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Objectives   Rotating shift work is associated with adverse outcomes due to circadian misalignment, sleep cur-
tailment, work-family conflicts, and other factors. We tested a bright light countermeasure to enhance circadian 
adaptation on a counterclockwise rotation schedule.
Methods   Twenty-nine adults (aged 20–40 years; 15 women) participated in a 4-week laboratory simulation with 
weekly counterclockwise transitions from day, to night, to evening, to day shifts. Each week consisted of five 
8-hour workdays including psychomotor vigilance tests, two days off, designated 8-hour sleep episodes every 
day, and an assessment of circadian melatonin secretion. Participants were randomized to a treatment group 
(N=14), receiving intermittent bright light during work designed to facilitate circadian adaptation, or a control 
group (N=15) working in indoor light. Adaptation was measured by how much of the melatonin secretion episode 
overlapped with scheduled sleep timing.
Results   On the last night shift, there was a greater overlap between melatonin secretion and scheduled sleep 
time in the treatment group [mean 4.90, standard deviation (SD) 2.8 hours] compared to the control group (2.62, 
SD 2.8 hours; P=0.002), with night shift adaptation strongly influenced by baseline melatonin timing (r2= -0.71, 
P=0.01). While the control group exhibited cognitive deficits on the last night shift, the treatment group’s cogni-
tive deficits on the last night and evening shifts were minimized.
Conclusions   In this laboratory setting, intermittent bright light during work hours enhanced adaptation to night 
work and subsequent readaptation to evening and day work. Light regimens scheduled to shift circadian timing 
should be tested in actual shift workers on counterclockwise schedules as a workplace intervention.
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Shift work has become increasingly common as our 24/7 
global society requires more workers to do their jobs at 
irregular hours. According to the National Health Inter-
view Survey (NHIS), in 2010 approximately 28.7% of 
the American workforce was engaged in work outside 
the standard 09:00–17:00 hours day shift (1). Shift 
workers are exposed to atypical or irregular sleep-wake 
schedules, which can lead to misalignment between the 
endogenous circadian timing system and the sleep–wake 
cycle. In the short term, this misalignment typically 
results in poor sleep, increased sleepiness, and perfor-
mance decrements (2, 3). When prolonged, shift work 

is associated with increased risk for cardiovascular 
disease, metabolic syndrome, depression, certain types 
of cancer, and other health problems (3).

A large variety of round-the-clock work schedules 
exist, differing by speed and direction of rotation, length 
of shifts, number of consecutive shifts, and number of 
shifts per week (4). The magnitude of adverse outcomes 
varies with the characteristics of the shift work schedule. 
Counterclockwise shift work schedules (night to evening 
to day) are associated with worse sleep, lower alertness, 
and more negative health issues compared to clockwise 
(day to evening to night) rotations (5–7). While uncom-

This work is licensed under a Creative Commons Attribution 
4.0 International License.



 Scand J Work Environ Health 2021, vol 47, no 5 357

Lammers-van der Holst et al

mon in Europe, counterclockwise shift rotation sched-
ules are sometimes used in the US (8).

Non-pharmacologic strategies to improve adaptation 
to shift work based on sleep and circadian principles 
typically manipulate light exposure patterns and/or 
sleep timing (9–11). Exposure to light and darkness is 
the main synchronizer of the circadian timing system, 
and the use of appropriately timed bright light exposure 
is an effective approach to enhance circadian adaptation 
to night shifts (12, 13).

To our knowledge, no study yet has investigated 
the efficacy of a bright light treatment throughout a 
complete counterclockwise shift rotation cycle. On 
such a schedule, not only is the circadian adaptation 
to night shifts crucial, but equally important is the re-
adaptation back to evening and day shifts. Therefore, 
this laboratory simulation study, carried out between 
1995–1998 but not previously reported, aimed to test the 
hypothesis that a bright light treatment schedule, based 
on the model of Kronauer and colleagues (14), could 
rapidly shift circadian rhythms to a night shift schedule 
as well as readapt them to a day-active schedule dur-
ing subsequent evening and day shifts. We also tested 
whether greater circadian adaptation was associated 
with attenuated performance deficits, determined by 
performance on a sustained attention task at the end of 
each shift rotation.

