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ABSTRACT A quantitative and objective indicator for skin health via the micro-
biome is of great interest for personalized skin care, but differences among skin sites
and across human populations can make this goal challenging. A three-city (two
Chinese and one American) comparison of skin microbiota from atopic dermatitis
(AD) and healthy pediatric cohorts revealed that, although city has the greatest ef-
fect size (the skin microbiome can predict the originated city with near 100% accu-
racy), a microbial index of skin health (MiSH) based on 25 bacterial genera can diag-
nose AD with 83 to �95% accuracy within each city and 86.4% accuracy across
cities (area under the concentration-time curve [AUC], 0.90). Moreover, nonlesional
skin sites across the bodies of AD-active children (which include shank, arm, popli-
teal fossa, elbow, antecubital fossa, knee, neck, and axilla) harbor a distinct but le-
sional state-like microbiome that features relative enrichment of Staphylococcus au-
reus over healthy individuals, confirming the extension of microbiome dysbiosis
across body surface in AD patients. Intriguingly, pretreatment MiSH classifies chil-
dren with identical AD clinical symptoms into two host types with distinct microbial
diversity and treatment effects of corticosteroid therapy. These findings suggest that
MiSH has the potential to diagnose AD, assess risk-prone state of skin, and predict
treatment response in children across human populations.

IMPORTANCE MiSH, which is based on the skin microbiome, can quantitatively as-
sess pediatric skin health across cohorts from distinct countries over large geo-
graphic distances. Moreover, the index can identify a risk-prone skin state and com-
pare treatment effect in children, suggesting applications in diagnosis and patient
stratification.

KEYWORDS atopic dermatitis, personalized skin care, skin microbiome, spatial
variation, suboptimal health

A central goal of human microbiome projects is to diagnose and predict host states
via the microbiome (1, 2). The skin, our largest organ and a first line of environ-

mental exposure, hosts a microbiome that is site specific, host specific, and environ-
ment specific (3, 4). Particular skin symbionts modulate the host immune response,
physiology, and development (5–8). Therefore, the prospect of exploiting the skin
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microbiome for health protection, disease treatment, or personal care has attracted
great interest (9). The skin microbiome is known to differ between human populations
(10, 11); therefore, whether the skin microbiome can serve as an indicator of skin health
that applies across large geographic ranges remains largely unknown (12, 13).

This challenge can be traced to the characteristics of human skin microbiota. The
dominant types of resident skin bacteria appear relatively stable, and less abundant
types of bacteria account for most of the variability (4). Within an individual, compo-
sition of the skin microbiota is determined primarily by body site. Within a skin zone,
temporal variability in an individual is small compared to interpersonal variability (3, 4,
14, 15). However, how this pattern of spatial variation manifests itself remains poorly
understood, particularly in the context of perturbation by disease or medications.
Moreover, changes in pathogenic microbiota across individuals, cities, and even at the
global scale is largely unknown (4, 16, 17). Furthermore, for many microbiome-wide
association studies, notably those from the gut, applying models of microbial disease
biomarkers trained in one population to other populations has typically been unsuc-
cessful (18), which greatly limits the potential of the microbiome for diagnosis and
treatment-oriented patient stratification.

Atopic dermatitis (AD), a chronic and relapsing inflammatory skin disorder associ-
ated with skin barrier impairment, affects 15 to 30% of children (5% of the general
population) worldwide and has been rapidly increasing in prevalence, especially with
children (19, 20). AD is a heterogeneous disease of different subtypes and with varied
and sometimes evasive clinical manifestations (21). Disease severity is typically diag-
nosed by physicians via visual observation and diagnosis of disease signs, including
color change, pruritus, and swollen and cracked skin, generally done with the well-
validated Scoring Atopic Dermatitis Index (SCORAD) (22). Other diagnosis measures
include the Eczema Area and the Severity Index (EASI) score (23) or the objective
SCORAD (24). In addition, several serum biomarker assays, such as thymus and
activation-regulated chemokine (TARC) assay (CC chemokine 17 [CCL17]), pulmonary
and activation-regulated chemokine (PARC) assay (CCL18) (25–28), Staphylococcus au-
reus enterotoxin assay (29), etc. are available, yet they are typically invasive. On the
other hand, the AD state has been associated with change in the skin microbiome, e.g.,
the presence or enrichment of S. aureus (4, 15, 30). These microbiome-based findings
are enabling new opportunities for better assessment or prediction of the disease state,
which can potentially overcome the shortcoming of traditional clinical scores or
supplement them, particularly in allowing comparison among patients, examiners, or
studies, and in objective design and administration of skin therapy and care regimens
(31).

On the other hand, it remains elusive whether and how skin microbiome plays a role
in AD treatments (30), which aims to reduce symptoms (pruritus and dermatitis),
prevent exacerbations, and minimize therapeutic risks. Standard treatment modalities
for AD have centered around the use of topical anti-inflammatory preparations and
moisturization of the skin (e.g., corticosteroids, calcineurin inhibitors, and crisaborole),
and patients with severe AD may require phototherapy or systemic treatment (for
instance, oral cyclosporine [32, 33]). Topical calcineurin inhibitors are potentially linked
to cancer (34), crisaborole remains uncertain in efficacy (35, 36), and cyclosporine may
induce side effects, including nephrotoxicity, hypertension, hypertrichosis, etc. (37).
Therefore, corticosteroids can serve as a starting point for probing role of the skin
microbiome in AD treatment, since they are recommended as first-line treatment for
AD (38).

In this study, we compared skin microbiota across the body (mainly from the
forearm and shank, with the remaining from seven additional skin sites; see Table S1 in
the supplemental material) from healthy and AD active children (3 to 12 years old) from
three cities (Beijing and Qingdao from China and Denver from United States), and
tracked their subsequent response to skin care treatment. We showed that although
city has the greatest effect size, a Microbial Index of Skin Health (MiSH) is generally
applicable to populations across large geographical distances. Moreover, in AD, we
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confirmed that the microbiome dysbiosis is extended across whole body surface, as
nonlesional skin sites of the patient harbor a distinct but lesional state-like microbiome.
Intriguingly, pretreatment MiSH classifies children in the Beijing cohort with identical
AD clinical symptoms into two host types with distinct disease severity and sensitivity
to corticosteroid therapy (in which corticosteroid-containing ointment was applied on
skin surface). Although their reproducibility and generalizability need to be demon-
strated in larger cohorts and various populations, our results indicate that, via MiSH, the
skin microbiome may potentially serve as a generally applicable, quantitative proxy to
diagnose AD, be able to compare the efficacies of AD care products, and be able to
predict AD treatment response in children.

RESULTS
Experimental design that compared healthy and AD skin microbiota at various

spatial scales. To test whether healthy and AD-active skin microbiota are distinct over
wide geographical areas, we established two cohorts. The first cohort consists of 28
children age 4 to 12 years from the Chinese city of Beijing (“Beijing cohort”) who were
suffering from mild to moderate AD (Fig. 1a) (Materials and Methods). A second cohort
of age-matched children was recruited from Qingdao, a coastal Chinese city at the West
Pacific rim 650 kilometers southeast of Beijing. The “Qingdao cohort” consists of 29
pediatric patients suffering from mild to moderate AD and 30 healthy subjects (Fig. 1b)
(Materials and Methods), who were screened using selection criteria identical to those
for the Beijing cohort. Furthermore, we compared the results to a third cohort that
consists of 59 AD-active and 13 healthy children (4 to 12 years old) from the Denver, CO
(“Denver cohort”) (Fig. 1c) (Materials and Methods).

