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Abstract: Engineering of the skeletal muscles has attracted attention for the restoration of
damaged muscles from myopathy, injury, and extraction of malignant tumors. Reconstructing a
three-dimensional muscle using living cells could be a promising approach. However, the regenerated
tissue exhibits a weak construction force due to the insufficient tissue maturation. The purpose of this
study is to establish the reconstruction system for the skeletal muscle. We used a cell-laden core-shell
hydrogel microfiber as a three-dimensional culture to control the cellular orientation. Moreover, to
mature the muscle tissue in the microfiber, we also developed a custom-made culture device for
imposing cyclic stretch stimulation using a motorized stage and the fiber-grab system. As a result,
the directions of the myotubes were oriented and the mature myotubes could be formed by cyclic
stretch stimulation.
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1. Introduction

Muscle tissue consists of an ordered muscle fiber array, which is tightly bundled, long, and
cylindrical multinucleated myotube cells. Muscles play an important role in daily human activities
including metabolic regulation of internal organs. Myopathy, injury, and extraction of malignant
tumors are some of the common issues to restore muscle tissue. Therefore, the tissue engineering
approach for muscle regeneration is beneficial. There are several approaches to reconstruct the
three-dimensional muscle tissue: Cell-seeded collagen gel [1], cell-based sheets [2], cell aggregates [3],
etc. In addition, aligned electrospun nanofibers are also used for scaffold materials, to promote cellular
alignment [4,5]. These approaches also have the potential for in vitro drug screening and disease
modeling [6–9]. Muscle tissue can be regenerated by these approaches. However, the maturation of
the engineered tissue is still far from the “native” muscle [10].

In this study, we control the orientation of myoblast-like cells and reconstruct the maturated
muscle tissues by mechanical stimuli. The effect of mechanical stimulation on cell homeostasis and
development, which are critical factors in tissue maintenance, repair, and regeneration, has drawn
a lot of attention. As mechanical stimuli to promote tissue regeneration, the stimuli mimicking
in vivo physiological condition was imposed on living cells: Shear stress or stretch for blood vessel
remodeling [11,12], stretch for the bone [13] and ligament [14] remodeling, and stretch or electric
stimuli [15,16] for muscle remodeling. For myogenesis, the mechanical and chemical stimulations
promote the myogenesis of myoblasts or myoblast-like cells to become multinucleated myotube
cells [17]. It has been reported that mechanical stretch can affect the remodeling of the cytoskeleton
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in myocytes [18,19]. Considering the results of previous studies, mechanical stretch was used as
the stimuli in this study. Nguyen et al. already developed the cell culture device to impose cyclic
stimuli on a cell-seeded sheet-shaped scaffold and reported the effect of mechanical stimuli on fibrous
tissue reconstruction [20]. However, their research was performed regarding the fibroblast culture
on the sheet-shaped scaffold, which was not suitable to simulate muscle tissue. Skeletal muscle has
the possibility to restore itself after minor injury. However, promotion of myogenesis by mechanical
stimuli also benefits cardiac muscle tissue engineering and has drawn a lot of attention in severe
cardiac disease cases.

To mimic the “native” muscle structure, we focused on cell fiber technology [21]. This technology
encapsulates living cells into the core region of a hydrogel core-shell microfiber, allowing the cells
to grow, migrate, promote cell-cell interaction, and form a fiber-shaped tissue called “cell fiber”.
Using this cell fiber technology based on the hydrogel tube structure, gases (O2 and CO2) and nutrients
are allowed to penetrate into the core region containing cells [22], leading to an efficient cell expansion
with high viability.

Here, we develop a custom-made culture device for “cell fiber” to impose mechanical stretch
cyclically on the cell fiber using a motorized stage and the fiber-grab system. In addition, we also
evaluate the effect of the cyclic stretch on in vitro skeletal muscle regeneration.

