from the baseline, the mean HbO
and HbR value during the baseline period was subtracted from
all recorded data before further data processing and analysis.
Data processing was performed in R (R Core Team, 2018)
using the “signal” (Ligges et al., 2015) and “wavelets” (Aldrich,
2013) packages.

For the analysis at the individual level, mean levels of HbO and
HbR were calculated for the time periods of interests. First, mean
HbO and HbR were calculated for each of the three phases in each
simulation session. Then, mean HbO and HbR were calculated
for the first, middle, and last minute of each phase in a simulation
session. In addition, mean HbO and HbR were calculated for the
1 min period immediately prior to each observer workload rating.

For the analysis on the team level, the wavelet transformation
coherence (WTC) (Torrence and Compo, 1998; Grinsted et al.,
2004) of the HbO and HbR between the two participants
in a scenario session were calculated as indicators of neural
synchrony (Cui et al., 2012; Osaka et al., 2015; Baker et al., 2016;
Nozawa et al., 2016). WTC measures the cross-correlation of
two time series based on the continuous wavelet transform at
the given frequency and time. The HbO and HbR time series
were re-sampled to 1 Hz for this analysis. The Morlet wavelet
function with the parameter ω0 = 6 was used in the wavelet
transformation. Only the coherence values outside of the cone
of influence (COI) was considered to control the edge-effects of
the WTC estimation. The frequency band to be considered in
WTC varied in previous fNIRS hyperscanning studies depending
on the task-related frequency band of each study, however,
task-related bands are difficult to define for activities occur in
natural and unstructured settings (Nozawa et al., 2016). This
study selected a relatively wide frequency range of 0.01–0.1 Hz
according to previous studies in natural settings (Jiang et al.,
2012; Zhang et al., 2018). Mean coherence values at 0.01–0.1 Hz
were calculated for the baseline and other time periods of interest
(i.e., the 1 min periods prior to the observed workload ratings,
the different scenario phases, and the three segments within
each scenario phase). An illustrative example of the results of
WTC analysis from one scenario session is shown in Figure 2.
The final WTC value for each time period was calculated as
the mean coherence value of that time period minus the mean
coherence value of the corresponding baseline period. The WTC
analysis was performed in R using the “biwavelet” package
(Gouhier et al., 2018).

Statistical Analysis
The main statistical analysis was conducted using Bayesian
linear mixed effects (LME) models with Markov Chain Monte
Carlo (MCMC) estimation (Hadfield, 2010). The LME models
accounted for the fixed effects of the IVs as well as the
random effects of the participants, teams, or scenarios. Table 2
shows the model specifications for the LME models used in
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FIGURE 2 | An illustrative example of the results of WTC analysis for HbO (A) and HbR (B) from a scenario session.

the analysis. The random effects were modeled as random
intercepts. These statistical analyses were conducted using R with
the “MCMCglmm” package (Hadfield, 2010). The MCMCglmm
algorithm used non-informative priors and default parameter
estimation settings (iterations = 13,000, thinning interval = 10,
burn-in = 3,000). All the models were checked for convergence
and autocorrelation of the estimates. An effect was considered
significant if the 95% highest density interval (HDI) did
not contain zero and the Bayesian “p-value” pMCMC was
smaller than 0.05.

The correlations between the dependent variables (DVs)
were estimated using a multivariate multilevel modeling
approach (Baldwin et al., 2014; Luo et al., 2015). The
multivariate multilevel models were fitted using MCMCglmm.
A correlation was considered significant if the 95% HDI did
not contain zero.

RESULTS

Individual Level Results
H-1a and H-1b Were Supported by HbR but Not HbO
The effects of scenario phase, role, and scenario difficulty on
the mean HbO and HbR were tested using Model 1 (Table 2).
The results are visualized in Figure 3. The difference of HbO
mean between initial provider and responder in the single
provider phase was not significant (b = 0.02, 95% HDI = [−0.04,
0.09], pMCMC = 0.43). The difference of the HbO mean of
the responder between the single provider phase and the team
phase was also not significant (b = 0.04, 95% HDI = [−0.01,
0.10], pMCMC = 0.18). HbR mean of the initial provider was
significantly lower than the responder in the single provider
phase (b = 0.14, 95% HDI = [0.02, 0.23], pMCMC = 0.01). The
responder’s HbR mean was significantly lower in the team phase
than in the single provider phase (b = 0.12, 95% HDI = [0.02,
0.20], pMCMC = 0.01).

In summary, H-1a and H-1b were both supported by the
results from the HbR but not the HbO data.

