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The peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptors that function as 
transcription factors regulating the expression of genes involved in cellular differentiation, development, metabolism 
and also tumorigenesis. Three PPAR isotypes (α, β/δ and γ) have been identified, among which PPARβ/δ (PPARD) 
is the most difficult to functionally examine due to its tissue-specific diversity in cell fate determination, energy 
metabolism and housekeeping activities. PPARβ/δ acts both in a ligand-dependent and -independent manner. The 
specific type of regulation, activation or repression, is determined by many factors, among which the type of ligand, 
the presence/absence of PPARβ/δ-interacting corepressor or coactivator complexes and PPARβ/δ protein post-
translational modifications play major roles. Recently, new global approaches to the study of nuclear receptors have 
made it possible to evaluate their molecular activity in a more systemic fashion, rather than deeply digging into a 
single pathway/function. This systemic approach is ideally suited for studying PPARβ/δ, due to its ubiquitous 
expression in various organs and its overlapping and tissue-specific transcriptomic signatures. The aim of the present 
review is to present in detail the diversity of PPARβ/δ function, focusing on the different information gained at the 
systemic level, and describing the global and unbiased approaches that combine a systems view with molecular 
understanding. 
 
Introduction 
  
Systems biology aims at deciphering complex 
biological units by aggregating biological information 
of various natures (gene, RNA, protein) in order to 
gain the most comprehensive view of the events that 
shape life. Another way of saying this is that systems 
biology aims to understand how a biological system, 
made up of multiple interacting linear or non-linear 
pathways, behaves, and explains the global pattern 
observable at the level of the organism. The present 
review compiles a diversity of details regarding the 
activity of peroxisome proliferator-activated receptor 
β/δ (PPARβ/δ), viewed at the system level. 

 
Several qualities make PPARβ/δ an interesting 
molecule to explore using system approaches: its 
ubiquitous expression, the rather broad and poorly 
specific nature of its ligands (mainly unsaturated free 
fatty acids) and the fundamental functions that 
PPARβ/δ controls, such as energy metabolism or cell 
survival. Herein, we will start with a chapter 
concerning the gene, its structure and evolutionary 
history, and the main classical properties of PPARβ/δ 
as a transcription factor. We will then proceed with the 
systemic and integrative views that mouse models 
carrying alterations of PPARβ/δ activities provide. The 
third part will describe the global and unbiased 
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approaches that bridge a system view and molecular 
mechanisms. These approaches encompass 
microarray and genome-wide Chromatin 
Immunoprecipitation (ChIP). This review will end with 
the description of polymorphisms in the human 
PPARD gene that are associated with various 
pathologies. 
 
Molecular properties of PPARβ/δ 
 
PPARβ/δ (PPARD) gene 
 
Shortly after the characterization of a new nuclear 
receptor (NR) involved in the peroxisome proliferation 
response to some chemicals in mice, which was 
accordingly referred to as peroxisome-proliferator 
activated receptor (PPAR) [Issemann and Green, 
1990], three PPAR genes, α (PPARA), β (PPARD) 
and γ (PPARG), were identified in Xenopus laevi 
[Krey et al., 1993]. When characterized in mouse, rat 
or human, the mammalian PPARα and PPARγ genes 
were easily identified, while the third gene was less 
clearly homologous to the Xenopus PPARβ and was 
alternatively called NUC-1 in human [Schmidt et al., 
1992], fatty acid activated receptor (FAAR) [Amri et 
al., 1995] in mice, and lastly PPARδ [Evans et al., 
2004]. It now appears clear that they are indeed 
homologous to the Xenopus PPARβ [Germain et al., 
2006; Laudet, 1997]. These laborious identification 
efforts explain the different names for PPARβ/δ in the 
literature. 
 
PPARs belong to a subfamily of the NR superfamily, 
together with the thyroid hormone receptors, retinoic 
acid (RA), vitamin D, ecdysone, and the orphan 
receptors Rev-ErbAα (5ear1;NR1D1) and E75 
(NR1D3, from Drosophila). The latter two represent 
the closest relatives of the PPARs [Laudet et al., 
1992]. The ancestral genes in this subfamily 
appeared more than 500 million years ago [Knoll, 
1992], followed by further duplication. The ancestral 
thyroid hormone receptor (TR) gene duplicated into 
two genes, TRα (NR1A1) and TRβ (NR1A2), and the 
ancestral retinoic acid receptor (RAR) gene 
duplicated into three genes, RARα (NR1B1), RARβ 
(NR1B2), and RARγ (NR1B3). Similarly, the three 
PPAR loci, α, β, and γ, appeared during this second 
period [Laudet et al., 1992], with the duplication 
events likely being contemporaneous with the 
appearance of the early vertebrates [Keese and 
Gibbs, 1992]. Interestingly, PPAR genes have 
evolved 2–3 times faster than the RAR and TR genes 
according to the amino acid sequence differences 
observed between the Xenopus and mammalian 
homologs. Among the PPAR subtypes, PPARβ/δ 
exhibits an even higher rate of evolution. This 
relatively rapid evolution emphasizes the need for 
careful evaluation when studying PPAR activities in 
various species. PPARD has been assigned to 
chromosome 6, at position 6p21.1-p21.2 in human 

[Yoshikawa et al., 1996], and Ppard has been 
assigned to chromosome 17 in mouse. The six exons 
in the 3’ part encode the full PPARβ/δ protein. 
 
PPARβ/δ protein structure 
 
Like most NRs, the PPAR protein structure consists of 
four main domains: the unstructured N-terminal A/B-
domain, the C-domain folded in two zinc fingers which 
corresponds to the DNA-binding domain (DBD), the 
D-domain or hinge region, and finally the E-domain 
forming a bundle of helices and stranded beta-sheet, 
which accommodates a ligand binding pocket. While 
the A/B-and D-domains are only poorly conserved 
between the PPAR isotypes, the C- and E-domains 
share a high degree of sequence and structural 
homology (reviewed in [Escher and Wahli, 2000]). 
 
Whether and by which mechanism the N-terminal 
activator domain (AF1) of PPARs may regulate 
transcriptional activity remains debated. This domain 
appears to be a determinant for PPAR subtype-
specific activity [Bugge et al., 2009; Castillo et al., 
1999; Hummasti and Tontonoz, 2006], also restricting 
the number of genes transcriptionally regulated by 
each of the PPAR subtypes [Hummasti and Tontonoz, 
2006]. 
 
The ligand binding domain (LBD) in all three PPARs 
is a very large Y-shaped cavity (about 1400 cubic 
angstroms) as compared to other NRs, and this 
characteristic allows the PPARs to interact with 
numerous structurally-distinct ligands [Nolte et al., 
1998]. However, a novel aspect of the PPARβ/δ 
pocket is the narrowness of one of the Y arms, which 
cannot accommodate bulky polar heads [Xu et al., 
2001; Zoete et al., 2007] such as Thiazolidinediones 
(TZDs) and L-tyrosine-based agonists. When the 
human PPARβ/δ LBD was first crystallized in absence 
of ligand, the crystals indicated the presence of 
vaccenic acid, of bacterial origin, in the ligand pocket 
[Fyffe et al., 2006]. Crystallization in the presence of 
the potent and selective PPARβ/δ ligand GW0742 
was later performed [Batista et al., 2012] and both 
studies suggest that two residues in the hormone 
binding pocket (Val312 and Ile328) are important for 
ligand-selective binding to PPARβ/δ. Finally, in the 
true absence of ligand, the structure of PPARβ/δ 
seems to correspond to an equilibrium of different 
conformations, among which are those favoring 
coregulator recruitment. 
 
PPARs bind to DNA as obligate heterodimers with 
members of the retinoid X receptor (RXR) subfamily 
of NRs. The PPAR:RXR complex behaves as a 
permissive heterodimer since it can regulate gene 
expression upon activation by either RXR or PPAR 
ligands. DNA binding properties of PPARβ/δ are 
similar to those of PPARα and PPARγ, with a 
common consensus sequence (PPAR-responsive 
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element; PPRE), which consists of a direct repeat of a 
close derivative of the AGGTCA consensus hexamer, 
separated by one base-pair, the PPAR moiety 
occupying the 5’ half-site [IJpenberg et al., 1997]. The 
only difference that contributes to the strength and 
specificity of PPAR isotype binding lies in the 5’ 
flanking region, though it seems mainly important for 
PPARα and not for PPARβ/δ [Juge-Aubry et al., 
1997]. 
 