2. Materials and Methods

2.1. Cells

Mature murine myogenic cell line C2C12 cells were purchased from Riken Cell Bank (Tsukuba,
Japan). The culture medium was Dulbecco’s modified essential medium (DMEM, Sigma, St. Louis,
MO, USA) containing 10% fetal bovine serum (FBS), and 1% antibiotic/antimycotic solution (A/A,
Thermo Fisher Scientific, Waltham, MA, USA). The cells were maintained in a 5% CO2 atmosphere at
37 ◦C in a CO2 incubator and used for experiments before they reached 5 passages.

2.2. Formation of Core-Shell Hydrogel Microfibers

According to previous studies, C2C12 cells were cultured in collagen gel [23,24]. To encapsulate
C2C12 cells suspended in the collagen gel in the core region of alginate fibers, the double-coaxial
laminar-flow microfluidic device was fabricated by assembling pulled glass capillary tubes, rectangular
glass tubes, and custom-made three-way connectors, as previously described (Figure 1) [16].
Three solutions were required for core-shell hydrogel microfiber formation: (1) core stream: A
solution of C2C12 cells suspended in 4.0 mg/mL neutralized type I collagen (AteloCell®, IC-50,
KOKEN, Tokyo, Japan) at 1.8 × 108 cells/mL, (2) shell stream: A solution of 1.5 wt % sodium alginate
(80–120 cP, Wako Pure Chemical Industries, Osaka, Japan), and (3) sheath stream: A solution of
100 mM calcium chloride (CaCl2, Kanto Chemicals, Tokyo, Japan) with 3% w/w sucrose (Nacalai
Tesque, Kyoto, Japan). The flow rates of the core, shell, and sheath streams were 25µL/min, 120µL/min,
and 3.6 mL/min, respectively. The fabricated fibers were finally cultured in the culture medium for
24 h to induce the collagen gelation and for cell adhesion.

The differentiation protocol for C2C12 cells were already standardized. However, that for the
three-dimensional culture of C2C12 cells were not fully established. To validate the culture medium
for three-dimensional culture of C2C12 cells, three types of medium, DMEM with 2% horse serum
(HS) [25], 10% HS, and 10% FBS, were tested for preliminary study. As a result, the cells in fibers
cultured in DMEM with 2% and 10% HS tended to decrease whereas the cells cultured in DMEM with
10% FBS tended to increase in a 6-day culture (Figure 2). Based on this data, DMEM with 10% FBS was
determined as the culture medium for C2C12-cell fibers.
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Figure 1. Schematic for fabrication of core-shell hydrogel microfibers. The C2C12 cell-laden 
core-shell hydrogel microfiber was formed by the double co-axial laminar flow. 

 
(a) 

 
(b) 

Figure 2. Cell-laden core-shell hydrogel microfiber culture under 2%, 7%, and 10% horse 
serum (HS) and 10% fetal bovine serum (FBS) conditions. (a) Phase-contrast images and (b) 
the change in the diameter of cell-laden core along with culture time. Scale bar: 200 μm. 

2.3. Three-Dimensional Cell Culture with Cyclic Stretch 

To impose cyclic stretch on the cell fibers, a custom-made stretching device was developed. The 
device was composed of a motorized stage and a culture chamber containing two guide rods to hold 
the cell fiber (Figure 3a). The cell fibers were wrapped around two parallel rods to stretch the cell 
fibers and the distance of the rods was changed cyclically using a computer controlled motorized 
stage (Figure 3b). Briefly, the guide rods were set to be parallel (10 mm apart) using a supporting 
block and the fibers were wrapped around the rods. After the fiber wrapping, 4.0 mg/mL type I 
collagen solution was dropped on the connecting part of the fibers and the guide rods to ensure the 
adhesion. Following collagen gelation, the rods were removed and connected to the custom-made 
stretching device (Figure 3c). The chamber was then filled with 5 mL culture medium to immerse the 
fibers in the medium. The stretching device was set in a CO2 incubator to culture the fibers in a 5% 
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Figure 1. Schematic for fabrication of core-shell hydrogel microfibers. The C2C12 cell-laden core-shell
hydrogel microfiber was formed by the double co-axial laminar flow.
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Figure 2. Cell-laden core-shell hydrogel microfiber culture under 2%, 7%, and 10% horse serum (HS)
and 10% fetal bovine serum (FBS) conditions. (a) Phase-contrast images and (b) the change in the
diameter of cell-laden core along with culture time. Scale bar: 200 µm.