The Effect of Scenario Difficulty (RQ-1a)
Scenario difficulty influenced the effect of scenario phases on
HbO mean. When scenario difficulty was held at its mean, HbO
mean was higher in the team/debriefing phases than in the single
provider phase (b= 0.05, 95% HDI = [0.01, 0.09], pMCMC = 0.01)
for both the initial provider and responder. This effect was
smaller in the medium/high difficulty than in the low difficulty
(b = −0.13, 95% HDI = [−0.21, −0.05], pMCMC < 0.01); so that
the difference between the team/debriefing phases and the single
provider phase was not significant in both medium difficulty
(b = 0.003, 95% HDI = [−0.05, 0.06], pMCMC = 0.94) and high
difficulty (b = 0.007, 95% HDI = [−0.05, 0.07], pMCMC = 0.85).
These significant effects were not observed in HbR mean.

In summary, an HbO increase in team/debriefing phase
compared to the initial provider phase was observed in the
low difficulty scenarios but not in the medium/high difficulty
scenarios. No scenario difficulty moderation effect was observed
in the HbR data.

The Hemodynamics Across Time Segments (RQ-1b)
Model 2 (Table 2) was used to analyze the effect of scenario phase
(using first, middle, and last minute) on HbO and HbR. The
results are visualized in Figure 4. For HbO, a small but significant
increase was observed at the last minute of the team phase
compared to the last minute of the single provider phase (b = 0.11,
95% HDI = [0.03, 0.19], pMCMC < 0.01). There was a significant
interaction effect that the initial providers’ HbO increased in
the first minute of the debriefing phase compared to the last
minute of the team phase, while the responders’ HbO decreased
(b = 0.23, 95% HDI = [0.07, 0.37], pMCMC < 0.01). Responders
showed higher levels of HbR than the initial providers in the first
(b = −0.18, 95% HDI = [−0.33, −0.03], pMCMC = 0.02) and last
(b = −0.16, 95% HDI = [−0.31, −0.01], pMCMC = 0.04) minutes
of the single provider phase. The HbR level of the responder
decreased in the first minute of the team phase compared to the
last minute of the single provider phase, while the HbR level of
the initial provider increased in the same period (b = 0.29, 95%
HDI = [0.09, 0.49], pMCMC < 0.01).
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TABLE 2 | LME model specifications.

Model ID Dependent
variable

Independent
variables (fixed
effects)

Independent
variables
(random effects)

1 HbO or HbR mean • Scenario phase • Participant

• Role • Team

• Scenario difficulty • Scenario

• All possible
interactions of the
previous variables

• Experience level

2 HbO or HbR mean • Scenario phase (with
first/middle/last minute)

• Participant

• Role • Team

• Scenario difficulty • Scenario

• All possible
interactions of the
previous variables

• Experience level

3 Observer-rated
workload

• Scenario phase • Participant

• Scenario difficulty • Team

• All possible
interactions of the
previous variables

• Scenario

• Experience level

4 Self-reported
workload, positive
mood, or negative
mood

• Role • Participant

• Scenario difficulty • Team

• All possible
interactions of the
previous variables

• Scenario

• Experience level

5 HbO or HbR WTC • Scenario phase • Team

• Scenario difficulty • Scenario

• All possible
interactions of the
previous variables

• Experience level

6 HbO or HbR WTC • Scenario phase (with
first/middle/last minute)

• Team

• Scenario difficulty • Scenario

• All possible
interactions of the
previous variables

• Experience level

In summary, the hemodynamics analysis across time segments
revealed additional information regarding the HbO/HbR change
in different time points across the scenarios and the different
patterns of HbO/HbR change related to different roles.

The Correlations Among HbO, HbR, Workload, and
Mood (RQ-1c and RQ-1d)
The effects of the IVs on the observer-rated workload and
self-reported workload and mood were first tested. The results
from Model 3 (Table 2) indicated that there was no significant

FIGURE 3 | The predicted means and 95% HDIs of the initial provider and the
responder’s HbO (A) and HbR (B) levels at different scenario phases. The
values of all the other variables were held at their means.

FIGURE 4 | The predicted means and 95% HDIs of the initial provider and the
responder’s HbO (A) and HbR (B) levels at the first/middle/last minutes (FM,
MM, and LM) of the different scenario phases. The values of all the other
variables were held at their means.

effect of scenario phase and scenario difficulty on observer-
rated workload of the initial provider. Model 4 (Table 2) was
used to explore the effects of role and scenario difficulty on
self-reported workload and mood. No significant effect of the
IVs on self-reported workload or negative mood was observed.
Initial providers reported higher positive mood than responders
in low difficulty scenarios (b = 10.95, 95% HDI = [3.75, 17.29],
pMCMC < 0.01).