Methods

Participants

A total of 29 healthy non-shift working adults, who 
had a mean age of 27.7 [standard deviation (SD) 6.3] 
years, (15 women, 14 men) participated in the study. 
Participants were randomized to the treatment or control 
group by sex. Fourteen participants (7 women; 7 men) 
were randomized to receive bright light treatment during 
work episodes, and 15 participants (8 women; 7 men) 
were randomized to a control group who were exposed 
to ordinary levels of room light during work episodes.

Participants were recruited from the community 
using advertisements in local newspapers and flyers 
posted on bulletin boards at local colleges and universi-
ties. Prior to enrollment, participants were screened, 
including a physical examination, clinical history, chest 
radiograph, electrocardiogram, clinical biochemical 
screening tests of blood and urine, and given either a 
standardized psychological questionnaire (MMPI) or a 
structured interview with a clinical psychologist (15). 
Exclusion criteria included a history of or current signifi-
cant medical, psychiatric or sleep disorders; history of 
drug dependency; history of night work; recent (within 

3 months) travel across >2 time zones; use of prescrip-
tion medication. Participants were asked to refrain from 
using nicotine-containing products, alcohol, caffeine, 
and all medications for the duration of the study. Each 
participant had an informed consent meeting and gave 
written consent prior to beginning the study, which was 
approved by the Human Research Committee of Partners 
Health Care and was in accordance with the Helsinki 
Declaration.

Study protocol

The 4-week protocol simulated a counterclockwise 
weekly shift rotation schedule of five 8-hour work days 
followed by two days off, beginning with day shifts 
(07:00–15:00 hours), night shifts (23:00–07:00 hours), 
evening shifts (15:00–23:00 hours), and ending with day 
shifts (see figure 1). During the 8-hour work episodes 
in the laboratory, participants remained in study rooms 
in the Environmental Scheduling Facility at Brigham 
and Women’s Hospital where they performed four itera-
tions (with rest breaks) of a 1.5-hour computer-based 
performance battery. After the work episodes, partici-
pants left the laboratory. Participants were instructed to 
adhere to an 8-hour sleep schedule at home, with sleep 
times specified for each shift (for day shifts, sleep was 
scheduled from 22:00–06:00 hours, for night shifts from 
08:00 to 16:00 hours, for evening shifts from 01:00 to 
09:00 hours, and for days off from 01:00 to 09:00 hours). 
Compliance with the at-home sleep schedule was veri-
fied by sleep diaries and wrist activity.

At the end of each work week during the transition 
from the 4th to the 5th work episode, a 24–32 hour con-
stant posture (CP) regimen took place in the laboratory. 
After the CP, the participants left the laboratory and had 
two days off before their next shift type started.

The studies were carried out between 1995 and 1998 
but have not been previously reported. The Environmen-
tal Scheduling Facility where the studies took place was 
decommissioned and no longer exists.

Light exposure

Light was administered from ceiling-mounted fixtures 
containing 4-foot cool white fluorescent lamps (North 
American Philips Lighting Corp, Bloomfield, NJ). Light 
levels were taken in the direction the participant was 
facing while sitting at the computer desk where they 
spent most of their shift. In the initial week of day shifts, 
all participants were exposed to indoor light during 
work episodes, which was approximately 103 lux in 
the direction of gaze when sitting at the desk. Control 
participants worked all shifts in indoor light, whereas the 
treatment group was exposed to intermittent bright light 
on the night, evening and day shifts. As indicated in fig-
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ure 1, intermittent bright light levels of ~8,000, ~2,500 
and ~1,250 lux were scheduled based on a mathemati-
cal model of the effect of light on the human circadian 
pacemaker, and consisted of 30 minutes of indoor light 
alternating with 30 minutes of bright light to initiate a 
phase delay during the night shifts and a phase advance 
on the evening and day shifts (14). Details of the timing 
and intensities of light exposures for the treatment group 
can be found in the supplementary material (www.
sjweh.fi/show_abstract.php?abstract_id=3953).