For the Beijing and Qingdao cohorts, our study design also compared lesional and
nonlesional skin sites at multiple locations across the body surface (Table S1). Moreover,
microbiome changes were compared between patients at their first visit and at 4 weeks
later (i.e., after the treatment). Specifically, for the Beijing cohort that used corticoste-
roids as treatment, clinical symptoms were greatly reduced (ΔSCORAD � 25.7 � 7.5) in
16 patients and partially relieved (ΔSCORAD � 6.5 � 6.7) in the remaining 14 patients.
Their skin microbiomes at both lesional and nonlesional sites were sampled at baseline
and posttreatment (Fig. 1a) (Materials and Methods).

City of origin affects skin microbiome more than the AD status. The skin
microbiome is affected by location on the human body, disease status, and host

FIG 1 (a to c) Experimental design that sampled skin microbiota from AD-active children and healthy
controls in the two Chinese cities of Beijing (a) and Qingdao (b) and the American city of Denver (c). In
diseased children, skin microbiota from both lesional sites and the nonlesional sites were collected
(Fig. 5a for details). In healthy children, the sampling sites were matched with the lesional sites of
patients. For the Beijing cohort, skin microbiota before and after various treatment regimens was
sampled.
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individuality (39). Thus, we assessed the effect size of AD at the four geographical scales
of skin site, host individual, city, and continent, via the Beijing (China), Qingdao (China)
and Denver (USA) cohorts. Age and biological sex were similar among the three cohorts
(P � 0.086, Kruskal-Wallis test). Within each of our city-specific cohorts, AD status had
a larger effect size than did skin site, host identification (ID), age, or sex (Table 1).
However, analyses over the three cities revealed that geographic location and AD status
both greatly affected the skin microbiota, despite a larger effect size of the former (F �

25.93 versus 18.72; Table 1).
To identify the bacteria contributing to city-specific signatures, we analyzed healthy

and diseased skin microbiomes within each city and then compared the results. For
healthy individuals, significant differences (� diversity) were found among Beijing,
Qingdao, and Denver as shown via principal-coordinate analysis (PCoA) (Fig. 2a;
F � 22.09, P � 0.001, Adonis). The AD microbiota (i.e., the lesional samples from AD
patients) also varied among cities (Fig. 2b, the same PCoA plot as Fig. 2a yet with a
distinct color scheme; F � 14.11, P � 0.001, Adonis), although the AD microbiota
communities were more similar to each other than the non-AD microbiota at the city
level (Fig. 2a and b). Moreover, the PC1 of PCoA was negatively correlated with
Propionibacterium, Caloramator, Rothia, Prevotella, Nocardioides, Actinomyces, and Coryne-
bacterium (rho � �0.62, �0.54, �0.53, �0.53, �0.52, �0.52, and �0.52, respectively;
Fig. S1a), and positively correlated with Staphylococcus (rho � 0.54; Fig. S1a, red) and
SCORAD (rho � 0.47; Fig. S1b). In addition, the PC1 appeared to be indicative of the
disease status, as PC1 values were different between healthy and lesion samples (but
not those between biological sex or among the three cities; Fig. S1c).

In Beijing, Qingdao, and Denver, 90, 67, and 87 bacterial genera were identified,
respectively (see Materials and Methods). For healthy samples, 30 genera were found in
all of the cities, representing 63.2%, 73.4%, and 54.0% abundance, respectively, while
for AD samples, 23 genera are shared, representing 83.3%, 71.2%, and 60.5% abun-
dance, respectively (Fig. 2c and d). Among the healthy samples, 34 (Beijing), 8
(Qingdao), or 28 (Denver) were city-specific genera, and 38 shared genera (totally 60.1%
in relative abundance, on average) have changed in relative abundance among cities
(P � 0.01, ANCOM (40) (Fig. 2e and Table S2); among lesional samples, 10 (Beijing), 12
(Qingdao), or 15 (Denver) city-specific genera were detected, with 41 (totally 63.1% in
relative abundance, on average) altered in relative abundance among cities (P � 0.01,
Wilcoxon test) (Fig. 2e and Table S2).

City-specific bacterial markers from healthy samples overlapped by �50% those
from AD samples (Fig. 2e; notably, Staphylococcus spp. vary among cities in healthy
samples yet were of identical, enriched abundance in diseased samples, likely resulting
from selection by disease). To test whether these city-specific markers can predict the
city origin, we built classification models using random forests (RF) with the healthy
samples as training set (Materials and Methods) (Fig. S2a). The city origin was predicted
from healthy samples with 98.6% accuracy (Fig. 2f; left) by 10-fold cross validation.
Moreover, models trained using healthy samples predicted the origin of both nonle-
sional and lesional samples with 82.5% and 79.3% accuracy, respectively (Fig. 2f; middle
and right). Thus, city-specific differences in skin microbiome were consistent, irrespec-
tive of the health status.

TABLE 1 Details of participants and samples from Beijing, Qingdao, and Denver

Factor F value (Adonis) P value

City 25.93 0.001
Statusa 18.72 0.001
SCORAD 7.67 0.002
Site 1.82 0.036
Age 1.45 0.001
Individual 1.36 0.031
Biological sex 0.43 0.678
aStatus, health status based on AD diagnosis.
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To test whether differences in skin microbiome in AD were consistent by city, we
compared lesional to healthy samples within each city. Reduction in � diversity was
associated with AD in each city (Fig. 3a; P � 0.0004 for Beijing; P � 0.0005 for Qingdao;
and P � 0.0125 for Denver; Wilcoxon test, Chao1 index [41]). The � diversity was also
distinct between healthy and AD microbiota (Fig. 3b to d; F � 25.28, P � 0.001 for
Beijing; F � 14.28, P � 0.001 for Qingdao; and F � 4.72, P � 0.006 for Denver; Adonis) in
each city, suggesting the feasibility of microbiome-based diagnosis. RF models built for
each city achieved diagnosis accuracy of 91.3% (area under the concentration-time
curve [AUC], 0.97 for Beijing; Fig. S2b), 89.4% (AUC, 0.95 for Qingdao; Fig. S2c), and
79.2% (AUC, 0.78 for Denver; Fig. S2d) by 10-fold cross-validation, respectively. Under-
lying the power were 48, 28, and 33 marker genera, respectively, selected based on the
rank order of variable importance. Of these, 18 genera were shared across cities (Fig. 3e