Patterns of PPARβ/δ expression 
 
PPARβ/δ gene expression is truly ubiquitous 
[Braissant et al., 1996; Kliewer et al., 1994], 
suggesting the importance of this receptor in both 
systemic activity and/or for basic cellular functions. 
Different methods such as in situ hybridization, qPCR 
and tissue microarray-based immunochemistry have 
been used to provide a large survey of PPARβ/δ-
expressing cells in the body, the most exhaustive one 
being that of Higashiyama et al. [Higashiyama et al., 
2007]. This study confirmed the wide distribution of 
PPARβ/δ protein in mouse tissues. A brief summary 
with key references is given below. 
 
PPARβ/δ is expressed in organs/cells highly 
associated with fatty acid catabolism such as 
hepatocytes in the liver [Sanderson et al., 2010; 
Sanderson et al., 2009; Shan et al., 2008], adipocytes 
in the brown and white adipose tissue (BAT and 
WAT) [Leibowitz et al., 2000; Mottillo et al., 2012; Pan 
et al., 2009; Reilly and Lee, 2008; Roberts et al., 
2011; Wang et al., 2003] and skeletal muscle cells 
[Giordano et al., 2009]. 
 
PPARβ/δ is also widely observed in the nucleus of 
epithelial lineage cells from keratinocytes [Kim et al., 
2006; Schmuth et al., 2004; Tan et al., 2001; 
Westergaard et al., 2001] to enterocytes [Girroir et al., 
2008; Gupta et al., 2000; Gupta et al., 2004; He et al., 
1999; Park et al., 2001]. In the nervous system, 
PPARβ/δ is found in both axons and dendrites of 
neurons residing in different brain areas and in 
microglia cells [Higashiyama et al., 2007; Xiao et al., 
2010] of the central nervous system, as well as in 
astrocytes [Chistyakov et al., 2014] and in the 
neurofibers of the peripheral nerves and spinal cord 
[Jana et al., 2012; Peters et al., 2000]. 
 
In the immune system, PPARβ/δ expression has been 
particularly characterized in macrophages [Bouhlel et 
al., 2009; Chawla, 2010; Desvergne, 2008; Lee et al., 
2003]. In the cardiovascular system, PPARβ/δ 
immunostaining is present in the nucleus of 
cardiomyocytes and vascular smooth muscle cells in 
the aorta [Cheng et al., 2004a; Cheng et al., 2004b; 
Finck, 2007] and other vascular districts [Zhang et al., 
2002]. In the endocrine system, PPARβ/δ is seen in 
the delta cells of the Langerhans islet and in the 
secretory cells of the adrenal cortex [Lee et al., 2006; 

Takahashi et al., 2006]. In the reproductive organs, 
the nucleus of both spermatid/spermatocytes in the 
testis and follicular epithelial cells in the ovary are 
positively stained for PPARβ/δ [Higashiyama et al., 
2007]. Finally, PPARβ/δ has been also found in 
cartilage and bone compartment [Scholtysek et al., 
2013]. 
 
However, there are some divergent aspects of studies 
PPARβ/δ expression patterns that cannot be listed 
herein. These relate to experimental conditions, 
mouse strain and environment at the time of 
measurement, as PPARβ/δ expression level is 
dictated by both exogenous and endogenous signals. 
The use of different approaches (in situ hybridization, 
qPCR for RNA levels, various antibodies and 
methods for protein levels) to evaluate PPARβ/δ 
expression also likely contributes to some of the 
divergencies found in the literature. Of particular note, 
questions remain regarding how truly specific 
commercial antibodies are, suggesting that off-target 
activity may contribute to false positive signals. 
Despite these difficulties, the ubiquitous expression of 
PPARβ/δ - with the basal highest expression in 
gastrointestinal tract and skeletal muscle [Braissant et 
al., 1996] - likely reflects its role in multiple biological 
functions. 
 
Transcriptional activity of PPARβ/δ 
 
The classical view of the prototypic activity of 
PPARβ/δ, as for other NRs, is to activate transcription 
in a ligand-dependent manner, via binding to specific 
response element in the promoter of target genes and 
recruitment of coactivator complexes. The somewhat 
dogmatic concept is that agonist ligands induce a 
conformational change in PPARβ/δ:RXR that favors 
the dissociation of corepressors and the association 
with coactivators [Yu and Reddy, 2007]. A large 
number of coactivator complexes interacting with 
transcription factors have been identified and it is 
hypothesized that combinatorial usage of these 
complexes provides the basis for cell type-specific, 
gene-specific, and signal-specific transcriptional 
responses. Where and with which complexes active 
PPARβ/δ interacts is, however, not yet clear [Khozoie 
et al., 2012; Ricote and Glass, 2007]. 
 
One intriguing question concerns ligand-dependent 
repression of gene expression, particularly with 
respect to PPARβ/δ, as it may represent an important 
activity of this receptor. The best-documented 
mechanism was shown in macrophages where, in 
absence of ligand stimulation, PPARβ/δ sequesters 
the transcriptional repressor B-cell lymphoma 6 
protein (BCL6). Upon ligand stimulation, PPARβ/δ 
releases BCL6, thereby triggering BCL6-dependent 
repression of NF-kB target genes such as Monocyte 
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chemotactic protein 1 (MCP1) [Lee et al., 2003]. 
Other mechanisms are likely involved, depending on 
cellular context, but still remain to be elucidated. 
 
In absence of ligand, PPARβ/δ may also exert 
transcriptional repression. This was proposed to 
explain the regulation of a set of genes whose 
expression increased upon deletion of PPARβ/δ 
[Adhikary et al., 2011; Khozoie et al., 2012]. Previous 
studies had shown that by occupying PPREs while 
interacting in a ligand-independent manner with 
silencing mediator of retinoic acid and thyroid 
hormone receptors (SMRT) and Histone deacetylase 
1 HDAC1, PPARβ/δ could down-regulate PPARα- 
and PPARγ-dependent transactivation [Shi et al., 
2002]. Corepressor interactions with PPARβ/δ are 
indeed particularly strong and might even impair its 
classical ligand-dependent positive transcriptional 
activity when either Nuclear receptor corepressor 
(NCoR) or SMRT is overexpressed [Krogsdam et al., 
2002], thereby contributing to the complexity of the 
system. Since these studies, little if any progress has 
been made with regard to assessing the mechanism 
by which PPARβ/δ could act as a bona fide repressor. 
 
In addition to LBD conformational changes upon 
ligand binding, there are some important post-
translational modifications that may also alter the 
activity of PPARβ/δ in the absence/presence of 
ligand. Phosphorylation is one of the most common 
modifications and several consensus phosphorylation 
sites can be mapped along the PPARβ/δ sequence. 
Along these lines, both cAMP and PKA increased the 
basal and ligand-dependent activity of PPARβ/δ 
[Burns and Vanden Heuvel, 2007], while Wortmannin, 
an inhibitor of the PI3K, could inhibit the positive 
transcriptional activity of PPARβ/δ on prostaglandin 
E2 receptor EP4 gene expression [Han et al., 2005]. 
However, at the molecular level, the phosphorylation 
events of the PPARβ/δ protein and their functional 
consequences remain to be directly explored. 
 
Ligand-induced proteolysis through the ubiquitin-
proteasome system is a common mechanism to end 
transcriptional activity promoted by the ligand-
activated receptors. However, this mechanism seems 
to be reversed for PPARβ/δ, as in the absence of 
ligand, PPARβ/δ has a very short half-life due to 
efficient ubiquitination and proteosomal degradation. 
Ligand binding inhibits this ubiquitination thereby 
increasing its half-life [Genini and Catapano, 2007; 
Rieck et al., 2007; Wadosky and Willis, 2012], albeit 
this phenomenon may depend on the level of 
PPARβ/δ expression at the time of ligand stimulation 
[Rieck et al., 2007]. Interestingly, ubiquitin-C is itself a 
target gene of PPARβ/δ [Kim et al., 2004]. Finally, 
even though PPARβ/δ presents a potential Small 
Ubiquitin-like Modifier (SUMO)ylation site in its D 

region (K185) [Wadosky and Willis, 2012], no 
experimental data to date has confirmed a role for 
SUMOylation in regulating PPARβ/δ activity. 
 