During the CP, all participants were exposed to 
30–60 minutes of ~2500 lux light before and after their 
work shifts to mimic natural light exposure while com-
muting during daytime hours. For CP on day shifts, 
these exposures occurred at 06:00 and 15:00 hours; for 
night shifts at 07:30 and 16:00 hours; and for evening 
shifts at 09:00 and 15:00 hours. These are all times at 
which daylight would be present outdoors in greater 
Boston during most of the year. In addition, during 
the initial part of the evening shift CP, daytime light 
exposure from running errands or exercising outdoors 
was mimicked in the laboratory by presenting 1250 lux 
and 2500 lux exposures between 09:30 and 15:00 hours. 
See figure 1 and Supplement 1. These light “commute 
time” exposures were not part of the treatment plan 
produced by the model predictions, but were added to 
test whether the bright light treatment could overcome 
light exposure during commute times, which is known 
to prevent adaptation.

Constant posture circadian phase assessment

CP were performed at the end of each shift rotation to 
assess the timing of the circadian rhythm of melatonin 
secretion relative to the current work and sleep schedule 
(16). Throughout the 24–32-hour CP, the participant 
was restricted to a semi-recumbent position in bed. 
Food and fluid intake were distributed as small hourly 
snacks. Lights were turned off during the scheduled 
sleep times, allowing participants to sleep in order to 
avoid confounding effects of sleep loss on performance 
for the final work episode of each work week.

Throughout each CP, small blood samples were 
obtained every 30 minutes via an intravenous forearm 
catheter connected to a 12-foot IV line. After collection, 
each blood sample was placed in a Vacutainer tube with 
EDTA, centrifuged at 2°C for 10 minutes at 2200–2800 
rpm, and the resulting plasma was placed in an aliquot 
tube and frozen at -20°C. Plasma samples were assayed 
for melatonin shortly after each study was completed 
using a radioimmunoassay (lower limit of sensitivity 
1.1pg/mL; DiagnosTech/Pharmasan Labs, Osceola, WI).

Sustained attention

To assess sustained vigilant attention, the Psychomotor 
Vigilance Task (PVT) (17) was taken every two hours 
beginning 30 minutes after the start of each work shift. 
The 10-minute PVT was the first scheduled task of a 1.5-

Figure 1. Single raster plots of the 4-week 
counterclockwise shift work protocols for 
the treatment and control groups. Clock hour 
is indicated across the x-axis and study day 
along the y-axis from top to bottom. Black 
bars indicate scheduled sleep episodes at 
home [except during constant postures (CP) 
where the sleep episodes occurred in the 
laboratory]. Open bars indicate work shifts 
under various light exposures (room light 
100 lux, 1250 lux, 2500 lux, and 8000 lux). 
Hashed bars represent CP circadian phase 
estimation procedures on the 4th/5th work 
shift at the end of each week. Participants 
were outside the laboratory at all other times.
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hour cognitive test battery which took place 4 times per 
shift and was scheduled to always occur during times of 
exposure to indoor light levels in both groups. The PVT 
required the participant to respond to a visual stimulus 
appearing on a computer screen by pressing a button 
with their dominant thumb. The interstimulus interval 
varied between 2–10 seconds, resulting in ∼100 trials 
per test. PVT performance has been shown to vary with 
circadian phase and to decline with duration of sustained 
wakefulness (18). We report the reaction time (RT) 
means, medians, and lapses of attention (RT>500ms), 
as well as reaction time percentile distributions of the 
PVT taken during each CP.