FIG 2 Diversity of healthy or diseased skin microbiota among the three cities. (a) PCoA of the healthy controls from the three cities. Within a healthy population,
geographic (city) variation in skin microbiota is remarkable (F � 22.09, P � 0.001). (b) PCoA of the lesional samples from the three cities. The between-city
difference was reduced after AD infection (from F � 22.09 to F � 14.11), indicating that AD drives the convergence of skin microbiota from distinct cities. (c
and d) Shared and specific bacterial genera among the cities, for healthy (c) and lesional (d) samples. (e) Heatmap of bacterial genera in both healthy and
lesional skin (only those with relative abundance �1% were shown; *, significantly changed). (f) Skin microbiota predict city origin. Healthy samples were used
as training set, with healthy (left), nonlesional (middle), and lesional (right) samples, respectively, as the testing set. In the ternary plot, the closer one sample
is to an apex, the more likely it is predicted to be from that city. The likelihood to correctly predict Denver samples is lower than the other cities, and moreover,
the Denver samples are more difficult to separate from Beijing than from Qingdao (f, middle diagram). The reason for this observation, however, is not clear.
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and S3). Notably, Staphylococcus species were a common AD-associated (positively)
genus among the cities, based on univariate statistical analysis (P � 0.012, Wilcoxon
rank-sum test). Training a diagnosis model in one city and applying it to another led to
lower, yet still meaningful, accuracy (Fig. 3f); for example, application of the Beijing
model (i.e., the Beijing cohort as training data) on Qingdao or Denver data sets would
result in a reduction of AUC (10-fold cross-validation) from 0.97 to 0.75 and 0.70,
respectively. Similarly, application of the Qingdao model (i.e., the Qingdao cohort as
training data) on Beijing or Denver data sets resulted in a reduction of AUC (10-fold
cross-validation) from 0.95 to 0.89 and 0.73, respectively. Application of the Denver
model (i.e., the Denver cohort as training data) on Qingdao or Denver data sets resulted
in a reduction of AUC (10-fold cross-validation) from 0.95 to 0.89 and 0.73, respectively.

An AD diagnosis model applicable for all the three cities. To test the feasibility
of a generally applicable AD diagnosis model, we built an RF model using all the
lesional and healthy samples from all three cities, using profiles of the taxa at six
different phylogenetic levels (from genus to phylum; see Materials and Methods). The
AUC was maximized at the genus level, and performance improvement was minimal
when the top 25 most discriminatory genera were included (Fig. 4a, inset). We chose 25

FIG 3 City-specific diagnosis models for AD. (a to d) The � diversity (a) and � diversity (b to d) of skin microbiota was significantly changed between healthy
and lesional samples in each of the three cities. (e) Heatmap showing the relative abundances of 18 shared genera for building the city-specific AD diagnosis
models. Among the three cities, the change patterns between healthy and diseased samples were consistent for 12 genera, which are highlighted with red font.
(f) Performance of cross-city prediction using each city-specific AD diagnosis model, as assessed via the area under the ROC curve (AUROC). The ROC curve of
10-fold cross-validation was marked as blue lines and the ROC curve of the prediction as red lines.
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genera, Staphylococcus, Paracoccus, Streptophyta, Citrullus, Deinococcus, Chryseobacte-
rium, Bacillus, Wautersiella, Rothia, Paenibacillus, Porphyromonas, Rhizobium, Bergeyella,
Prevotella, Neisseria, Moraxella, Acinetobacter, Brachybacterium, Streptococcus, Carica,
Kocuria, Comamonas, Haemophilus, Capnocytophaga, and Fusobacterium as AD markers
(Fig. 4a), and constructed a metric called Microbial Indicator of Skin Health (MiSH) that
ranges from 0 to 100 for clinical diagnosis of AD, by multiplying the probability of being
healthy in the RF model by 100 for each sample (see Materials and Methods). The MiSH
model reached 86.4% diagnosis accuracy for all healthy and lesional samples combined
from the three cities (AUC, 0.90; Fig. 4b), despite population and methodological
differences among studies.

To test its spatial scalability, performance of MiSH was compared among (i) match-
ing sites of individuals in a city, (ii) among individuals in a city, (iii) among individuals
from the two Chinese cities, and finally (iv) among individuals from all the three cities
(Fig. 4c). A stepwise reduction of diagnostic accuracy (AUC) from 0.98, 0.97, 0.93, to 0.90
suggests that introduction of microbiota heterogeneity at each additional spatial scale
would reduce model performance. Consistent with this, for healthy samples, the size of
the core microbiome (defined as the number of genera found in �50% of samples)
followed a similar downward trend; this indicated an effect based on number of
accumulated samples rather than geography, because reduction of the core micro-
biome size was correlated with the number of samples rather than the number of cities.
For lesional samples, the core microbiome size largely plateaued when extending the
scale beyond a single city and was smaller than the core microbiome of the healthy
samples at all scales (Fig. 4c), confirming a conserved set of AD markers that is largely
independent of the city of origin. This observation explains why this diagnosis model
scales over large geographic distances.

A suboptimal health state of nonlesional skin sites is confirmed using MiSH. We
next derived the MiSH for the lesion-free samples widely distributed on body surface of
AD-active children, as follows (Fig. 5a): sites symmetric to the lesional sites (Beijing
cohort), at three sites on the body (Qingdao cohort), and �5 cm away from the edge
of the lesional site (Denver cohort). A vast majority of these nonlesional samples on
AD-active children (95.8%, 78.6%, and 98.3% for Beijing, Qingdao, and Denver, respec-
tively) carried a MiSH between 20 and 75. Their MiSH values were closer to those of
lesional skins than those of healthy samples (Fig. 5b), although differences between
lesional and healthy samples were still found in each city (paired t test; P � 6.2e�9,
1.8e�19, and 3.0e�10, respectively). For the Qingdao cohort, nonlesional sites in-
cluded three different skin locations (forearm, left shank, and right shank) for each of

FIG 4 A universal model for AD diagnosis via skin microbiome. (a) The 25 genera with the most discriminating power in the universal diagnosis model were
selected as disease markers. The bar length at each row indicates relative contribution of the genus to the RF model. Inset, relationship between the number
of variables (i.e., genera) in the RF model and model performance. (b) MiSH distinguishes healthy and lesional samples. (c) Correlation between core microbiome
size and model performance along the spatial scaling of geographical distance. The y coordinate (line plot) depicts the size of core microbiome. The x coordinate
(bar plot) describes model accuracy (i.e., AUC). The bottom table describes the spatial scales of sampling, with “�” and “�” indicating inclusion and exclusion
of samples, respectively, at each of the scales.
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the 29 AD patients (Table S1). Among the three sites, MiSH exhibited a pattern of
recovering with increasing distance to the lesional sites (Fig. 5c); however, alteration of
the skin microbiota at a nonlesional site was not strongly correlated with its distance
from the lesional site.

Interestingly, microbiome structures of nonlesional sites differed from both healthy
and lesional sites, although the nonlesional microbiota are more similar to lesional than
to healthy sites in each of the cities (Fig. 5d). Thus, nonlesional samples feature
dysbiosis of the microbiota, which has already shifted toward the diseased state, even
though both the healthy states and the diseased states differ in each city. Notably, this
observation in pediatric cohorts is consistent with previous observation of dysbiosis of
microbiome on nonlesional skin sites in adult AD patients (7, 42). In particular, S. aureus
was more abundant in the nonlesional samples than in healthy samples (P � 0.01,
Wilcoxon test), yet it was less abundant than in lesional samples (P � 0.01, Wilcoxon
test). The higher susceptibility to S. aureus colonization suggests these nonlesional
samples as a risk-prone state of skin between healthy and the diseased, i.e., a “subop-
timal health” (SoH) state. Importantly, the SoH state was not limited to the immediately
surrounding or adjacent area of AD-active zones but occurs across the whole body
surface (Fig. 5b and c). It has indeed been observed that S. aureus colonization or
microbiome dysbiosis can precede AD in early childhood (43, 44).