PPARβ/δ ligands 
 
Natural ligands 
 
As for PPARα and PPARγ, many unsaturated fatty 
acids can bind to PPARβ/δ, in a pattern closely 
resembling that of binding to PPARα [Desvergne and 
Wahli, 1999]. One proposed model of fatty acids 
delivery to PPARβ/δ is via the very large density 
lipoprotein (VLDL), through release of their 
triglycerides (TG), as shown in macrophages [Chawla 
et al., 2003; Ziouzenkova and Plutzky, 2004]. 
 
However, it is still unresolved which particular fatty 
acids act as endogenous ligand specific for PPARβ/δ. 
Arachidonic acid derivatives were the first to be 
pointed at, starting from those obtained upon 
cyclooxygenase 2 (COX2) activation, such as 
prostacyclin (PGI2) and other prostaglandins [Yu et 
al., 1995], but also metabolite derivatives obtained 
through the 12/15 lipoxygenase activity, such as 9-
HODE,13-HODE, 12-HETE and 15-HETE. While they 
are known as low affinity PPARγ activators [Nagy et 
al., 1998], these metabolites activate PPARβ/δ with 
some intriguing results since 13-s HODE is reported 
to be an inhibitor of PPARβ/δ in colon epithelial cells 
[Shureiqi et al., 2003], but an agonist in pre-
adipocytes [Coleman et al., 2007]. Such observations 
point to the concept of tissue-specific response, due 
for example to presence or absence of other 
coregulators. Along these lines, a report suggested 
that retinoic acid (RA) could be a ligand for either 
PPARβ/δ or RARs, depending on the relative 
expression of CRABPII (delivering RA to RARs) and 
FABP5 (delivering RA to PPARβ/δ) [Schug et al., 
2007]. Further studies from the same group 
highlighted some of the biological outcomes of this 
crosstalk between RA and PPARβ/δ [Schug et al., 
2008], albeit discrepancies concerning the 
effectiveness of RA stimulation on PPARβ/δ have 
been reported [Rieck et al., 2008]. 
 
Exogenous fatty acids are also studied, such as 
ombuin-3-O-beta-D-glucopyranoside (ombuine), a 
flavonoid from Gynostemma pentaphyllum, activating 
both PPARβ/δ and PPARα [Malek et al., 2013]. This 
example underscores the fact that most of the natural 
ligands known to interact with PPARβ/δ also interact 
with the other PPAR subtypes. It is an interesting 
feature when searching for dual agonists, albeit it may 
also lead to off-target effects. 
 
Synthetic ligands 
 
Tremendous effort has been devoted towards 
optimizing synthetic ligand binding selectivity to 
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PPARβ/δ, thereby avoiding off-target effects. Recently 
a high-throughput screening (HTS) assay [Xia et al., 
2013] has been established in order to select PPAR 
agonists with low toxicity and high efficiency. Below 
are a few, and by no means exhaustive, illustrations 
of synthetic PPARβ/δ agonists and antagonists that 
have been used or are presently being tested in in 
vivo studies. 
 
    Agonists 
 
The very first synthetic compound, called L165041 
[Berger et al., 1999], was an established leukotriene 
antagonist, which activates human PPARβ/δ, but also 
triggers PPARγ activation at high doses [Forman et 
al., 1997]. The compound GW501516 [Sznaidman et 
al., 2003], which was more potent and more specific, 
subsequently took over in most published 
experimental work and became the reference 
compound as a PPARβ/δ agonist [Pelton, 2006]. 
However, while being investigated for its potential 
activity in metabolic disorders, as reviewed in Lamers 
et al. [Lamers et al., 2012], its uncontrolled use in 
human as a doping substance and subsequent high 
risks of abuse contributed to stop all further 
development of the molecule. Today, GW0742, which 
was developed together with GW501516, is a highly 
selective PPARβ/δ agonist that is commercially 
available for non-human research purposes 
[Sznaidman et al., 2003]. The most recent agonists 
developed to target PPARβ/δ in clinical settings were 
MBX-8025/RWJ800025 (MBX-8025 presently in 
phase II trials, generated by Metabolex) [Billin, 2008] 
and KD-3010 developed by Kalypsys [Iwaisako et al., 
2012]. 
 
    Antagonists and Inverse Agonists 
 
The irreversible PPARγ antagonist GW9662 
[Leesnitzer et al., 2002] was initially used since it also 
exerted a potent PPARβ/δ antagonistic activity 
[Seimandi et al., 2005]. The first selective PPARβ/δ 
antagonist was GSK0660, which was identified and 
characterized in 2008 [Shearer et al., 2008], although 
its poor bioavailability has impaired its use in in vivo 
studies. The same was true for SR13904, which in 
addition to PPARβ/δ also antagonizes PPARγ 
transactivation, albeit with much weaker potency 
[Zaveri et al., 2009]. Finally, GSK3787 is a potent 
PPARβ/δ antagonist with good pharmacokinetic 
properties. It has a good bioavailability and can be 
used in animal studies [Palkar et al., 2010; Shearer et 
al., 2010]. However, this compound is also an 
irreversible antagonist, which covalently binds 
PPARβ/δ and it is not as selective as hoped. These 
antagonists can also be referred to as inverse 
agonists, as they bind PPARβ/δ as an agonist, but 
induce an opposite pharmacological response, 
decreasing the basal expression level of PPARβ/δ 

target genes [Shearer et al., 2008] and increasing the 
recruitment of corepressors [Palkar et al., 2010]. 
More recently two novel compounds have been 
described in the class of PPARβ/δ antagonists: 
DG172 and PT-S58. DG172 exhibits high binding 
affinity and potent inverse agonistic properties, 
enhancing transcriptional corepressor recruitment and 
down-regulating transcription of PPARβ/δ target 
genes [Lieber et al., 2012]. Moreover, DG172 is 
bioavailable after oral treatment in mice. PT-S58, a 
cell-permeable diaryl-sulfonamide, acts as a pure 
competitive PPARβ/δ subtype-specific antagonist 
targeting the ligand binding site of PPARβ/δ while not 
allowing coregulator interactions [Levi et al., 2013; 
Naruhn et al., 2011]. 
Altogether, these molecules represent important tools 
to study the systemic impact of PPARβ/δ activities in 
animal models, together with the generation of 
genetically-modified mouse models. 
 
Integrative physiology of PPARβ/δ 
 
In the context of this review on PPARβ/δ and systems 
biology, the present section focuses on knowledge 
gained with a systemic view from animal models, 
either through gene modification or through animal 
treatment with agonist or antagonist ligands. Although 
these reported studies have deeply contributed in 
shaping our present understanding of PPARβ/δ, they 
also present several caveats. It indeed remains 
difficult when using transgenesis approaches (total 
body or tissue-specific) activating or deleting 
PPARβ/δ, to disentangle the truly specific effects from 
the secondary and compensatory effects. The use of 
constitutively active PPARβ/δ via its fusion with trans-
activator domains, such as VP16, can alter the 
secondary/tertiary structure of PPARβ/δ, leading to 
different interaction surfaces and in turn diverse 
transactivation functions. Agonist and antagonist 
compounds are also not exempt from off-target 
activities. These few examples underline the need to 
cautiously interpret observations made in such 
models. 
 