Statistical analyses

To examine the timing of melatonin onset, we calculated 
the time at which plasma melatonin levels rose to 25% 
of their peak (MEL25%up), an established circadian phase 
marker (16, 19). The peak was determined by fitting a 
3-harmonic waveform to the data from the 24-hour base-
line (day shift) CP, determining the amplitude of the fitted 
waveform (maximum-minimum of fitted waveform), and 
then using linear interpolation between adjacent values 
to calculate the time at which melatonin levels rose to 
25% of this amplitude. This timing method was used to 
account for the wide variation in the amplitude of plasma 
melatonin levels between individuals (20). Plasma mela-
tonin offset was defined as the time at which melatonin 
levels fell to 25% of their fitted peak (MEL25%down). The 
thresholds from the baseline (day shift) CP were used 
to determine the timing of MEL25%up/down for the remain-
ing CP for each participant. Next, the duration of the 
melatonin secretory phase for each CP was defined as the 
interval between MEL25%up and MEL25%down.

Under normal entrained conditions, participants 
sleep when their melatonin levels are high with a fitted 
midpoint of secretion approximately in the middle of 
the nocturnal sleep episode (21, 22). If the bright light 
treatment shifted the circadian system appropriately, 
melatonin should be released during the scheduled 
sleep time. Therefore, to assess adaptation to the shift 
schedule, we determined the overlap between the timing 
of melatonin secretion and the scheduled sleep times 
(in hours) for each shift schedule. Linear mixed-effects 
models were applied to study the effects of group (con-
trol versus treatment) CP (baseline, night, evening, and 
day shift), and their interaction on outcomes, with par-
ticipant as random effect. For each CP, planned post hoc 
comparisons between the control and treatment groups 
were performed, where Bonferroni adjustments were 
used to account for multiple comparisons. Residual plots 
were checked for model fitting. Correlations between 
baseline melatonin timing and the degree of adaptation 
were assessed using Pearson’s correlation coefficient.

PVT mean RT and median RT were recorded in mil-
liseconds (ms). Lapses of attention were defined as RT 
>500 ms. To calculate reaction time distributions from 
the PVT, we first computed the 5th, 10th, 15th, 25th, 35th, 
45th, 50th, 55th, 65th, 75th, 85th, 90th and 95th percentiles for 
the day, night, and evening shift CP for each participant. 
For each CP, these individual percentile values were 
then averaged across participants within each group to 
compute cumulative distributions for the day, night, and 
evening shift CP for the control and treatment group. We 
fitted a 4-parameter Weibull function to each average 
distribution using SAS PROC Reliability, which provided 
the overall description for each cumulative distribution 
(23). The CP (baseline, night, evening), group (control, 
treatment) and their interaction terms were included in the 
model. Statistical analyses were performed using SAS 9.4 
(SAS Institute, Cary, NC, USA).

Results

Twenty-nine participants completed the 27-day simulated 
shift work protocol, which included weekly counter-
clockwise shift rotations, for a total of 783 days of study. 
Complete data on each CP was not available for all 
participants, but their partial data remained included in 
the analysis when possible; for details see supplement 2.

Circadian adaptation

On the baseline (day shift), the melatonin amplitude was 
similar between the control (mean 37, SD 30 pg/ml) 
and the treatment group (mean 46, SD 24 pg/ml). The 
duration of melatonin secretion, the timing of MEL25%up, 
Midpoint, and MEL25%down, and the calculated overlap 
between melatonin secretion time and scheduled sleep 
time did not differ between the groups at baseline, as 
shown in table 1.

At the end of the week of night shifts, the MEL25%up 
and MEL25%down of the control group were shifted 6.4 hours 
and 4.7 hours later respectively, whereas the MEL25%up 
and MEL25%down of the treatment group had shifted by 7.2 
hours and 6.5 hours. These group differences, along with 
differences in timing of midpoint, did not reach statisti-
cal significance due to large within-group variability (see 
table 1). In particular, there was a near complete absence 
of melatonin secretion for the entire 32-hour CP among 
2 of the 12 control participants, precluding assessment 
of their melatonin phase (see supplementary figure S1). 
When we examined the phase relationship between the 
timing of melatonin secretion and the scheduled sleep 
times on the night shift, we found a longer overlap in the 
treatment group (mean 4.90, SD 2.8 hours) compared 
to the control group (mean 2.62, SD 2.8 hours; t=-3.72, 
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P=0.002; see figure 2, panel A). The melatonin duration 
on the night shift was longer for the treatment group 
compared to the control group (7.48 vs 6.09 respectively; 
t=-3.430, P=0.005), as can be seen in figure 2, panel B.