Assessing AD treatment via the skin microbiome using MiSH. We next asked
whether treatment of AD is associated with recovery of skin microbiota at the lesional
and nonlesional sites. For each of the AD-active children in Beijing, an identical dose of
corticosteroid was applied to the lesional sites every day for 4 weeks (see Materials and
Methods). The SCORAD significantly improved (P � 1.23e�4; Student’s t test, Fig. 6a).
On the other hand, MiSH of both lesional and nonlesional samples, at 20.2 � 17.9 and
25.1 � 10.4, respectively, before treatment, both significantly improved after the treat-
ment (41.3 � 16.7, P � 9.07e�6 and 40.9 � 19.9, P � 2.07e�5, respectively; Student’s t

FIG 5 Definition and detection of the suboptimal health state of skin via skin microbiota. (a) Map of nonlesional samples on the skin. Beijing cohort, sites
symmetrical to the lesional sites; Qingdao cohort, the symmetric sites of the lesional sites, plus another two remote sites on forearm or shank; Denver cohort,
the surrounding, lesion-free skin of the lesional sites. (b) MiSH of nonlesional samples in the three cities compared to those of healthy and lesional samples.
(c) MiSH of Qingdao nonlesional samples, which include one symmetric site (arm; “symmetric”) and two remote sites (leg; “distant” and “distant & symmetric”).
(d) Profiles of the dominant genera (average relative abundance, �1%) in healthy, nonlesional, and lesional samples. In each of the three cities, the nonlesional
microbiota is more similar to lesional ones than to healthy ones.
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test; the responses at lesional and nonlesional sites were statistically indistinguishable;
P � 0.43; Fig. 6a). Moreover, the treatment moved the skin microbiota of both lesional
and nonlesional sites across the body to a structure more similar to that of healthy
samples than to lesional or nonlesional ones (Fig. 6b).

These results illustrated the possibility of using MiSH for objectively assessing the
potential efficacy of treatment regimens, which would be a significant advance because
a change in host phenotype can be difficult to quantify (15, 45). To test this hypothesis,
for Beijing cohort, three kinds of soap containing different active ingredients (BCP-2,
B7U, or zinc pyrithione [ZPT]) were used for body wash (once daily) along with local
application of corticosteroid on AD-active children for 4 weeks (see Materials and
Methods). At baseline (or posttreatment), no difference in MiSH or SCORAD was
apparent among the three treatment groups, yet the MiSH was elevated and SCORAD

FIG 6 Assessing and comparing the efficacy of skin care products via skin microbiota. (a) Corticosteroid treatment
induced change of SCORAD (left) and MiSH (middle and right) in both lesional and nonlesional sites. (b) Change
in skin microbiota due to the treatment. (c) Boxplots of MiSH and SCORAD before and after the treatment via each
of the three active ingredients in body wash soap. Boxes represent the interquartile range (IQR), and the lines inside
represent the median. Whiskers denote the lowest and highest values within 1.5	 the IQR. ΔmiSH, posttreatment
subtracted by baseline; ΔSCORAD, baseline subtracted by posttreatment. (d) Characteristic change pattern in skin
microbiota between posttreatment and baseline under each of the three active ingredients in body wash soap.
Change in relative abundance of bacterial markers, sorted by importance in the diagnosis model, was shown as a
heatmap. For the “Reference” pattern, which is between healthy and lesional samples and thus represents the
change corresponding to a full recovery, the relative abundances of 36 bacterial genera changed significantly, and
the 29 shared among the three cities are shown. Among the three active ingredients, ZPT carries a microbiota
change pattern the most similar to “Reference,” suggesting its higher efficacy than BCP-2 or B7U in inducing
recovery of skin microbiota back to the healthy state.
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reduced after each of the three treatments (Fig. 6c). Notably, ΔMiSH, the difference
between baseline and posttreatment that quantifies the degree of AD recovery, was
much higher for the ZPT group (ΔMiSH � 49.2 � 12.2; P � 0.001 and 0.002, Student’s t
test) than the other two (ΔMiSH � 22.9 � 13.4 for BCP-2; ΔMiSH � 18.7 � 17.9 for B7U),
suggesting higher effect of ZPT on remediating skin microbiota in AD. Although no
difference in clinical efficacy was detected based on SCORAD (Fig. 6c), our findings
raised the possibility that shift in MiSH can be used to assess the efficacy of skin care
products via the microbial diversity change of skin. Rational validations of such findings
in the larger human population could eventually lead to the novel prognosis strategy
for AD-inflicted individuals.

A comparison of microbiome changes for the three treatments explains their
differential influence (Fig. 6d). The change that distinguishes healthy from lesional
samples, e.g., the significant decrease in Staphylococcus, Bacillus, and Paenibacillus spp.,
was designated a “reference” that presumably corresponds to a full recovery from AD.
ZPT induced a microbiota change pattern the most similar to the reference; the relative
abundance change of eight taxa (the top three being Staphylococcus, Bacillus, and
Streptophyta) after the 4-week treatment is consistent with the reference (Fig. 6d). Such
superior efficacy of ZPT is likely due to its antibacterial activity (neither BCP-2 nor B7U
contains antibacterials), which kills more AD-associated bacteria (in the reference), such
as S. aureus, and thus shapes skin microbiota to a healthier state (46). PCoA of samples
before and after usage of the skin care products suggested that the microbiota after
ZPT treatment was more similar to that of healthy ones than the other two treatments
(Fig. S4), consistent with those from the heat map (Fig. 6d). Therefore, the change in
skin microbiome appears to be sufficiently sensitive to characterize and evaluate the
effects of ingredients in body wash soap, and such microbiome signatures may form a
basis for assessing and comparing treatment efficacy on skin microbiome.

MiSH stratifies AD patients and predicts their response to skin care treatment.
Interestingly, the baseline MiSH (but not the baseline SCORAD) from lesional samples
of the 18 patients in the BCP2 and B7U treatment groups exhibited a bimodal
distribution (Fig. 7a and b; BCP2 and B7U induced equivalent improvement in MiSH; the
effect of ZPT was distinct; thus, ZPT was excluded from this test). Thus, despite their
equivalent SCORAD, the 18 patients can be stratified at the baseline (i.e., before any
treatment) via MiSH into two types of distinct disease states, type I of seven patients
and type II of 11 patients. Hierarchical clustering of the pretreatment lesional micro-
biomes from AD patients generated two classes that exactly correspond to the type I
and II hosts defined above, supporting the microbiome basis for this stratification
(Fig. 7c). Type I features significantly fewer genera (54 versus 20, stats) but a much
higher proportion of Staphylococcus spp. (3.9 times of type II, stats). In contrast, type II
features higher relative abundance of 20 genera (from the phyla of Actinobacteria,
Firmicutes, Proteobacteria, Thermi, Bacteroidetes, Fusobacteria, and TM7). The removal of
Staphylococcus before rarefaction led to similar classification, confirming the impor-
tance of these genera as markers of the two types.