Generation of PPARβ/δ null mice 
 
Four models of PPARβ/δ total body Knock Out (KO) 
have been reported. In the first published model 
[Peters et al., 2000], Ppard was disrupted via insertion 
of phosphoribosyltransferase II expression cassette in 
the last exon, encoding the ligand binding domain. 
Mice for this modification presented significantly lower 
survival rate in mixed background but this phenotype 
was back to normal in C57BL/6N background, in 
striking contrast with the three other models, 
described below. It must be noted that the strategy of 
the gene alteration has likely driven the generation of 
a hypomorph allele rather than a null allele, since 
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theoretically, PPARβ/δ obtained from this gene could 
be expressed, albeit truncated of its C-terminus 60 
amino-acids, but left with intact N terminus and DNA 
binding domains. Another strategy consisted of 
framing the exon 4 encoding the first moiety of the 
DNA-binding domain of PPARβ/δ with two LoxP sites, 
allowing the generation of either a conditional knock-
out allele, or a constitutive deletion of the exon 4, with 
a subsequent frame shift of the encoding sequence 
[Barak et al., 2002]. Using the latter, a PPARβ/δ null 
mouse model was generated, although this gene 
alteration resulted in severe placental defects and 
frequent mid-gestation lethality. Notable changes in 
the structure of the placenta of PPARβ/δ KO mice 
include reduced size of the entire tissue with 
loosening of its attachment to decidua and 
hemorrhages at various locations due to flooding of 
maternal blood. Replacing exon 4 with the β-
galactosidase gene resulted in placental defects and 
lethality similar to those previously reported [Barak et 
al., 2008]. Using a similar strategy, Nadra et al. 
[Nadra et al., 2006] replaced exon 4 and part of exon 
5 with a PGK-neo cassette deleting the two zinc 
fingers of the DNA-binding domain. Here again, 
deletion of PPARβ/δ severely affected placental 
development, leading to embryonic lethality at 
embryonic day 9.5 (E9.5) to E10.5 of most, but not all, 
PPARβ/δ-null mutant embryos. The observed 
placental alterations mainly reside in the Giant cell 
layer. In fact, both molecular and cellular studies 
highlighted the role of PPARβ/δ in the differentiation 
pathway of these particular cells through activation of 
Akt signaling and inhibition of Id-2 [Nadra et al., 
2006]. 
 
Further analyses demonstrated that the lethality 
observed is 100% in pure background (C57BL/6 and 
SV129, B. Yaacov and B. Desvergne personal 
communication, respectively), whereas it is partial on 
mixed backgrounds (C57Bl6/FVB or C57Bl6/SV129, 
Barak Yaacov and B. Desvergne personal 
communication, respectively). The viability and 
maintenance of PPARβ/δ null mice is achieved by the 
interbreeding of survivors on mixed genetic 
backgrounds. The fact that mixed background 
increases chances to obtain null mutant pups, in 
addition to a “founder” effect rather than a specific 
genetic background, underline the complexity of the 
genetic network in which PPARβ/δ is involved with 
respect to placenta development. 
 
The development of the surviving mice was grossly 
normal and numerous studies could benefit from this 
model, as seen in the next section. In parallel, tissue-
specific knockout mice and transgenic mice 
expressing normal, mutated or strongly-active forms 
of PPARβ/δ have been generated in order to study 
tissue-specific functions exerted by this receptor 

without interference from the PPARβ/δ systemic 
deletion (see Table 1). 
 
PPARβ/δ as a potent regulator of metabolism and 
inflammation 
 
Energy metabolism in muscle 
 
While initially overshadowed by PPARα and PPARγ, 
interest in PPARβ/δ rose significantly when its role in 
muscle energy metabolism was identified. The first 
indications that PPARβ/δ might play a role in muscle 
metabolism came from the observations that 
PPARβ/δ expression in skeletal muscle is increased 
upon fasting [Holst et al., 2003] and upon exercise 
[Russell et al., 2005], suggesting a role for PPARβ/δ 
in the adaptive response of skeletal muscle to 
increased demand for fatty acid oxidation. Skeletal 
muscle indeed represents an important consumer of 
fatty acids. In a transgenic mouse model, the 
overexpression of PPARβ/δ in skeletal muscle 
provokes a shift towards more oxidative fibers and 
promotes a general decrease of body fat content 
[Luquet et al., 2003]. Similar results were obtained by 
expressing overactive PPARβ/δ fusion protein 
(PPARβ/δ-VP16) under the control of the alpha-actin 
promoter [Wang et al., 2004], which resulted in an 
average 2-fold increase in type I muscle fibers, and a 
subsequent increase in muscle oxidative capacity, 
leading to a remarkable increase in running distance 
and time on a treadmill [Wang et al., 2004]. Because 
of this phenotype, the latter model was also called the 
“marathon mice”. 
 
Conversely, when PPARβ/δ is specifically deleted in 
skeletal muscle, using the CRE-recombinase system 
under the control of alpha-actin promoter, the muscle 
fibers exhibited lower oxidative activity, while the body 
fat mass increased and led to insulin resistance 
[Schuler et al., 2006]. Altogether, these observations 
suggest PPARβ/δ activation plays a role in skeletal 
muscle adaptation to physical stress, although the 
molecular mechanisms underlying this effect are not 
yet clearly understood. 
 
To further study the PPAR-dependent energy 
substrate usage in muscle and to characterize it at the 
molecular level, Gan et al. [Gan et al., 2011] 
generated transgenic mouse lines expressing either 
PPARβ/δ or PPARα under the control of skeletal 
muscle-specific promoter (MCK-PPARβ/δ or MCK-
PPARα constructs). Comparing these two mouse 
models, the authors demonstrated that PPARβ/δ 
interacts with the exercise-inducible kinase AMP-
activated protein kinase (AMPK), which in turn 
promotes glucose uptake, fatty acid oxidation, 
mitochondrial biogenesis, and insulin sensitivity. In 
addition, PPARβ/δ-mediated activation of AMPK 
leads to a synergistic activation of lactate 
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Table 1. PPARβ/δ mutant phenotypes. The main PPARβ/δ-based mouse models are herein listed according to the type of 

mutation and tissue/cell specificity.  The main observations reported from the mutant are also briefly commented. 
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dehydrogenase b (Ldhb) gene transcription, 
increasing the ratio Ldhb/Ldha and diminishing the 
accumulation of lactate. The high glycogen stores and 
increased levels of GLUT4 in mouse muscles with 
MCK-driven PPARβ/δ expression further suggested a 
broad reprogramming of glucose utilization pathways 
mediated by PPARβ/δ [Gan et al., 2011]. In parallel, 
slow-twitch genes are increased in MCK-PPARβ/δ 
soleus muscle, via an indirect mechanism involving a 
complex NR/microRNA circuitry [Gan et al., 2013]. 
 
Altogether, these results clearly confirm that PPARβ/δ 
in skeletal muscle controls different phases of the 
adaptive response to training (i.e., the number of 
oxidative myofibers), and metabolic switch (i.e., the 
increase in fat burning capability), by reprogramming 
the expression of glucose utilization genes. We might 
also ask whether these observations could be of any 
use for improving structural muscular disorders. Miura 
et al.,[Miura et al., 2009] found that GW501516 
systemic treatment stimulated utrophin A mRNA 
levels in muscle cells derived from the Duchenne 
muscular dystrophy mdx mouse model. Over a 4-
week trial period, the agonist treatment augmented 
the percentage of muscle fibers expressing slower 
myosin heavy chain isoforms and stimulated 
transcription of utrophin A and its expression in the 
sarcolemma. The mdx sarcolemma integrity was 
improved, together with a limitation of the eccentric 
contraction-induced damage of mdx skeletal muscles 
[Miura et al., 2009]. More generally, a better 
knowledge of the metabolic role of PPARβ/δ in 
skeletal muscle, where it contributes to enhanced 
muscle endurance, might be useful in designing 
therapeutic strategies for muscular degenerative 
diseases such as muscular dystrophy. 
 