On both the evening shift and day shift, no significant 
differences between the control and treatment groups 
were found in the melatonin circadian phase markers, 
the duration of secretion, or the overlap between mela-
tonin secretion and scheduled sleep.

On the night shift, the overlap between scheduled 
sleep and melatonin secretion showed significantly greater 
variability for both control and treatment participants 
compared to their overall variability at baseline (night shift 
SD 3 versus baseline day shift SD 0.5; repeated measures 
ANOVA F=36.92, P<0.001). Due to this large variability 
in adaptation to the night shift in both groups, we further 
explored individual differences in response. Overall, dur-
ing the night shift the melatonin midpoint occurred during 
the scheduled sleep time in 8 of 12 treatment participants 
(67%), whereas for the control participants, the melatonin 
midpoint occurred during the sleep time in only half of 
the participants (see figure 2, panel B). In contrast, for the 
evening shift and day shift, both groups showed 100% 
overlap between their melatonin midpoint and their sched-
uled sleep time. As examples, figure 3 shows melatonin 
profiles in relation to work and sleep times on each CP of 
a well-adapted treatment participant and a non-adaptive 
control participant on the night shift.

For the treatment group, we examined whether dif-
ferences in melatonin timing at baseline (day shift) 
contributed to the variations in night shift adaptation. 
We observed a strong relationship between baseline (day 
shift) melatonin timing and the degree of adaptation on 
the night shift (r2=-0.71, P= 0.01) within the treatment 
group. The earlier a participant’s melatonin timing at 
baseline (measured as midpoint of melatonin curve), 
the less adaptation (ie, hours of overlap between high 
melatonin secretion and sleep) was shown on the night 
shift (see figure 2, panel C).

We also explored whether sex differences contrib-
uted to the variations in night shift adaptation within 
the treatment group. The 6 female participants had an 
average of 3.5 (SD 3.2) hours of overlap between mela-
tonin timing and sleep timing, versus 6.3 (SD 1.6) hours 
among 6 male participants (Wilcoxon S=28, P=0.09).

Sustained attention

There were no significant differences in mean or median 
RT or number of lapses between the control and treat-
ment groups at baseline or on any other shift, see sup-
plementary table S1. There were no differences in the 
RT distributions between the control and treatment 
groups at baseline (see figure 4, presented as combined 
line). A significant difference in RT distribution was 
found between the control and treatment group dur-
ing the night shift (χ2

1=17.68, P<0.001) and the eve-
ning shift (χ2

1=14.45, P<0.001). Within the treatment 
group, there were no differences in the RT distributions 
between the baseline, night or evening shift, showing 
that their response times during the night and evening 
shift remained similar to their response times at baseline. 
The control group did show a difference in response time 
distribution between the shift types (χ2

2=8.91, P=0.012). 
There was a shift to the right in the entire RT distribution 
for the control group on the night shifts representing 
cognitive slowing (least mean square comparison vs 
baseline, P=0.003), and a trend in the same direction on 
the evening shifts (P=0.07). This is visible in the upper 
percentile values as shown in figure 4.

Discussion

We have demonstrated that exposure to bright light can 
facilitate circadian adaptation to night work and sub-
sequent readaptation to evening and day work among 

Table 1. Melatonin timing and phase shift data on each constant posture (CP) for control (C) and treatment (T) groups. Mixed models were carried 
out to compare melatonin data between the groups. [SD=standard deviation; MEL=melatonin level]

Baseline Night shift Evening shift Day shift
C (N=14) T (N=12) C (N=13) a T (N=12) C (N=14) T (N=12) C (N=12) T (N=11)