The baseline MiSH for type I patients (MiSH � 0.9 � 1.1) were much lower than
those of type II (MiSH � 32.5 � 11.5; P � 2.5e�6, Student’s t test; Fig. 7d and Table 2),
which indicates that type I patients carried a more disease-oriented microbiome.
Posttreatment MiSH for type I patients were also significantly lower than those of type
II (30.0 � 10.0 and 48.4 � 16.0, respectively; P � 0.007; Fig. 7d); thus, type II patients
recovered to a microbial state more closely resembled healthy skin. However, the
ΔMiSH for type I patients were significantly higher than type II (29.2 � 10.1 versus
15.9 � 16.5, P � 0.032; Fig. 7d), suggesting a more prominent response of microbial
diversity recovery for type I patients; this is likely due to the much lower MiSH for type
I patients at baseline. In contrast, none of baseline SCORAD, posttreatment SCORAD, or
ΔSCORAD during treatment were different between type I and type II (Fig. 7d). Notably,
patients with identical SCORAD were not necessarily of identical MiSH because SCORAD
depicts the physiological change of AD patients, while MiSH depicts the changes of skin
microbiota. Besides, corticosteroids therapy may affect the correlation between skin
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microbiota and SCORAD during AD recovery. Collectively, these results demonstrate
prognosis of treatment response via MiSH prior to treatment, as type I patients, who are
defined by a worse form of diseased microbiome, tend to undergo a greater recovery
during the treatments.

A MiSH-based scale for assessing and prognosing skin health in children. We
propose that, via MiSH and lesional status, a skin sample can be classified into one of
three healthy states (Fig. 8a), as follows: (i) MiSH of �50 plus lesional, AD-active (i.e.,
�50% probability of being healthy, based on the diagnosis model); (ii) MiSH of �50 yet
without lesion, SoH, i.e., a state that is distinct from either healthy or diseased states
and has already shifted toward disease; and (iii) MiSH of �50, healthy (i.e., 50%
probability of being healthy). Projection of microbiota and their metadata onto the
common scale of MiSH underscores the potential of skin microbiota for personalized
skin care (Fig. 8b). First, healthy hosts can be distinguished from AD-active hosts.
Second, within AD-active hosts, nonlesional sites can carry a microbiome similar to that
of lesional sites. Third, during treatment, the microbiota of both lesional and nonle-
sional sites moves toward the healthy microbiota, although a full recovery would take
much longer than the treatment period. Finally, the patients can be classified into types
I and II with distinct microbial diversity at their first visit, and different treatment effects
(by corticosteroid) can be predicted (Fig. 8c).

FIG 7 Predicting the host response to treatment via skin microbiota. (a and b) Distribution (left) and density (right) of MiSH (a) and SCORAD (b) in the 18
patients at baseline. The MiSH, but not SCORAD, exhibits a multimodal (bimodal) distribution, suggesting patient stratification into distinct disease state prior
to treatment, despite their equivalent SCORAD. (c) AD-active children were classified based on their baseline skin microbiota into types I and II, with their
organismal signatures shown as a heatmap. (d) Pre- and posttreatment MiSH for the types I and II of patients. The SCORAD index is also shown for comparison
purposes.
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At present, SCORAD is the prevalent clinical metric for AD diagnosis, yet it is limited
by subjectivity in judgment and inability to evaluate risk-prone states of skin that
exhibits no visible symptoms. Microbial � diversity is also linked to skin health (39), yet
the performance of Shannon index or Chao1 index for AD diagnosis is poor (AUC, 0.67
and 0.59 separately; Fig. 8d), as no clear decision boundary can be obtained from either
metric (Fig. S5a). S. aureus, to a certain extent, is considered a biomarker of AD (48), as
it was enriched in AD while barely detected in healthy children (49). Moreover, it was
recently reported that among Staphylococcus spp., S. aureus predominates in more
severe AD and S. epidermidis predominates in less severe AD (50). However, an AD
diagnosis model based on S. aureus alone carries an AUC of 0.83, much lower than that
of MiSH (0.90). This is due to the large interpersonal variation of S. aureus in AD patients
(51); its occurrence rate can be rather low among all hosts (39% for healthy samples,
87% for lesions, and 63% overall; Fig. 8d) and varies widely among the Beijing, Qingdao,
and Denver cohorts (81%, 26%, and 95%, respectively; Fig. S5b). Therefore, a reference
range of S. aureus trained in one population would not apply in others, as the intercity
variation in its relevant abundance is quite high, even for healthy children (P � 0.012,
Kruskal-Wallis test; Fig. S5c).

In our study, MiSH is significantly correlated with SCORAD (Fig. S6a; rho � 0.46,
P � 6e�4, Pearson test) and with skin microbial � diversity (Fig. S6b; rho � 0.58,
P � 2e�16, Pearson test). MiSH is also positively correlated with the relative abundance
of S. aureus (Fig. S6c; rho� 0.63, P � 2e�16, Pearson test). In the Qingdao cohort, the
S. aureus-dominated group and an S. epidermidis-dominated group (ratios of S. aureus
and S. epidermidis were determined by quantitative PCR [qPCR]; see Materials and
Methods) were of significantly different MiSH, with S. aureus carrying lower MiSH
(indicating more severe AD; P � 0.031). Thus, MiSH can be reconciled with existing
biomarkers of AD and can potentially serve as a clinically useful and generally appli-
cable parameter.

These advantages of MiSH encourage us to establish an interactive website which
accepts 16S rRNA-amplicon based data sets as input and returns a graphical report of
MiSH (http://bioinfo.single-cell.cn/mish/index.php/upload_mish) (see Materials and
Methods). This online tool may be of potential value in personalized skin health
assessment, prediction of response to treatment, and comparison of skin care product
effects in both healthy and AD-active children.

DISCUSSION

Enthusiasm for diagnosis and therapy of skin disorders via skin microbiota has arisen
from recent evidence that: (i) the dysbiosis of skin microbiota is not just associated with

TABLE 2 MiSH and SCORAD of the 18 AD patients in the BCP2 and B7U treatment
groups, both prior to treatment and posttreatment

Sample ID Type

MiSH at: SCORAD at:

Baseline After treatment Baseline After treatment

1039 I 0.06 17.64 33.40 6.62
1069 I 0.14 19.88 55.80 36.50
1072 I 0.10 25.06 33.57 10.65
1052 I 0.22 25.84 35.12 22.82
1050 I 2.60 30.62 73.00 33.50
1001 I 2.48 46.08 41.83 16.52
1024 I 0.02 45.06 42.91 47.24
1056 II 30.54 12.66 48.81 41.48
1080 II 60.62 59.42 28.30 10.35
1089 II 34.20 35.88 28.88 20.31
1005 II 26.90 30.84 65.75 25.29
1070 II 41.58 62.14 13.20 1.95
1030 II 38.68 59.60 46.39 44.14
1060 II 35.04 59.46 44.82 20.62
1064 II 15.38 41.04 38.55 7.79
1077 II 30.16 65.84 31.20 19.94
1078 II 20.90 60.92 42.24 13.31
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skin inflammations (39) but can be a driving factor (52), (ii) S. aureus colonization
precedes the onset of AD in certain children (41, 44), (iii) commensal skin bacteria
protect against pathogens (7), and (iv) recovery of skin health should require restora-
tion of the healthy microbiota (15). However, these studies are mostly performed in a
single localized and relatively homogenous cohort. However, in addition to body region
and host individuality (53), the main factors affecting the skin microbiota include
geographical location (54, 55). The lack of understanding of variation between healthy
and diseased skin microbiota scales at different spatial dimensions, i.e., among geo-
graphically separated populations, has hindered critical assessment and exploitation of
the potential of the skin microbiota as a quantitative, objective, and widely applicable
barometer for skin health. Notably, the difficulty in transplanting microbiome-based
disease models between populations is common; for example, the utility of intestinal
microbiota in diagnosis is hindered by an effect size of individual hosts that is larger
than that of disease status (e.g., lean and obese individuals assessed by the gut
microbiota [56–58]).