Adult cardiomyocytes express a high level of 
PPARβ/δ, and also utilize fatty acid as their main 
energy source. With respect to PPARβ/δ functional 
delineation in cardiac muscle, three different mouse 
models have been generated. The cre-loxP-mediated 
deletion of PPARβ/δ restricted to cardiomyocytes 
presented the most dramatic phenotype due to the 
loss of this receptor, with congestive heart failure and 
reduced mouse survival [Cheng et al., 2004a]. This 
was associated with down-regulation of the 
constitutive expression of key fatty acid oxidation 
genes, and a consequent decrease of basal 
myocardial fatty acid oxidation with lipid accumulation. 
In a second model, PPARβ/δ cardiac-specific deletion 
was induced at 2 months of age. This “adult” model 
underscored the overall alteration of energy substrate 
usage, with decreases of both fatty acid and glucose 
oxidation rates concomitant with a reduction in the 
expression of genes in both pathways [Wang et al., 
2010]. It also suggests that the severity of the cardiac 
failure in the first model might be due to a role of 
PPARβ/δ in cardiac development. In the third model, 
mice overexpressed PPARβ/δ under the control of the 
alpha myosin heavy chain (αMyHC) promoter. 

Mirroring the PPARβ/δ deletion phenotype, these 
mice presented increased myocardial glucose 
utilization, with upregulated expression of Glut4 and 
glycolytic genes, and were resistant to diet-induced 
lipid accumulation in cardiomyocytes and subsequent 
lipotoxic cardiomyopathy [Burkart et al., 2007]. More 
recently, a fourth mouse model overexpressing 
PPARβ/δ specifically in cardiac muscle has been 
generated. The constitutively active form of PPARβ/δ-
VP16 was placed under the control of the promoter 
αMyHC for cardiac-muscle-restricted expression, and 
was constructed to be inducible by Tamoxifen 
administration. This report mainly describes how this 
methodology may be used to efficiently generate 
transgenic mouse models expressing a constitutively 
active form of PPARβ/δ upon Tamoxifen 
administration in a tissue-specific manner [Kim et al., 
2013]. However, the overexpression of such 
constitutively activated PPARβ/δ cannot take into 
account subtle activities depending on expression 
levels and ligand availability, and this may lead to 
overestimates of the importance of certain regulatory 
activities. 
 
PPARβ/δ in adipose tissue 
 
The role of PPARβ/δ in fatty acid catabolism is also 
effective in white and brown adipose tissue (WAT and 
BAT, respectively). Transgenic mice expressing, in 
the WAT, a hyper-active form of PPARβ/δ (PPARβ/δ-
VP16) are resistant to both high-fat diet-induced and 
genetically predisposed obesity, together with 
decreased lipid accumulation in adipose tissue and 
diminished lipidemia, in line with an increased fatty 
acid consumption [Wang et al., 2003]. The effect of 
PPARβ/δ over-activation was even more dramatic in 
metabolically-active BAT, with an increased 
expression of genes involved in fatty acid hydrolysis, 
oxidation, and uncoupling of oxidative 
phosphorylation [Wang et al., 2003]. This over-
activation may, however, mask more subtle regulatory 
activity, such as the PPARβ/δ-mediated induction of 
Twist1, which acts as a negative regulator of energy 
dissipation, in part via a decrease of UCP1 [Pan et al., 
2009]. 
 
Lessons learned from PPARβ/δ deletion in mice are 
painting a more complex picture. Total body PPARβ/δ 
null mice exhibit a paradoxically leaner phenotype 
with a significant reduction of both WAT and BAT 
mass, an effect possibly resulting from an alteration of 
fatty acid transport [Barak et al., 2002; Peters et al., 
2000]. However, PPARβ/δ null mice fed with high fat 
diet displayed an increased susceptibility to weight 
gain, coupled with blunted BAT UCP1 expression 
[Wang et al., 2003]. Finally, mice carrying an aP2-
driven adipose-specific deletion of PPARβ/δ did not 
show any altered fat mass content [Barak et al., 2002] 
(reviewed in [Christodoulides and Vidal-Puig, 2010]). 
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These results suggest that most effects on adipose 
tissue may be the consequence of systemic and 
muscle metabolism rather than reflecting a direct 
activity of PPARβ/δ in the adipose tissue. 
 
PPARβ/δ-specific roles in liver metabolism 
 
Liver is one of the most important organs in 
controlling energy homeostasis, via regulation of 
energy availability and storage. PPARβ/δ is 
expressed in all the main cell types present in the 
liver: hepatocytes, Kupffer cells and hepatic stellate 
cells. The exploration of PPARβ/δ-mediated response 
in the liver suggested the dual implication of PPARβ/δ 
not only in fatty acid metabolism, but also directly in 
glucose metabolism. In particular, Lee et al. [Lee et 
al., 2006] demonstrated that PPARβ/δ enhances 
glucose utilization in the liver, via activation of the 
pentose-phosphate pathway, and promotes liver 
lipogenesis, recapitulating an insulin-sensitizing 
effect. Conversely, PPARβ/δ null mice suffer from 
glucose intolerance [Lee et al., 2006]. 
Deciphering what is due to a direct activity of 
PPARβ/δ in the liver from a combined effect on liver, 
muscle, and adipose tissue remains difficult. In an 
effort to address this question, Liu et al. [Liu et al., 
2011] achieved a liver-specific PPARβ/δ activation by 
employing an adenoviral-mediated gene delivery 
system and used, as a control, liver-specific PPARβ/δ 
null mice. The comparison between mice 
overexpressing PPARβ/δ in liver with those bearing a 
liver-specific deletion confirmed its role as an insulin 
sensitizer. In fact, overexpressing PPARβ/δ in liver 
causes a genetic reprogramming that leads to an 
increased glucose utilization and increased 
lipogenesis. However, no specific alterations have 
been pointed out regarding the liver-specific deletion 
of PPARβ/δ, suggesting a moderate activity under 
normal conditions. 
 
These effects of PPARβ/δ in controlling hepatic lipid 
metabolism may also have consequences on its role 
in the resident macrophages in liver, the Kupffer cells, 
that have also been implicated in fatty liver disease 
and insulin resistance [Lanthier et al., 2010]. More 
specifically, PPARβ/δ is a key regulator of the 
alternative activation of Kupffer cells towards anti-
inflammatory activity (macrophage M2 subtype) in the 
presence of IL4 and IL13 stimulation [Odegaard et al., 
2008]. An imbalance of inflammatory mediators in 
liver can also affect hepatic stellate cells where, 
regardless of their activation status, PPARβ/δ is 
expressed at high levels [Hellemans et al., 2003]. 
However, no in vivo mouse studies using PPARβ/δ 
activation or inactivation mouse models have yet 
pushed these cellular studies forward. 
 
These observations confirmed a key role of PPARβ/δ 
in tissues and circumstances where PPARα is also a 
key regulator of fatty acid oxidation, thereby raising 

questions regarding their respective roles. Microarray 
analyses comparing the liver transcriptome of PPARα 
null mice versus PPARβ/δ null mice revealed only 
minor overlap between PPARα- and PPARβ/δ-
dependent gene regulation, and further reinforced the 
observations that PPARβ/δ governs glucose 
utilization and lipoprotein metabolism and has an 
important anti-inflammatory role in liver [Sanderson et 
al., 2010]. 
 
PPARβ/δ-specific roles in the pancreas 
 
Pancreas-specific deletion of PPARβ/δ, obtained 
through PDX1-mediated PPARβ/δ gene deletion, 
caused an increased number of islets and, more 
importantly, enhanced insulin secretion, leading to 
hyperinsulinemia and lower glycemia in mutant mice. 
This was due to alterations in the machinery of 
exocytosis, from Golgi functions to routing of granules 
and vesicles to the cell periphery, rather than an 
altered metabolic response [Iglesias et al., 2012]. In 
contrast, systemic treatment with PPARβ/δ agonists 
resulted in increasing glucose-stimulated insulin 
secretion (GSIS) and normalizing pancreatic islet 
hypertrophy in ob/ob mice [Tanaka et al., 2003] and 
db/db mice [Winzell et al., 2010]. Treatment with the 
PPARβ/δ agonist GW501516 also restored the 
impaired GSIS observed in mice carrying a pancreas-
selective deletion of Desnutrin (also called 
ATGL/PNPLA2) [Tang et al., 2013]. This study also 
suggested that in homeostatic conditions, the ATGL-
mediated lipolysis would provide ligand for PPARβ/δ, 
whose activity on mitochondrial oxidation would 
contribute to islet β cell GSIS. 
 