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)
Time of MEL25%up 22:44 (0:34) 22:13 (0:35) 05:10 (3:24) 05:23 (3:56) 01:47 (0:37) 01:15 (1:01) 22:42 (1:24) 22:42 (1:10)
Time of MEL25%down 06:33 (0:30) 06:23 (0:25) 11:16 (3:32) 12:52 (3:53) 09:49 (0:31) 09:43 (0:39) 07:05 (0:29) 07:10 (1:15)
Time of melatonin midpoint 02:39 (0:23) 02:18 (0:26) 08:06 (3:27) 09:07 (3:52) 05:48 (0:29) 05:29 (0:42) 03:03 (0:33) 02:56 (1:08)
Melatonin duration (hours) 7.81 (0.7) 8.16 (0.5) 6.09 (1.7) 7.48 b (1.0) 8.04 (0.6) 8.48 (1.0) 8.38 (1.4) 8.45 (0.8)
Overlap melatonin-sleep (hours) 7.23 (0.6) 7.57 (0.3) 2.62 (2.8) 4.90 b (2.8) 7.20 (0.6) 7.45 (0.8) 7.01 (0.8) 7.16 (1.0)
Phase shift MEL25%up c (hours) 6.42 (3.1) 7.15 (3.7) 3.04 (0.5) 3.02 (0.7) -0.03 (1.2) 0.48 (0.9)
Phase shift MEL25%down c (hours) 4.76 (3.4) 6.47 (3.6) 3.27 (0.6) 3.33 (0.4) 0.64 (0.5) 0.80 (1.1)
a Two subjects showed loss of melatonin amplitude on the night shift, therefore their MEL25%up, MEL25%down, midpoint, and phase shifts could not be calculated, leav-

ing N=11 for these outcomes.
b Adjusted P≤0.01.
c Phase shift calculations relative to MEL25%up and MEL25%down at baseline.
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participants scheduled to a counterclockwise shift rota-
tion (ie, rotating weekly from day shift to night shift 
to evening shift to day shift). While counterclockwise 
shift rotations are currently not commonly used, they 
represent one of the most challenging schedules for 
rotating shift workers. In addition, while there have been 
numerous studies testing light treatments for circadian 
adaptation to the night shift, few studies have evaluated 
whether such treatments impact adaptation to subse-
quent shift rotations. Here we demonstrated that bright 
light treatment counteracted neurobehavioral response 
degradation not only during the night shift but also dur-
ing subsequent evening work shifts.

To assess how the bright light treatment impacted the 
circadian system of the participants, our protocol included 
an assessment of the entire melatonin secretory episode 
at the end of each shift rotation. We did this based on 
prior studies showing that circadian interventions can 
not only shift the timing of the onset of secretion, it can 
independently affect the offset. Therefore, using only one 

circadian marker (such as the dim light melatonin onset, 
DLMO) can give an incomplete view of what happens to 
the entire melatonin secretion episode. As illustrated in 
figure 2 panel B, our novel method for evaluating shift 
work adaptation provides a more comprehensive analyses 
of the melatonin secretion offset, duration, and phase 
relationship to scheduled sleep timing.

We designed the light treatment schedule using a 
mathematical model of human circadian responses to 
light (14) and found that the light treatment, as pre-
dicted, could phase delay shift the circadian rhythm of 
melatonin secretion from day to night shifts to match 
the schedule of daytime sleep in the treatment group, 
despite their off-shift light exposure being uncontrolled. 
In contrast, participants in the control group showed 
more erratic responses, with 2.3 hours shorter overlap 
between melatonin secretion and scheduled sleep than in 
the treatment group. The finding that the control group 
still showed 2.6 hours of overlap could be due to the 
control group being exposed to the same sleep/darkness 

Figure 2. Panel A: Average overlap between melatonin secretion 
and scheduled sleep episode timing (in hours) in the control (open 
bar) and treatment (black bar) groups for each constant posture (CP) 
(means ± standard error of means). Panel B: Individual melatonin 
duration (defined as the interval between MEL25%up and MEL25%down) 
in relation to scheduled sleep episode on the night shift CP for 
control (open horizontal bar) and treatment (black horizontal bar) 
participants. The vertical dashed bars represent the scheduled sleep 
episode, which is also depicted as the black filled box on the bottom 
axis; the hashed bar on the bottom axis represents the work shift. 
Panel C: Clock time of melatonin midpoint at baseline (from the 
initial day shift) is plotted with respect to the circadian adaptation 
to the night shift (overlap in hours between melatonin secretion 
and scheduled sleep) for male (rectangle) and female (triangle) 
participants in the treatment group; (N=12), r2=-0.71, P=0.01).