2.3. Three-Dimensional Cell Culture with Cyclic Stretch

To impose cyclic stretch on the cell fibers, a custom-made stretching device was developed.
The device was composed of a motorized stage and a culture chamber containing two guide rods to
hold the cell fiber (Figure 3a). The cell fibers were wrapped around two parallel rods to stretch the
cell fibers and the distance of the rods was changed cyclically using a computer controlled motorized
stage (Figure 3b). Briefly, the guide rods were set to be parallel (10 mm apart) using a supporting block
and the fibers were wrapped around the rods. After the fiber wrapping, 4.0 mg/mL type I collagen
solution was dropped on the connecting part of the fibers and the guide rods to ensure the adhesion.
Following collagen gelation, the rods were removed and connected to the custom-made stretching
device (Figure 3c). The chamber was then filled with 5 mL culture medium to immerse the fibers
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in the medium. The stretching device was set in a CO2 incubator to culture the fibers in a 5% CO2

atmosphere at 37 ◦C. After 2-day static culture, the cell fibers were subjected to 3% tensile strain at 1
Hz for 4 h/day for 2 days. The tensile strain and frequency were decided according to previous studies
to avoid the destruction of hydrogel fibers [26]. For control specimens, the cell fibers were cultured
under same condition except for the cyclic stretch.
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Figure 3. Custom-made cell culture device for “cell fiber” to impose the cyclic stretch. (a) Schematic of
the culture device, (b) photograph of the gripper for hydrogel fibers, and (c) procedure to grab the
fibers using the collagen gel and two stainless rods.

2.4. Microscopy and Image-Based Analysis

To evaluate the myogenesis of C2C12 cells, phase-contrast images were acquired after the 4-day
culture (2-day static culture following a 2-day cyclically stretch stimulation). The cells in hydrogel fibers
were also stained with calcein-AM to evaluate the morphology of live cells, with rhodamine-phalloidin
to evaluate the cytoskeleton. The calcein-AM stains cytoplasm of live cells and the rhodamine
phalloidin stains actin filaments. For the calcein-AM staining, the fibers were firstly washed with
a serum-free medium two times and incubated with 0.1 mg/mL calcein-AM in DMEM for 30 min.
For the rhodamine-phalloidin staining, the cells in the fiber were fixed with 4% paraformaldehyde for
10 min following permeabilization with 0.1% Triton X-100 in phosphate buffered saline (PBS) for 5 min
at room temperature. After cell fixation, the cell fibers were incubated with 0.7% rhodamine-phalloidin
(PHDR1, Cytoskeleton) for 30 min at 37 ◦C. After fluorescent staining, the cells were observed by
a fluorescent microscope (CKX41, Olympus, Tokyo, Japan) equipped with a CCD camera (DP73,
Olympus) and a confocal scanning microscope (FV10i-DOC, Olympus).

To evaluate the myogenesis of C2C12 cells from fluorescent images, the image-based analysis was
performed using Image J software (NIH). The fluorescent images were preprocessed using a smooth
filter and a sharpen filter with 3 × 3 neighborhood. After the preprocessing, the images were converted
to 8-bit grayscale images and binarized using Otsu’s method. Finally, the cell regions in the binary
images were fitted to ellipses and the aspect ratio of each ellipse was measured. In this study, cultured
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C2C12 cells were divided into three groups: (1) undifferentiated cells (aspect ratio < 2.0), (2) immature
myotube-like cells (2.0 ≤ aspect ratio < 3.0), and (3) mature myotube-like cells (aspect ratio ≥ 3.0).