A multivariate model based on Model 3 was fitted to
the data to explore the correlations between HbO/HbR and
observer-rated workload. Mean levels of HbO and HbR were
calculated for 1 min prior to the moment the observer-
rated workload rating was given. The correlations were not
significant (−0.05 < r < 0.05). Correlations among HbO, HbR,
and self-reported workload and mood were, similarly, tested
based on Model 4. Using mean levels in the team phase,
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FIGURE 5 | The predicted means and 95% HDIs of the WTCs of HbO (A) and
HbR (B) between the initial provider and the responder in a team at different
scenario phases. The values of all the other variables were held at their means.

HbO and HbR correlated poorly with the self-reported metrics
(−0.05 < r < 0.05). The only significant correlation was between
self-reported workload and negative mood (r = 0.39, 95%
HDI = [0.07, 0.66]).

In summary, HbO/HbR were not significantly correlated with
the workload and mood measures.

Team Level Results
H-2 Was Supported by Both HbO and HbR WTCs
Model 5 (Table 2) was fitted to the data to test the effects of
scenario phase and difficulty on HbO and HbR WTCs. WTC
was higher in the team phase than in the single provider
phase for both HbO (b = 0.08, 95% HDI = [0.06, 0.11],
pMCMC < 0.01) and HbR (b = 0.08, 95% HDI = [0.05, 0.10],
pMCMC < 0.01). Also note that HbO WTC was significantly
higher in the team phase than in the debriefing phase (b = 0.04,
95% HDI = [0.01, 0.07], pMCMC < 0.01), while the same effect
was not significant for HbR WTC (b = 0.02, 95% HDI = [−0.01,
0.04], pMCMC = 0.17).

In summary, H-2 was supported by findings from both
HbO and HbR data.

The Effect of Scenario Difficulty (RQ-2a)
The interaction effect showed that the HbO WTC difference
between the single provider phase and the team phase was larger
in the high difficulty scenarios than in the low difficulty scenarios
(b = 0.07, 95% HDI = [0.01, 0.14], pMCMC = 0.04). No significant
effect associated with scenario difficulty was observed for HbR
WTC. The results are visualized in Figure 5.

In summary, more difficult scenarios were correlated with
an increased HbO WTC in team phase compared to the
single provider phase. However, similar effects were not
observed in HbR WTC.

The Neural Synchrony Across Time Segments
(RQ-2b)
The temporal dynamics of the HbO/HbR WTCs in the first,
middle, and last minutes of the different scenario phases were
explored using Model 6 (Table 2). As seen in Figure 6, for
HbO, the WTC level increased in the last minute compared to
the middle minute of the single provider phase (b = 0.05, 95%

FIGURE 6 | The predicted means and 95% HDIs of the WTCs of HbO (A) and
HbR (B) between the initial provider and the responder in a team at
first/middle/last minutes (FM, MM, and LM) of the different scenario phases.
The values of all the other variables were held at their means.

HDI = [0.01, 0.08], pMCMC = 0.02). The WTC also increased
in the last minute compared to the middle minute of the team
phase (b = 0.11, 95% HDI = [0.08, 0.15], pMCMC < 0.01).
WTC then decreased in the last minute compared to the middle
minute of the debriefing phase (b = −0.16, 95% HDI = [−0.19,
−0.12], pMCMC < 0.01). The HbR WTC showed a similar
pattern; there was a significant increase in the last minute
compared to the middle minute of the team phase (b = 0.10, 95%
HDI = [0.06, 0.14], pMCMC < 0.01) and a decrease in the last
minute compared to the middle minute of the debriefing phase
(b = −0.15, 95% HDI = [−0.18, −0.11], pMCMC < 0.01).

In summary, dramatic HbO/HbR WTC increases were
observed around the end of the team phase and the high WTC
levels maintained until around the end of the debriefing phase.