Finally, and more indirectly, PPARβ/δ agonists 
increase the production of glucagon-like peptide-1 
(GLP-1), an intestinal incretin that can preserve the 
morphology and function of pancreatic β-cells [Daoudi 
et al., 2011]. This mechanism might in part explain the 
apparent contradiction between the observations 
made in the model of pancreas-specific deletion of 
PPARβ/δ and those made with systemic PPARβ/δ 
agonist treatment. However, and as mentioned 
above, we cannot ignore the caveats that each model 
carries (compensatory effects and off-target activities 
for example). 
 
Systemic metabolic effects of PPARβ/δ 
 
The tissue-specific deletions of PPARβ/δ allowed the 
evaluation of its tissue-specific activity. Systemic 
treatments of mice with specific PPARβ/δ agonists 
allowed an integrated analysis of these responses, 
mainly affecting the overall metabolic homeostasis. 
For example, the treatment of obese animals with 
specific PPARβ/δ agonists results in normalizing the 
metabolic parameters with decrease of circulating 
triglycerides and reduction of adiposity [Tanaka et al., 
2003; Wang et al., 2003; Wang et al., 2004]. 
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Circulating insulin levels also declined, whereas the 
improvement in glucose tolerance and insulin 
sensitivity, as determined by the glucose and insulin 
tolerance tests (GTT and ITT), was moderate [Tanaka 
et al., 2003]. This PPARβ/δ-mediated systemic 
improvement in lipid homeostasis also led to 
decreased high-fat-diet-induced liver steatosis [Wu et 
al., 2011]. Such PPARβ/δ-driven treatment 
recapitulates the improved carbohydrate catabolism in 
the liver, the promotion of fatty acid oxidation in the 
muscle and the inhibition of free fatty acid release 
from adipocytes, thereby explaining the overall 
enhanced insulin sensitivity [Lee et al., 2006]. Similar 
observations were made in OLETF rats, an animal 
model of type II diabetes with obesity, whose 
treatment with the highly PPARβ/δ-specific agonist 
GW0742 attenuates hepatic fat accumulation and 
improves insulin signaling [Lee et al., 2012]. 
 
PPARβ/δ also participates in regulating lipid systemic 
transport through lipoproteins. Treating obese rhesus 
monkeys, an animal model for human obesity and 
associated metabolic disorders, as well as diabetic 
db/db mice, with a selective PPARβ/δ agonist caused 
a beneficial increase in serum HDL cholesterol and a 
decrease in small-dense LDL [Leibowitz et al., 2000; 
Oliver et al., 2001], together with a reduced 
cholesterol absorption in the intestine, associated with 
a decrease in Niemannn-Pick C1 like 1 protein [van 
der Veen et al., 2005]. Conversely, PPARβ/δ deficient 
mice exhibit LDL hypertriglyceridemia, due to 
increased hepatic production of VLDL and decreased 
LPL-mediated catabolism [Akiyama et al., 2004]. 
 
Altogether, these observations emphasize the 
intertissular, reciprocal, metabolic regulation that 
PPARβ/δ coordinates. It explains the difficulties, 
particularly in the adipose tissue, in discriminating 
tissue-specific from systemic regulation. It also 
permits insistence on the potential therapeutic 
activities of PPARβ/δ in obesity and/or in type 2 
diabetes. Indeed, the implication of PPARβ/δ in 
energy consumption rendered this receptor an 
attractive therapeutic target, especially for its anti-
obesity activity. The first human clinical trial using a 
PPARβ/δ agonist has been concluded by Sprecher et 
al.[Sprecher et al., 2007], in which GW501516 
treatment has been tested in a small cohort of healthy 
volunteers. Several successive clinical trials have 
been conducted, or have recently been completed, as 
reviewed in [Lamers et al., 2012] to treat 
hyperlipidemia, insulin resistance and obesity. 
However, despite its promising potential as a 
treatment for obesity and dyslipidemia, the use of 
PPARβ/δ agonist, in particular GW501516, in clinical 
trials was limited, due to its possible use as a doping 
substance (http://www.independent.co.uk/life-
style/health-and-wellbeing/health-news/warning-to-
beijing-olympics-over-pills-that-mimic-exercise-
882608.html). In addition, the ubiquitous expression 

of PPARβ/δ generates some concerns regarding the 
possible onset of adverse side-effects, due to the 
activation of PPARβ/δ in tissues not related to the 
therapeutic effects. 
 
Inflammation 
 
Macrophages are key players in inflammation. The 
first report on PPARβ/δ acting on inflammation in 
macrophages described the association and 
dissociation of PPARβ/δ with the transcriptional 
corepressor BCL6, in absence and presence of 
ligand, respectively. This results in ligand-dependent 
PPARβ/δ-mediated inhibition of NFkB target genes, 
thereby limiting the inflammation [Lee et al., 2003]. 
Macrophages, however, differentiate from tissue 
resident monocytes either toward a pro-inflammatory 
(M1 or classically activated macrophage, e.g. by 
IFNγ, TNFα or bacterial LPS) or an anti-inflammatory 
(M2 or alternatively activated, e.g. by IL-4 or IL-13) 
phenotype according to the specific stimuli of the 
environment. Specific deletion of PPARβ/δ in 
macrophages (Lys-Cre-driven specific deletion; [Kang 
et al., 2008]) and irradiated wild-type mice subjected 
to PPARβ/δ-/- bone marrow transplantation 
[Odegaard et al., 2008] both demonstrated that 
alternative activation of resident macrophages in liver 
and adipose tissue depends highly on PPARβ/δ 
activity, which contributes to the M2a-specific gene 
expression program. Of interest is the fact that M2a 
macrophages not only limit inflammation but also 
affect metabolic regulation, in a variable manner 
depending on the animal model used [Desvergne, 
2008]. Finally, PPARβ/δ also acts as a transcriptional 
sensor of dying cells, facilitating the engulfment of 
apoptotic cells by macrophages. Mice bearing a 
macrophage-specific deletion of PPARβ/δ exhibit a 
decreased expression of opsonins, impairing the 
capability of phagocytes to recognize apoptotic bodies 
and to clear them from the environment. This leads to 
a progressive formation of autoantibodies that 
predispose PPARβ/δ KO mice to develop 
autoimmune disease [Mukundan et al., 2009]. 
 
The vascular compartment and its endothelial cells 
also play an important role in inflammation, which is 
associated with increased local vasodilation, vascular 
permeability, and leukocyte recruitment due to 
augmented expression of adhesion molecules on 
endothelial cells. Selective PPARβ/δ ligand 
GW501516 treatment inhibits the expression of major 
endothelial cell inflammatory responses (V-CAM-1, E-
selectine, ICAM-1) involved in leukocyte recruitment 
in vivo [Piqueras et al., 2009]. PPARβ/δ also protects 
endothelial cells from tissue damaging oxidative 
stress, which is produced by immune cell activity and 
may contribute to increased inflammatory response 
[Fan et al., 2008; Liou et al., 2006] [Jiang et al., 
2009a] [d'Uscio et al., 2012]. Other observations 
include the anti-inflammatory effect of PPARβ/δ ligand 
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administration, which limited the development of 
atherosclerosis in models using LDL receptor 
knockout mice [Barish et al., 2008; Graham et al., 
2005; Lee et al., 2003; Takata et al., 2008]. 
 
These studies likely explained the positive effects of 
PPARβ/δ agonist treatment in a variety of models of 
induced inflammation in mice, such as LPS-induced 
pulmonary inflammation [Haskova et al., 2008], 
chronic inflammation in the adipose tissue 
[Rodriguez-Calvo et al., 2008], experimental colitis 
[Hollingshead et al., 2007], systemic septic shock 
[Kapoor et al., 2010], TPA-induced hyperplasia and 
inflammation in the skin [Peters et al., 2000] and 
hepatotoxicity [Shan et al., 2008] (reviewed in 
[Bishop-Bailey and Bystrom, 2009]). The anti-
inflammatory activity of PPARβ/δ might also be 
beneficial in the brain. For instance, activation of 
PPARβ/δ with GW0742 in a murine model of 
experimental autoimmune encephalomyelitis limits the 
appearance of cortical lesions and decreases IL-1β 
expression, and reduces the incidence of clinical 
symptoms [Polak et al., 2005]. PPARβ/δ may also 
contribute to the anti-inflammatory activity of 
Palmitoylethanolamide (PEA) in spinal cord injury 
[Paterniti et al., 2013]. As can be seen from this 
paragraph, the diverse importance of the mechanisms 
proposed is difficult to establish when studying the 
integrated model represented by the mouse. In 
particular, the reciprocal link between inflammation 
and metabolism, along with the attendant question of 
which starts first, is very intriguing and is clearly 
highlighted when phenotyping the activity of PPARβ/δ 
in the full organism. 
 