A

B

C
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times as the treatment group. Horowitz and colleagues 
(12) found that fixed sleep/wake times in darkness alone 
(without bright light exposure) induced a DLMO phase 
delay of ∼3 hours on the night shift, whereas both fixed 
sleep/wake times and bright light during the night shift 
produced a physiological adaptation of ∼7 hours on 
average, similar to what we observed in the treatment 
group in the present study.

Our results show that an individual’s circadian phase 
prior to rotation on to the night shift accounted sub-
stantially for the variability in the circadian adapta-
tion response to the treatment while on the night shift. 
This is likely due to the fact that bright light centered 
after an individual’s body temperature nadir induces a 
phase advance rather than phase delay shift (24, 25), a 
limitation that could be overcome by restricting bright 
light exposure during the second half of the night shift 
(9, 12). Our finding that earlier melatonin timing was 
related to less adaptation to night work is consistent with 
data from field studies that show a negative association 
between morningness (early chronotype) and the ability 
to tolerate working at night (26).

Notably, two control participants exhibited no 
observable melatonin secretion during the entire 32-hour 
night shift CP, in contrast to their robust nocturnal 
melatonin secretion during baseline and subsequent CP 
(see supplementary figure S1). This finding of a loss of 
amplitude on the night shift was observed in a previous 
study after a gradual schedule inversion (27). An animal 
study by Filipski and colleagues (28) showed that a 
severe amplitude decrease in the corticosterone rhythm 
(23 to 6 ng/ml) was associated with accelerated tumor 
growth in SCN-lesioned mice. Furthermore, suppres-
sion of melatonin at night has been linked to increased 
risk for cancer in shift workers (29). More research is 
needed to understand the phenomenon of temporary 
loss of melatonin secretion following a schedule inver-
sion in a subset of individuals, to examine whether this 
loss of melatonin amplitude might also be shown in 
other circadian rhythms (such as core body temperature 
or cortisol), and to understand what individual factors 
may contribute to this loss of amplitude. Much more 
research is needed to understand whether individuals 
exhibiting such a loss of melatonin secretion are more 

Figure 3. Melatonin profiles for a treatment participant and a control participant. Left panel: Melatonin profile for each constant posture 
(CP) (baseline, night shift, evening shift, and day shift) of a male treatment participant. Right panel: Melatonin profile for each CP of 
a female control participant. Black bars represent the scheduled sleep times, diagonal bars represent the work hours and the dashed 
vertical line represents midnight. During the night shift CP, the control participant showed no overlap in melatonin and sleep timing, 
whereas the treatment participant did.
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or less vulnerable to the adverse health consequences 
of night shift work. This research may be particularly 
important for older night shift workers and individuals 
taking melatonin-suppressing medications such as beta-
blockers, many of whom already secret lower amounts 
of melatonin at night (30).

When the participants made the transition from night 
to evening shifts, the treatment group had to make a 
larger adjustment, given the magnitude of adjustment 
they had made in adapting to the night shift. The finding 
that the treatment group showed similar melatonin phase 
timing as the control group on evening shifts, and that 
both groups showed similar overlap between melatonin 
secretion and scheduled sleep, demonstrates that the 
light treatment was successful in re-adaptation by the 
end of the weekly shift rotation. However, we did not 
assess adjustment on each individual shift, so we do not 
know the rate of adjustment to the evening shift that the 
two groups showed.