DISCUSSION

The current study used a portable fNIRS system, the fNIRS
PioneerTM, to measure PFC hemodynamics in clinicians doing
CEM high-fidelity simulations. On the individual level, we found
that the pattern of HbR mean for the different roles in different
scenario phases was consistent with our hypotheses while HbO
mean was not. However, HbR mean was not sensitive to different
levels of scenario difficulty. Furthermore, the HbO and HbR
means were not significantly correlated with any of the observer-
rated or self-reported workload and mood measures. The teams
showed higher HbO/HbR neural synchrony during periods of
teamwork, supporting our hypothesis. In addition, HbO neural
synchrony was sensitive to different levels of scenario difficulty;
higher level of neural synchrony was observed in scenarios with

Frontiers in Human Neuroscience | www.frontiersin.org 9 March 2019 | Volume 13 | Article 85

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-13-00085 March 1, 2019 Time: 18:29 # 10

Xu et al. Accessing Teams With fNIRS

higher level of difficulty. Analysis of the time segments indicated
that the neural synchrony of the teams increased dramatically
in the last minute of the team phase compared to previous
segments, and this higher level was maintained until the end of
the debriefing phase.

fNIRS Measured Brain Activity as
Indicator of Workload for Individual
Clinicians
fNIRS Measures in Different Scenario Phases
The findings suggest that HbR may be a better indicator for
workload than HbO in the current study setting. Regarding the
use of HbO vs. HbR, some prior studies found that HbR was
more sensitive than HbO (e.g., Peck et al., 2013), however, some
studies have reported that HbO and HbR are, similarly, sensitive
to changes in workload (e.g., Herff et al., 2014; McKendrick
et al., 2016) while others have suggested that HbR is less sensitive
than HbO (e.g., Derosière et al., 2015). In the brain-computer
interface studies, HbR was less sensitive for real time cortical
activation detection (Naseer et al., 2014) and HbO provided
better test-retest reliability (Plichta et al., 2006). Overall, the
results presented in the literature are not conclusive.

Physiologically, increased cognitive workload typically
associates with increased activation in the PFC region
(Parasuraman and Caggiano, 2005), as a result, one should
observe an HbO increase and an HbR decrease in high workload
conditions compared to low workload conditions. However,
fNIRS measures are influenced not only by the neurovascular
coupling which reflects cerebral neuronal activity, but also
systemic physiological changes in the cerebral and extracerebral
compartments (Tachtsidis and Scholkmann, 2016). Studies
have found that anesthesiologists’ workload correlates with
systemic physiological changes, such as heart rate and heart
rate variability (Weinger and Slagle, 2002; Weinger et al., 2004).
Thus, in such a study setting, as HbR may be less influenced by
global hemodynamic changes (Kirilina et al., 2012), when the
signal-to-noise ratio is optimized, it can be a reliable indicator
for task-related cortical activation (Piper et al., 2014).

fNIRS Measures in Scenarios With Different Difficulty
Level
While HbR level was able to differentiate periods of resting
(i.e., responder in the single provider phase) and working (i.e.,
responder in the team phase and initial provider in the single
provider phase) and revealed an interesting pattern across time
segments within a scenario, it was not sensitive to scenario
difficulty. It was assumed that the more difficult a scenario
was, the more cognitive resource the participants must use to
work. In more difficult scenarios, the participants’ PFC may
activate to a greater extent or for longer durations. As a result,
the mean HbO level should be higher and the mean HbR
level should be lower over the scenario period. For example,
studies have found the associations between fNIRS measured
hemodynamics and different levels of task difficulty in driving
(Foy and Chapman, 2018) and flight (Gateau et al., 2015).
However, anesthesiology work involves more physical activities,

which introduces additional systemic physiological changes, than
driving and flight. More research is needed to improve the
sensitivity and specificity of the fNIRS measures before they will
be useful for evaluating workload in this domain.

Correlations With Other Measures of Workload
In the present study, neither HbO nor HbR correlated with
observer-rated or self-reported workload. Previous studies have
found that different workload measures are sensitive, but
they have poor correlation with each other (Myrtek et al.,
1994; Matthews et al., 2015). Workload is a multidimensional
construct; therefore, different measures may reflect different
dimensions of workload (Matthews et al., 2015; Young et al.,
2015). At the same time, different measurement methods may
provide unique advantages in certain situations. Based on
changes in HbR levels, this study found that the initial providers’
workload decreased in the transition between the single provider
phase and the team phase, while the responders’ workload
increased during the same time period. These types of dynamic
changes would be very difficult to capture with self-reported
workload measures.

Neural Synchrony in Anesthesiology
Teams
fNIRS Neural Synchrony as a Measure of Team
Engagement
The results from the team level neural synchrony analysis showed
that fNIRS measures are feasible and sensitive indicators of team
engagement. Both HbO and HbR WTCs were able to differentiate
periods of individual work (i.e., single provider phase) from
teamwork (i.e., team phase). These findings are consistent with
previous study results regarding cooperative work in other
settings, such as laboratory n-back task (Dommer et al., 2012) and
singing (Osaka et al., 2015), where significantly higher levels of
fNIRS PFC neural synchrony were observed in cooperative work
compared to individual work.