3. Results and Discussion

3.1. Difference in Tissue Remodeling in the Cell Fibers and in the Two-Dimensional Culture

To evaluate the effect of the three-dimensional culture condition on myogenesis of C2C12 cells, the
cytoskeletons of both the monolayer culture and the cell fiber were evaluated (Figure 4). The direction
of the cytoskeleton in the monolayer culture was random, whereas the cytoskeleton in the cell fibers
aligned to the cylindrical axis of the fiber. It was suggested that the C2C12 cells reorganized their
structure of cytoskeleton to align the wall of the gel fiber. Many studies reported that the direction of
the cells aligned to the groove of the culture substrate to reorganize the cytoskeleton of the cell [27–30].
The result of our study was consistent with these studies.
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Figure 4. Fluorescent images of rhodamine-phalloidine/DAPI counterstaining to visualize the actin
cytoskeleton of the C2C12 cells. (a) Monolayer culture and (b) three-dimensional culture using a
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3.2. Effect of Cyclic Stretch on Tissue-Reconstruction in the Cell Fibers

The diameter of the C2C12-cell region in the cell fibers subjected to the cyclic stretch decreased as
compared to that in the control group (Figure 5a). Using calcein-AM staining, almost all the cells were
positively stained in both the cyclic-stretch and the control group (Figure 5b). This result indicates that
the cell viability was maintained in our custom-made cell culture device. The cells in the cyclic-stretch
group elongated themselves and aligned to the axis of the fiber. The cells in the control group, on the
other hand, were uniformly distributed and did not elongate themselves. As shown in Figure 6, the
actin cytoskeleton of the cells in the cyclic-stretch group was concentrated and also aligned to the axis
of the cell fiber as compared to the ones in the control group. In this study, we assessed myogenesis of
the C2C12 cells based on the aspect ratio of each cell (Figure 7). Cyclic stretch promoted the myogenesis
of the C2C12 cells and increased the ratio of the mature myotube-like cells as compared to the ones
in the control group. Approximately 70% of the cells were differentiated in the cyclic-stretch group
whereas approximately 50% of the cells were differentiated in the control group. Moreover, the ratio of
the mature myotube-like cells in the cyclic stretch group was over two times larger than that of the
cells in the control group.
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In order to reconstruct the skeletal muscle tissue for the tissue engineering therapy, it is important
to culture the cells three-dimensionally with physical stimuli. For in vitro skeletal muscle regeneration,
various physical factors are reported to align the cells and progress tissue maturation [15,16,27–31].
Among them, mechanical stress-like tension or electrical stimuli have been reported to affect the cell
alignment and maturation in vitro [15,16]. For myoblasts or myoblast-like cells, the stretch could
enhance the myosin expression to promote myogenesis [26]. Consistent with these studies, it was
considered that the cyclic stretch promoted the myogenesis of the C2C12 cells and the maturation
of the muscle fibers in cell-laden hydrogel fibers. Especially, cells in the skeletal muscles, also in
addition to the cardiac muscles, are constantly subjected to cyclic mechanical stretch to generate highly
differentiated and maturated muscle fibers. Therefore, mechanical stimuli could be an important factor
for tissue regeneration of the skeletal and the cardiac muscles.
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In addition, for the reconstruction of the three-dimensional muscle tissue, it is important to
maintain cell viability in the tissue over the culture time. In this study, the C2C12 cells were contained
in the core-shell hydrogel fiber, which is suitable for three-dimensional tissue reconstruction [21].
Moreover, the hydrogel fiber structure could induce exchange of O2, CO2, and nutrients [32]. Therefore,
our skeletal muscle reconstruction system using the cell-laden hydrogel fiber and mechanical stretching
stimuli is anticipated to be applicable for in vitro tissue regeneration and clinical applications.

4. Conclusions

This study established an in vitro muscle regeneration system to use a cell-laden hydrogel fiber
culture and to develop a custom-made culture device to impose the cyclic stretch stimulation on
the hydrogel fiber. From the results, it was revealed that the core-shell hydrogel fiber structure
could simulate “native” muscle fibrous structure to maintain the cell and muscle fiber alignment.
The mechanical stretch could also promote myogenesis and maturation of muscle fibers in the cell-laden
hydrogel fibers. In conclusion, our three-dimensional muscle cell culture system with mechanical
stimuli could be a promising approach for tissue engineering therapy and its clinical applications.
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