FIG 8 A universal scale to quantitatively assess and compare skin-health state via skin microbiota. (a) The scale of MiSH, ranging from 0 to 100, represents the
probability of being healthy (i.e., from 0% to 100%). Color-shaded triangular areas represent the interquartile range (IQR) of the MiSH score. Notably, the MiSH
of nonlesional sites are harbored within those of lesional sites, suggesting a diseased microbiota and a risk-prone state (i.e., the “suboptimal health”) of skin
at the nonlesional sites. After the treatments, the MiSH of both lesional and nonlesional sites, despite significant improvement, stayed at a state that can be
considered the suboptimal health, since its MiSH is still much lower than that of healthy children. (b) Changed patterns of MiSH for the two patient types, which
indicate distinct baseline disease severity and different sensitivity to treatment. (c) Characteristic change pattern of skin microbiota between type I and type
II under corticosteroids. (d) Comparing the performance of MiSH, S. aureus, Chao1, and Shannon index for AD diagnosis. The occurrence rate of S. aureus is
shown in the inset.
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A comparison of the skin microbiome of AD and healthy pediatric cohorts from
three cities, two Chinese and one American, revealed that, healthy and diseased skin
microbiota from each city carried both city-specific signature (Fig. 3e) and AD-
associated biomarkers (Fig. 4a), and there were significant overlaps among the healthy
and diseased biomarkers. Although the two Chinese cities shared more disease bio-
markers than did the intercontinental pairs, a significant core of AD-associated micro-
biota was present, with its size and membership independent of geographic distances
among populations. Therefore, despite the differences among pediatric cohorts, an AD
diagnosis model built from a single city can be applied across the three cities with
acceptable accuracy. As a result, despite the large effect size of city and individual
variation, the MiSH model consisting of the top 25 bacterial skin genera can diagnose
AD with 86.4% accuracy (AUC, 0.90) across cities and continents, and it offers high
sensitivity in assessing the efficacy of treatment products. Notably, although the body
location is one of the most important factors to the skin microbiome (54, 55), applica-
tion of MiSH (which was generated based on all samples from the three cities) on the
Beijing samples of various body locations revealed that, in each of the six body
locations that include both moist (antecubital fossa and popliteal fossa) and dry (arm,
knee, neck, and shank) ones, MiSH can reliably distinguish their health status (Fig. S6d).

Moreover, for nonlesional skin sites in AD-active children, the MiSH model revealed
a distinct state of skin microbiota called suboptimal health, which is intermediate
between those of lesional sites and healthy children, yet more similar to the former, and
carries a level of Staphylococcus spp. higher than that in healthy hosts but lower than
in lesional sites. This state was converted to a healthier state on the MiSH scale after
topical medication. However, the degree of dysbiosis or its remediation does not
correlate with physical distance to the lesional site. Although initial evidence for the
alteration of microbiota on apparent healthy skin zones physically adjacent to the
lesional sites has emerged (59, 60), the extent to which the skin microbiota respond
across the whole body is not known. Our findings here support AD as a topical effect
but with an underpinning microbiota dysbiosis that extends across the body (61, 62),
and they underscore the dynamic interactions between global host immune response
and local skin microbiota (63). Therefore, MiSH can be used not only for AD severity
measurement but also for assessing the healthy state and the risk-prone state of skin
in AD-free children (whether this is applicable in adults is unknown, as AD skin
microbiome is affected by age [64]).

Furthermore, pretreatment MiSH classifies children with clinically indistinguishable
AD into two types with distinct disease severity and sensitivity to corticosteroid
therapy. These two types of patients feature distinct microbiota structures prior to
treatment and exhibit characteristic patterns of microbiota change during treatment.
Type I patients, with lower MiSH at baseline, carry a more disease-oriented microbiome
that features fewer genera yet much higher proportion of Staphylococcus spp., repre-
sent a more severe AD form, and tend to have a more prominent response of recovery
during treatment. In contrast, type II patients, with higher MiSH at baseline, carry a less
disease-oriented microbiome characterized by a lower level of Staphylococcus spp. yet
higher diversity of bacterial genera and represent a milder disease form of AD.
Interestingly, in Qingdao and Denver, the MiSH of all AD patients also exhibit a bimodal
distribution (Fig. S6e; our current data do not allow testing of whether such clustering
is correlated with treatment effect in these two cities). Accordingly, the two types
should be treated differently; for example, type I should be prioritized for treatment
with higher drug dosage, since it represents a more severe form of AD yet is more likely
to respond to treatment in terms of skin microbiota recovery. Consistent with a recent
study that suggests cross-modulation of the skin microbiome, skin surface microenvi-
ronment and immune system underlie susceptibility to AD in adults (42), our findings
here support a microbial basis for the heterogeneity of response to AD treatment and
for the recovery of skin health in children. Notably, two distinct clusters of skin
microbiome were discovered in the lesion samples from 51 adult psoriasis patients
from New York City (65), although whether their disease outcomes or treatment effects
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are different remains to be tested. Therefore, it seems possible that such microbiome-
defined cutaneotypes can be quite common in disease, and further characterization of
cutaneotypes within and across various kinds of skin inflammations might provide new
insights into disease diagnosis or treatment strategy.

At present, one limitation of MiSH is its inability to distinguish the various Staphy-
lococcus species due to the genus-level resolution of 16S rRNA amplicon-based se-
quencing in microbial identification. Recent reports suggested that different Staphylo-
coccus species can play distinct roles in AD development; for example, S. epidermidis
and Staphylococcus hominis, which predominantly reside on healthy human skin,
actually contribute to cutaneous homeostasis and health (8); in addition, selected
Staphylococcus strains can either promote cutaneous antimicrobial activity or trigger
inflammation in AD (7, 50). Thus, versions of MiSH that assess skin microbiota at the
species or the strain levels should be developed, via either long-read sequencing of 16S
rRNA amplicons or metagenome sequencing. Moreover, tools such as conditionally rare
taxa (CRT) (66) can be used to probe the scope and origin of such city-specific bacterial
taxa, as they offered 97.6% to �100% accuracy in distinguishing the three cities and a
level of performance in distinguishing the AD status that is equivalent to that with MiSH
(Materials and Methods).

On the other hand, as size of the treatment cohort here is relatively small, how
generally applicable the microbiome-defined heterogeneity in treatment response is
not yet clear, and its mechanism is unknown. Future efforts tackling these questions are
key to more precise AD therapies (67, 68). Despite these limitations, once the costs of
sequencing are reduced to an acceptable level, MiSH is expected to contribute, in
conjunction with SCORAD, for AD diagnosis and treatment in the clinical setting, where
the state of skin microbiota is also taken into consideration.

MATERIALS AND METHODS
Study design. From the city of Beijing, China (the Beijing cohort), we established a cohort of 28

children age 4 to 12 years who were suffering from mild to moderate AD, plus 30 age-equivalent and
sampling site-matched children with no personal or family history of AD and no history of chronic skin
or systemic diseases (Table S1). To explore the link between AD treatment and skin microbiota alteration,
an “AD-treatment cohort” was designed, in which AD-active children of the Beijing cohort underwent a
4-week-long treatment regimen of corticosteroid administration, with each child using one of the three
skin care products of BCP2 (ultramild body wash with lipids), B7U (mild synthetic bar) or ZPT (ultramild
body wash with lipids and zinc pyrithione).