PPARβ/δ in cell fate 
 
PPARβ/δ in cell differentiation 
 
Mouse observations have identified a certain number 
of cell types sensitive to PPARβ/δ activation in their 
differentiation process, as we described in the 
preceding section concerning placental Giant 
Trophoblastic cells. 
 
In the skin, PPARβ/δ promotes keratinocyte 
differentiation [Kim et al., 2005; Schmuth et al., 2004; 
Tan et al., 2001]. Particularly, in the context of wound 
and inflammation, which triggers increased PPARβ 
expression and promotes the synthesis of a ligand so 
far unidentified [Tan et al., 2001]. The end of the 
wound healing process is marked by increased 
activity of the TGF-β/Smad pathway that terminates 
PPARβ/δ-induced expression and activation [Tan et 
al., 2004]. This is consistent with the high expression 
of PPARβ/δ in the mouse epidermis during fetal 
development, which progressively disappears from 
the interfollicular epithelium after birth, but is re-
activated in the presence of various stimuli such as 

tetradecanoylphorbol acetate topical application, hair 
plucking, or skin wound healing, with a demonstrated 
role in the timing and efficiency of keratinocyte 
differentiation [Michalik et al., 2001]. 
 
The role in keratinocyte differentiation and the high 
constitutive expression of PPARβ/δ in the epithelial 
compartment of the gastrointestinal tract raised the 
question as to whether PPARβ/δ would similarly affect 
homeostatic regulation of intestinal cell 
proliferation/differentiation. Indeed, in PPARβ/δ null 
mice, Varnat et al. demonstrated that PPARβ/δ 
contributes to Paneth cell terminal differentiation 
[Varnat et al., 2006], via a PPARβ/δ-dependent down-
regulation of Hedgehog signaling, suggesting that 
PPARβ/δ is downstream of the Wnt-β-catenin/TCF4 
pathway. 
 
In the brain, PPARβ/δ is highly expressed during the 
development of the central nervous system [Braissant 
and Wahli, 1998; Cullingford et al., 1998; Moreno et 
al., 2004; Woods et al., 2003]. PPARβ/δ null mice 
exhibit myelination defects [Peters et al., 2000] 
suggesting a role in oligodendrocyte differentiation 
and maturation, further confirmed in studies using 
cells in culture [Saluja et al., 2001; Vittoria Simonini et 
al., 2010]. 
 
PPARβ/δ importantly contributes to the bone 
differentiation/remodeling cell program in mice 
[Scholtysek et al., 2013]. First of all, PPARβ/δ is the 
most abundantly expressed PPAR isotype in bone. Its 
activation decreases osteoclastogenesis and 
reinforces osteoblast differentiation via increased 
WNT signaling to mesenchymal cells. A mirror image 
is observed in PPARβ/δ null mice that present a 
higher number of osteoclasts and progressive 
osteopenia, particularly aggravated upon ovariectomy 
in females [Scholtysek et al., 2013]. 
 
PPARβ/δ is the predominant PPAR isotype expressed 
in hematopoietic stem cells (HSCs) [Ito et al., 2012]. 
Bone marrow transplantation using PPARβ/δ-deleted 
KitposScaposLinneg cells revealed that PPARβ/δ loss 
did not affect homing of HSCs but profoundly 
impacted long-term repopulating capacity, whereas 
treatment with PPARβ/δ agonists improved HSC 
maintenance in vivo [Ito et al., 2012]. 
 
Finally, as discussed above, the role of PPARβ/δ in 
adipose tissue is highly complex and intimately linked 
with the systemic metabolic consequences of 
PPARβ/δ activation, and it seems that PPARβ/δ has 
little or no specific activity on adipocyte differentiation. 
However, while total body KO mice have reduced 
adipose stores, mice with selective adipocyte 
PPARβ/δ KO have normal adipose tissue. 
Considering that the aP2 promoter which drives 
PPARβ/δ deletion is activated at a late stage of 
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adipocyte differentiation, we cannot exclude a 
possible role at an earlier stage, as suggested by 
studies using cell culture [Bastie et al., 2000; Hansen 
et al., 2001; Matsusue et al., 2004]. 
 
In conclusion, these in vivo observations are quite 
heterogenous. PPARβ/δ seems to act in many 
different cell types and in different tissue contexts to 
modulate cell fate. Is there a unifying mechanism for 
all these observations? It is indeed tempting to 
hypothesize that these activities come from a 
PPARβ/δ role in cellular basal metabolism. However, 
this remains to be demonstrated. 
 
PPARβ/δ in cell survival 
 
The study of Di Poi et al. [Di-Poi et al., 2002], 
discussed in the previous section, highlighted another 
important PPARβ/δ-mediated response to the 
inflammatory insult: cell survival. This occurs via 
PPARβ/δ-dependent up-regulation of integrin-linked 
kinase (ILK) and 3-phosphoinositide-dependent 
kinase-1 (PDK1), which activate Akt1 via 
phosphorylation, and through down-regulation of 
PTEN [Di-Poi et al., 2002]. This is in turn 
accompanied by an increased response to 
chemotactic signals, in particular through cytoskeleton 
remodeling [Tan et al., 2007]. 
 
Accordingly, different models of ischemia-reperfusion 
have been studied to evaluate the importance of this 
activity in various tissues. Ischemia-reperfusion is 
characterized by a first step of adaptation to the lack 
of nutrients and oxygen creating a cellular stress with 
acidosis, swelling, changes in the expression of 
adhesion molecules and other modifications due to 
adaptation of the cell to a forced anaerobic condition. 
Reperfusion in this context results in an oxidative 
insult with induction of oxidative stress in cells rather 
than restoration of normal function. Such a model is 
for example used for mimicking ischemic acute renal 
failure, where the major cellular damage is acute 
tubular necrosis. In such a mouse model, 
preconditioning with PPARβ/δ agonist dramatically 
protected against the damage, via PPARβ/δ-
dependent increased Akt activity, whereas PPARβ/δ 
heterozygous and PPARβ/δ null mice were very 
sensitive to kidney failure [Letavernier et al., 2005]. 
These results, reproduced in a diabetic rat model 
[Collino et al., 2011] and in endothelial cells in culture 
[Jiang et al., 2009b], point to PPARβ/δ as a 
remarkable target for preconditioning strategies. The 
same protective properties are found in the heart, 
where in vivo activation of PPARβ/δ via agonist 
treatment preserves the heart from 
ischemia/reperfusion injury in Zucker fatty rats [Yue et 
al., 2008], as well as in brain undergoing ischemia 
[Iwashita et al., 2007]. Finally, treatment with the 

PPARβ/δ agonist L-165041 protects the testis from 
ischemia and reperfusion damage, reducing TNFα, IL-
6 along with tissue injury via inhibition of extracellular-
regulated kinase 1/2 phosphorylation [Minutoli et al., 
2009]. 
 