Furthermore, HbO WTC was sensitive to changes in scenario
difficulty. More difficult scenarios required closer cooperation
between the team members compared to less difficult ones,
thus the team members might have shown a higher level
of engagement in teamwork. The increased level of team
engagement corresponded to an increased level of neural
synchrony. For example, Toppi et al. (2016) have found that pairs
of pilots showed an increased level of EEG neural synchrony
in the frontal and parietal brain areas in more cooperation-
demanding task scenarios in simulated flight. Zhang et al. (2018)
found that the fNIRS neural synchrony in the right temporo-
parietal junction area between psychological counselors and
clients increased as the dyads increased their engagement in
the conversation. This study demonstrated that fNIRS neural
synchrony can be useful in detecting team engagement levels
in anesthesiology teams. In practice, fNIRS neural synchrony
may be useful as a quantitative guide to the design of
simulation scenario difficulty to fit trainee expertise level. Note
that although HbO was less sensitive than HbR in measuring
workload (possibly due to systemic physiological noise), it
was more sensitive in measuring team engagement. Future
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research should investigate how systemic physiological noise
may influence WTC and why HbR was a less sensitive team
engagement measure.

Temporal Dynamics of Neural Synchrony in
Anesthesiology Scenarios
This study revealed interesting patterns in the level of neural
synchrony across different time segments within a simulation
session. First, there was a dramatic increase in neural synchrony
at the end of the team phase, when the teams were actively
coordinating to implement treatment in the face of a crisis
situation. Simulation scenarios are written to allow the instructor
to conclude when the team has achieved key treatment
milestones. Thus, one might postulate that the team neural
synchrony is an indicator of a coherent team mental model that
either allowed or was a consequence of successful interventions.
Future studies should examine team neural synchrony in
successful vs. unsuccessful event management. Second, there
was a sustained level of neural synchrony throughout most
of the debriefing. One of the main goals of instructor-
facilitated debriefing is to achieve a common understanding
(i.e., common ground) of what happened during the scenario.
The debriefing is a period of high participant engagement in
the discussion regarding what happened and why, and how
performance could be improved. Third, the level of neural
synchrony decreased in the last segment of the debriefing
phase when the group was wrapping up the discussion and
either preparing for the next simulation session or concluding
the day’s training.

Limitations
This study has limitations. First, the study sample size was
small due to limited supplies of clinicians and other logistical
and technological constraints. As a result, we were not able to
directly compare clinician groups of different expertise levels
and had to control their effects statistically. Second, the three
1 min time points in a scenario phase may not have provided
enough information on the temporal dynamics of HbO/HbR
means and WTCs. Third, due to logistic restrictions, baseline
fNIRS measure was collected when the participants were filling
out surveys. Compared to a traditional resting baseline (Fishel
et al., 2007), our baseline involved a certain degree of cognitive
activity. Individual variations in cortical activation during the
baseline might have decreased the power to detect significant
changes over time. Fourth, the portable fNIRS system used in
the current study only provided one channel of HbO/HbR data
from one light source – detector pair. Without multiple data
channels, we had to use univariate methods to process the fNIRS
data which is not as robust as multivariate methods in removing
artifacts from sources such as motion and physiological noise
(Scholkmann et al., 2014; Naseer and Hong, 2015).

CONCLUSION

In this paper we studied a portable fNIRS system, the fNIRS
PioneerTM, to measure team experience in high-fidelity CEM

clinical simulation. We found that HbR level may be a
useful indicator of workload on the individual level, but its
sensitivity needs further study. Neural synchrony based on
HbO/HbR WTCs appears to be a promising fNIRS measure
of team engagement. The use of a portable fNIRS system
in CEM is feasible but challenging. In practice, fNIRS may
best be used in combination with other physiological and
psychological (i.e., observer ratings and self-reports) measures,
to provide a comprehensive perspective on team experience and
performance. Specific direction for future studies include: (1)
test the use of fNIRS in CEM simulation with a larger sample
size to compare the effect of clinician expertise; (2) compare
neural synchrony measures with other team level measures,
such as observer-rated and self-reported teamwork and team
performance; (3) improve the design of the portable fNIRS
system to achieve a balance of size, weight, performance (e.g.,
more available data channels), and usability in realistic high-
tempo practice environments.
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