In addition, a second cohort of age-matched children was recruited from Qingdao (the Qingdao
cohort), a coastal Chinese city at the West Pacific rim 650 kilometers southeast of Beijing. The Qingdao
cohort consists of 29 pediatric patients suffering from moderate AD and 30 healthy subjects, who were
screened using selection criteria that are identical to those for the Beijing cohort.

Furthermore, to test whether healthy and AD-active skin microbiota patterns held true at even
greater geographic distances, a third cohort we previously published for Denver, an inland city of North
America (the Denver cohort), was also included into the three-way, cross-city comparison here. The
cohort consists of 59 AD-active and 13 healthy children that were 4 to 12 years old (60). Similar to this
work, the Denver study employed MiSeq paired-end reads and the primer set of 27F/534R for profiling
bacterial 16S rRNA amplicons (Table S3). Moreover, to ensure data comparability, samples from the three
cities were computationally processed in an identical manner.

Exclusion criteria for all subjects include having a fever of �38.5°C, having bathed or showered after
midnight before the day of sampling, using creams/lotions at the sites 24 h prior to sampling, having
received oral antibiotics, a bleach bath, or topical prescription medications (including but not limited to
Elidel, Protopic, topical corticosteroids, or topical antibiotics; more details below) 7 days prior to
sampling, having taken systemic immunosuppressive drugs (including cyclosporine or oral steroids), and
having experienced total body phototherapy (e.g., UV light B, psoralen plus UV light A, and tanning beds)
within 20 days prior to sampling.

The study was conducted and all samples were collected with approval from the Procter & Gamble
Beijing Innovation Center institutional review board and in accordance with the World Medical Associ-
ation Declaration of Helsinki (1996 amendment). ICH Guidelines for Good Clinical Practice (GCPs) were
followed, and voluntary informed consent was provided with the approval of the Research Ethics Board
of P&G. Mothers who agreed to have their children participate in this study signed an informed consent
form, and teenagers who agreed to participate signed an assent form.

Severity scoring of atopic dermatitis. Only subjects in the AD group would undergo dermatologic
evaluations throughout the study. Subjects acclimated for a minimum of 30 minutes in an environmen-
tally controlled room (maintained at 70°F and 30 to 45% relative humidity) prior to undergoing a
dermatologic evaluation from the study dermatologist at the following time points. At the baseline and
week 4 visits, the dermatologist would assess the subject’s atopic dermatitis lesional/measurement sites
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on their arms and/or legs only for the intensity of objective attributes. This evaluation along with
the extent of body surface involvement and subjective symptoms (pruritus and sleep loss) rated by the
subject was used to determine the SCORAD value (22). The SCORAD value is calculated using the
following formula:

SCORAD �
Extent

5
�

7 � Intensity

2
� Subjective signs

where (i) “Extent” is the extent of body area affected; to determine the extent of affected area as a
percentage of the whole body, the rule of nine is used. (ii) “Intensity” is the intensity grading scale; the
marked lesional sites are graded for the intensity of each of the following signs: dryness, erythema,
excoriation, weeping, induration, and lichenification. (iii) “Subjective signs” is the subjective symptoms,
where itch and sleeplessness are each scored by the subjects or parent/guardian using a 10-cm visual
analogue scale where 0 is no itch (or no sleeplessness) and 10 is severe itch (or sleeplessness).

Skin microbiome sampling strategy. In each of the three cohorts, microbiota from skin zones
corresponding to the AD-active sites of patients were sampled in matched healthy individuals. Addi-
tionally, for each AD-active child, skin microbiota from both lesional and nonlesional sites was collected.
For the Beijing and Denver cohorts, nonlesional sites were taken from nonlesional skin site of a
symmetric location on the body or the surrounding skin of the lesional sites, and for the Qingdao cohort,
the nonlesional sites also included another two sites on the forearm and shank surface (Table S1).

At the inclusion visit and at the end of study, the same investigating dermatologist evaluated the
children via the SCORAD (SCORing Atopic Dermatitis) index, which is a clinical tool for assessing AD
severity (22). Only individuals with a SCORAD index between 25 and 40 at baseline were included as
patients in the study. Skin microbiota samples of lesional skin were collected using aseptic techniques
under sterile airflow generated by a portable hood. Similarly, samples were also collected from the
unaffected symmetric and remote body skin area.

Sampling procedures were as follows. (i) Identify the designated sampling site being used for swab
collection (�10 cm2) and then use a ruler/template to mark an 8-cm2 area. (ii) Identify the designated
nonlesion site being used for swab collection. (iii) Label all collection tubes. (iv) With gloved hands,
remove DNA swab from packaging with care taken not to touch any surface. (v) Dip the swab tip into
NaCl plus Tween 20 solution, and press the swab to the inside of the tube to remove any excess liquid.
(vi) Apply the swab in both horizontal and vertical directions (totally 50 times, for about 30 to �35 s) for
sampling the marked area. (vii) Break the DNA extraction swab and put into the appropriately labeled
empty 2-ml tube and cap. (viii) Store the tube in an ice box until samples can be stored at – 80°C. Finally,
repeat steps iv through viii on a nonlesion site for each site.

Administration of medication for AD treatment. In the city of Beijing, for the 28 AD patients who
were sampled from both lesional skin sites and nonlesional sites at baseline and then again after 4 weeks
of treatment via corticosteroids and bath products, only 24 of the patients were evaluated posttreatment
because four individuals failed to show up for the last visit. The treatment was via corticosteroid (0.1%
hydrocortisone butyrate ointment), which was used on every patient based on doctor’s advice. In
addition, one of three body wash products was used in bath, BCP2, ZPT, or B7U. Treatment assignment
was randomized to subject to balance for baseline AD severity, age, biological sex, and body location if
possible. Due to the complexity and smaller sample sizes, the balancing was prioritized in order of
importance, with baseline disease severity, age, biological sex, and then body location (most of the
subjects had lesions on arms). Patients were instructed to apply the bath product once daily in the
evening to their entire body. Patients were also asked not to change their hygiene practices or to apply
any other bath products during the study.

Specifically, this is a 7-week, randomized, double-blind, parallel group in-home-use study among
male and female subjects who are 4 to 12 years of age (inclusive) and having mild to moderate active
atopic dermatitis (AD), where three products were tested. Written informed consents were obtained from
the parent/legal guardian of each subject and verbal assent from each subject according to ICH GCPs
prior to screening based on the inclusion/exclusion criteria listed below. Qualified subjects (including the
healthy control group) completed a habits and practices questionnaire prior to starting the precondi-
tioning phase. They completed a 7-day preconditioning phase where they used a provided bar soap for
all body cleansing purposes and refrained from using any other personal cleansing products as well as
any moisturizers, powders, topical medications, oils, or creams for the duration of the preconditioning
phase. Subjects also refrained from using any body cleansing implements (e.g., wash cloths and body
puffs) during the preconditioning phase of the study. Subjects were permitted to use their normal facial
and hair care cleansing products, but they must refrain from using any products containing antibacterial
ingredients (i.e., acne products, salicylic acid-containing facial care products, and antidandruff shampoos)
during the preconditioning phase.

Ingredients of the three body wash products tested. The ingredients for B7U (regular synthesized
bar soap) were sodium lauroyl isethionate, paraffin, sodium cocoglyceryl ether sulfonate, glycerin, water,
talc, magnesium stearate, stearic acid, sodium isethionate, magnesium cocoate, sodium stearate, coconut
acid, sodium chloride, sodium cocoate, fragrance/parfum, magnesium laurate, lauric acid, and titanium
dioxide.