Future studies of the impact of light treatments on 
shiftwork adaptation should focus on sex as a potential 
relevant factor. Even though our sample size was small, 
we noticed a trend that the phase-shifting response to 
the bright light intervention among women was more 
variable than in men. There are reports that women are 
more adversely affected by night shifts than men (31, 
32). Compelling evidence has shown that there are sex 
differences in both of the sleep-wake regulatory systems, 
the circadian system and the sleep-wake homeostat. 
Compared to men, women tend to be more morning 
types, have shorter circadian periods (33) and earlier 
entrained circadian phases (34). These well-defined 
biological sex differences may make women during the 
follicular phase of the menstrual cycle more vulnerable 
to shift work-related sleep loss and circadian misalign-
ment compared to men (35, 36).

Besides enhancing circadian adaptation, the bright 
light treatment was effective in preventing the slowing 
of response times on both the night shift as well as on the 
evening shift. Participants in the treatment group who 
were exposed to bright light performed similarly on night 
and evening shifts to day shifts. In contrast, the control 
group showed significant slowing of their response times 
on the night and evening shifts, as shown in both labora-
tory and field studies (23, 37, 38). Our results confirm 
that adaptation of performance during the night shift can 
occur in conjunction with circadian adaptation, consistent 
with previous laboratory studies (39, 40).

Our study was subject to several limitations. First, 
the circadian phase estimation took place at the end of 
each work week, and we therefore could not determine 
the amount of overlap between melatonin secretion and 
sleep for the initial shifts in each sequence. However, 
the advantage of our novel approach is that we assessed 
the entire melatonin secretion curve, including markers 
of secretion onset and offset (19). This allowed us to 
test whether there were alterations in the duration of 
the melatonin secretion episode, not just a change in the 
timing of melatonin onset (27). Second, we had no infor-
mation on participants’ light exposure after leaving the 
laboratory between shifts, and it has been reported that 
there are individual differences in shift workers’ light 
exposure after work hours (41), which could have influ-
enced their circadian adaptation. However, by allowing 
participants to leave the laboratory after each work 
shift, the bright light treatment had to be able to over-
come light exposure during commuting times, a factor 
recognized to impede adaptation to night work. Third, 
we assessed circadian adaptation in response to bright 
light using the rhythm of plasma melatonin, a marker of 
the central clock located in the suprachiasmatic nucleus 
(SCN) of the hypothalamus, yet the human circadian 

Figure 4. Cumulative response time distributions 
of the control (N=10) and treatment (N=7) groups 
on the baseline, night, and evening shift constant 
postures (CP). The x-axis represents response time 
in milliseconds. The y-axis represents percentile 
values of response time. Error bars represent the 
standard error of the mean. The black/white square 
symbol represents the combined control and treat-
ment groups at baseline. The control group is rep-
resented by open symbols and the treatment group 
by solid symbols. The night shift is represented by 
circles and the evening shift by triangles.
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system also comprises peripheral clocks found in most 
tissues and cells (42). While Cuesta and colleagues (43) 
showed that bright light exposure at night could rapidly 
reset both the central and peripheral clocks, we did not 
assess the status of any peripheral clocks. Finally, our 
study was carried out among non-shift working indi-
viduals who were very healthy, not taking medications, 
and asked to refrain from using caffeine and alcohol 
during the study. Thus, the generalizability of our results 
to actual shift workers should be taken with caution, and 
whether similar phase shifts and performance outcomes 
would be observed in actual shift workers remains to 
be tested. A recent field study by Bjorvatn and col-
leagues (44) found no effect of bright light treatment 
on subjective and objective sleepiness on night work 
and consecutive day work among nurses, which may 
have been due to the participants’ use of medications 
and inappropriately-timed countermeasures or to inap-
propriate timing of the light intervention due to changing 
postures in an active work environment.

Overall though, our findings have important implica-
tions for rotating shift workers. They support the impor-
tance of acknowledging circadian principles in schedul-
ing work hours (45) and also highlight the importance 
of taking into account individual circadian timing when 
applying a countermeasure designed to shift circadian 
phase. In fact, personalizing working times according 
to individual circadian timing (ie, chronotype) has been 
shown to reduce circadian disruption and improve sleep 
(46). Properly timed light regimens in accordance with 
individual circadian timing could be an effective work-
place intervention for shift workers, improving their 
on-shift performance, health, and safety.
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