The ingredients for BCP2 (ultramild moisturizing body wash) were water, petrolatum, sodium
trideceth sulfate, sodium chloride, cocamidopropyl betaine, trideceth-3, guar hydroxypropyltrimonium
chloride, sodium benzoate, xanthan gum, glyceryl oleate, fragrance, disodium EDTA, citric acid, sodium
hydroxide, acrylates/c10-30 alkyl acrylate cross-polymer, Butyrospermum parkii (shea) butter, methyl-
chloroisothiazolinone, and methylisothiazolinone.
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The ingredients for ZPT (0.5% zinc pyrithione containing ultramild moisturizing body wash) were
water, petrolatum, sodium trideceth sulfate, sodium chloride, cocamidopropyl betaine, trideceth-3, zpt,
guar hydroxypropyltrimonium chloride, sodium benzoate, xanthan gum, glyceryl oleate, fragrance, citric
acid, sodium hydroxide, acrylates/c10-30 alkyl acrylate cross-polymer, Butyrospermum parkii (shea) butter,
methylchloroisothiazolinone, and methylisothiazolinone.

DNA extraction, PCR amplification, and sequencing of skin microbiome. Genomic DNA was
extracted from each swab using the Qiagen tissue and blood DNA isolation kit, following the manufac-
turer’s instructions, with slight modifications (69). PCR amplification of the V1-V3 region of 16S rRNA
genes was performed using the primer set (27F/534R) and followed the protocol developed by the
Human Microbiome Project. PCR amplification reaction mixtures in triplicate for each sample were
pooled at approximately equal amounts and sequenced. For Qingdao and Denver, Illumina MiSeq was
employed as the sequencing platform. For Beijing cohort, both MiSeq and Roche 454 FLX were used for
sequencing each of the samples. Roche 454 sequencing data were used in building the RF model. MiSeq
data were used to calculate the effect size of factors, so as to avoid the bias due to difference in
sequencing platforms. For both healthy and lesional samples, the effect size of sequencing platform is
smaller than that of city (Fig. S7). In addition, no positive PCR results were found in the negative controls
(i.e., clean swabs), suggesting that no background bacterial contamination can be detected.

For quantitative PCR (qPCR) that measures the relative abundance between S. aureus and S.
epidermidis, the primer pair is 5=-TAGTTGTAGTTTCAAGTCTAAGTAGCTCAGC and 3=-ATTTAACCGTATCAC
CATCAATCG for S. aureus and 5=-GGCAAATTTGTGGGTCAAGA and 3=-TGGCTAATGGTTTGTCACCA) for S.
epidermidis (70). Gene copy number was calculated based on the standard curve of each primer system
using the LightCycler 480 software 1.5 (Roche). Relative abundance is defined as gene copy number of
each biomarker divided by 16S rRNA gene copy number of whole bacteria. Each qPCR reaction was
performed in triplicate.

Sequence analyses of skin microbiomes. All sequences were preprocessed following the standard
QIIME (v.1.9) pipeline. A total of 643,038 high-quality partial 16S rRNA sequences were obtained from the
275 samples collected, with an average of 8,669 sequences per sample. Downstream bioinformatics
analysis was performed using Parallel-Meta 3 (71), a software package for comprehensive taxonomical
and functional comparison of microbial communities. Clustering of OTUs was conducted at the 97%
similarity level using a preclustered version of the GreenGenes database (72). To perform taxonomic
classifications at the species level for staphylococcal species, staphylococcal sequences were determined
to the species level by alignment to a curated collection of staphylococcal reference sequences from
complete genome sequences and type strains. Finally, each sequence was assigned a taxonomic label at
the species level (such as S. aureus, S. epidermidis, Staphylococcus capitis, and S. hominis) based on the
consensus call of sequence alignments with the lowest edit distance between a query and reference. The
� diversity was calculated by Shannon index and Chao1, and the distance between each pairs of skin
microbiota was computed based on the weighted Meta-Storms algorithm (73). For a certain genus to be
considered “present,” it has to be of at least 0.01% abundance in at least 50% of the hosts within a city.
Those genera with �0.01% abundance were merged together and referred to as “other genera”; on the
other hand, those genera with �50% prevalence among the hosts within a city were not considered
further (74). As for �-diversity, Meta-Storms distance (which is integrated in PM3 [71]) was used to
quantify the differences between any two samples. The Meta-Storms scoring function is a phylogeny-
based algorithm that quantitatively evaluates the biological similarity/distance between the microbiome
samples on the OTU level (73). In parallel with above efforts, the contribution of conditionally rate taxa
(CRT) to discrimination of originated city or AD status was quantified using CRT detection scripts (v1.0)
with default parameters (75).

The other statistical analysis, e.g., Kruskal-Wallis test, Wilcoxon rank sum test, and permutational
multivariate analysis of variance (PERMANOVA), were performed via the R scripts integrated in PM3. The
scripts take advantage of using standard functions of kruskal.test and wilcox.test, as well as the adonis
function in the R package of vegan. The rarefaction analysis and Shannon diversity index were used to
estimate the richness and diversity of species. The relative abundance of differential taxonomic groups
were visualized by “pheatmap” in the “pheatmap” R package. Differences in the relative abundance of
taxonomic groups at the genus level between samples were evaluated with Wilcoxon rank sum test.
False-discovery rate (FDR) values were estimated using the Benjamini-Hochberg method to control for
multiple testing. P values less than 0.05 were considered statistically significant.

Building the diagnostic models of atopic dermatitis. The N top-ranking AD-discriminatory taxa
that led to reasonably good fit were identified based on “rfcv” function in the randomForest pack-
age (https://cran.r-project.org/web/packages/randomForest/index.html). Random Forests models were
trained to identify disease status in the training set which included samples from the ‘‘healthy’’ and the
‘‘lesional’’ groups using the taxonomy profiles. The results were evaluated with a 10-fold cross-validation
approach, and model performance was evaluated by ROC. Default parameters of the R implementation
of algorithm were applied (ntree � 5,000, using default mtry of p/3, where p is the number of input taxa).
To construct and optimize the MiSH, we tested how taxonomical levels influence the performance of RF
model. Using the profiles of genus, the performance of models based on microbiota was further
evaluated with a 10-fold cross-validation approach. In 10-fold cross-validation, the original samples were
randomly partitioned into 10 equal-sized subsamples. Of the 10 subsamples, a single subsample is
retained as the validation data for testing the model, and the remaining nine subsamples were used as
training data. The cross-validation process was then repeated for 10 times, and the average of probability
was reported as the result. Based on optimization that selects the taxonomy level that maximizes model
performance, Random Forest models were trained to identify disease status using the taxonomy profiles
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on the genus level. A receiver operating characteristic (ROC) curve was then used to illustrate the
diagnostic performance of RF model (https://cran.r-project.org/web/packages/pROC/index.html). In the
ROC plots, x axis represents true-positive rate (TPR, or sensitivity), y axis stands for false-positive rate (FPR,
or specificity), and area under the ROC curve (AUC) was calculated to summarize performance of the RF
model.

Data availability. The sequence data in this study have been submitted to the Sequence Read
Archive (https://www.ncbi.nlm.nih.gov/sra) and can be accessed through the BioProject numbers
PRJNA445780 and PRJNA268694.
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