PPARβ/δ in cell proliferation and tumor biology 
 
The role of PPARβ/δ in cell proliferation is more 
ambiguous. Different groups observed that PPARβ/δ 
has a negative role towards proliferation of 
keratinocytes [Tan et al., 2001] [Burdick et al., 2007; 
Burdick et al., 2006; Kim et al., 2006; Kim et al., 
2005], at least in part through down-regulation of 
cyclin A [Tan et al., 2001], through reduced 
ubiquitination of PKCα [Kim et al., 2005], or via 
Cdkn1c gene encoding the cell cycle inhibitor 
p57(Kip2) [Muller-Brusselbach et al., 2007]. However, 
other studies have shown that PPARβ/δ can promote 
keratinocyte proliferation [Di-Poi et al., 2002; Michalik 
et al., 2001; Romanowska et al., 2010]. For example, 
overexpression of PPARβ/δ in the skin, driven by the 
human CYP1A1 promoter, provoked hyper-
proliferation of keratinocytes, dendritic cell 
accumulation, and endothelial activation, closely 
mimicking a psoriasis lesion [Romanowska et al., 
2010]. Moreover, under UV stimulation, PPARβ/δ 
activates Src protein, that in turn promotes the 
Epithelial to Mesenchymal Transition. This complex 
process leads to a progressive de-differentiation of 
keratinocytes, thereby contributing to a higher 
proliferation rate and, in turn, to tumor progression 
[Montagner et al., 2014]. A potential and likely only 
partial explanation for these discrepancies may 
involve in vivo an intricate combination of PPARβ/δ 
activation not only in keratinocytes but also in the 
adjacent fibroblasts, regulating the expression of 
various cytokines, a hypothesis verified at least in a 
system of organotypic culture [Chong et al., 2009]. 
 
At first glance, due to its role in cell differentiation and 
the limited evidence supporting its pro-proliferative 
activity to date, PPARβ/δ should not be thought of as 
a pro-tumorigenic molecule. However, two main 
features link PPARβ/δ to tumorigenesis in the 
intestine: i) PPARβ/δ is a Wnt target gene in this 
tissue [He et al., 1999], a feature often associated 
with pro-tumorigenic activity, and ii) PPARβ/δ has a 
strong anti-apoptotic activity, which is particularly 
remarkable under conditions of stress (see above). 
Moreover, the analyses of PPARβ/δ expression, 
performed in various contexts, underscore its high 
expression in cancer cells. 
 
The discussion below will only present examples of 
contradictory results obtained in in vivo studies, as 
numerous exhaustive reviews have been written on 
the subject [Michalik and Wahli, 2008; Muller-
Brusselbach et al., 2007; Muller et al., 2008; Peters et 
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Table 2. PPARβ/δ microarray datasets. Compilation of the microarrays data available in the GEO (NCBI) and EBI array-express 
databases. Data are listed according to tissue/cell specificity.  The main observations gained along each data analysis are reported. 
Data on PPARb microarray can be found in: GEO data sets:  http://www.ncbi.nlm.nih.gov/gds/?term=ppar+beta; EBI ArrayExpress: 

http://www.ebi.ac.uk/arrayexpress/  +keyword 
 

 
 
al., 2011]. Most of the in vivo studies evaluate the role 
of PPARβ/δ in intestinal cancers and can be divided 
in two principal conditions: PPARβ/δ deficiency and 
PPARβ/δ activation. 
 
In the context of ApcMin/+ genetic background, 
PPARβ/δ deletion enhances the number of colon 
polyps formed in the intestine [Harman et al., 2004; 
Reed et al., 2004]. In the same manner, the treatment 
of PPARβ/δ-deficient mice with a potent carcinogen 
(azoxymethane, AOM) causes an increased number 
of polyps formed within this tissue [Hollingshead et 
al., 2008; Marin et al., 2006], suggesting a protective 
effect of PPARβ/δ in tumorigenesis. However, other 
studies showed that PPARβ/δ disruption (total body 
KO or intestinal-specific PPARβ/δ deletion), either 
combined with ApcMin/+ genetic background [Wang 
et al., 2006] or with AOM treatment [Zuo et al., 2009], 
led to reduction of polyp formation and to a marked 
resistance against carcinogen action. Finally, two 
other reports stated that total body deletion of 
PPARβ/δ in ApcMin/+ genetic background or 
intestinal-specific PPARβ/δ deletion combined with 
carcinogenic treatment did not result in any changes 
in colon tumor formation [Barak et al., 2002; Monk et 
al., 2012].  
 
Some contradictions were shown in the case of 
PPARβ/δ activation via treatment of mice with 
PPARβ/δ agonist. GW501516 administration in 
ApcMin/+ mice leads to an increased number and  

 
size of polyps in intestine [Gupta et al., 2004] [Wang 
et al., 2006], whereas GW0742 administered to  
 
ApcMin/+ mice did not affect size or number of polyps 
[Marin et al., 2006]. In contrast, treatment with high 
doses of GW0742 agonist in the AOM-induced model 
of carcinogenesis leads to a significant decrease in 
tumor incidence [Hollingshead et al., 2008] [Marin et 
al., 2006]. 
 
A partial explanation for the controversial findings 
reported in the in vivo studies may come from 
PPARβ/δ activity in the tumor microenvironment. For 
example, PPARβ/δ up-regulates VEGF expression in 
epithelial cells [Piqueras et al., 2007; Wang et al., 
2006], a critical pro-angiogenic factor, also affecting 
vascular permeability, and immune cell activity and 
their response to tumor. An elegant demonstration 
comes from the study of Muller-Brusselbach et al. 
[Muller-Brusselbach et al., 2007], who showed that 
growth of syngeneic PPARβ/δ wild-type tumors is 
impaired in PPARβ/δ null mice, due to a deficit in 
microvessel formation and maturation. This is also 
consistent with the correlation found in human tumors 
between high levels of PPARβ/δ and cyclooxygenase 
2 expression on the one hand, and the microvascular 
density and venous vessel tumor invasion on the 
other hand [Yoshinaga et al., 2009], thereby 
confirming its role in affecting the tumor 
microenvironment. 
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This brief description is by no means exhaustive, as 
numerous papers continue to feed the controversy, 
but fail to provide definitive reasons for such 
discrepancies. The controversies are not over [Peters 
et al., 2008; Xu et al., 2013], and further studies need 
to be done in order to establish a role for PPARβ/δ in 
cancer, and in doing so to ensure the safety of 
PPARβ/δ activation through synthetic agonists. 
 
Genome-wide analyses of PPARβ/δ 
transcriptional activities 
 
Mouse models are crucial for gaining a systemic view 
of PPARβ/δ functions relevant to the full organism. To 
gain insights into the mechanisms by which the 
transcription factor PPARβ/δ may act, whole genome 
studies allow a broad and unbiased view of the 
primary targets it affects. 
 
Microarray studies 
 
Due to the fact that PPARβ/δ is ubiquitously 
expressed and controls many different biological 
pathways, the compilation of microarray data, in 
different contexts, could be helpful in order to highlight 
some “core” functions and tissue- or cell-specific 
activity on gene expression from a wider point of view. 
Table 2 recapitulates the microarrays available in the 
GEO (NCBI) and EBI array-express databases at the 
following links: http://www.ncbi.nlm.nih.gov/gds and 
http://www.ebi.ac.uk/arrayexpress/+keyword. The 
keywords PPAR beta, PPARβ/δ, PPARdelta and 
PPAR beta/delta enable you to find all the available 
microarray data. This search is likely not complete, 
but it provides a good handle on conducting a deeper 
search. Doing a rigorous meta-analysis across all 
data obtained in microarrays remains very 
challenging, due to different initial conditions, different 
platforms used, and most importantly, to the 
experimental design aimed at answering a different 
and specific question for each study. The summary 
presented below only aims at presenting the main 
observations and leads that these microarray studies 
highlighted, albeit many of them have been previously 
stressed (see section on Integrative Physiology). 
 
Firstly, microarray represents a powerful technique for 
assessment of gene expression regulation in 
understanding the impact of PPARβ/δ 
deletion/activation on lipid and glucose metabolism. 
The main observations were achieved studying liver, 
adipose tissue, and pancreas comparing both 
PPARβ/δ wild type and KO mice, or agonist-treated 
versus vehicle control mice expression profiles. In 
particular, PPARβ/δ deletion caused suppression of 
the expression of several genes involved in glucose 
and lipid catabolism [Mandard et al., 2007; Sanderson 

et al., 2010], serving to confirm the role of PPARβ/δ 
as a key regulator of oxidative metabolism. The global 
gene expression pattern in PPARβ/δ-depleted 
pancreatic cells also highlighted its positive regulatory 
activity on a combination of genes involved in insulin 
secretion and its repressive role on genes involved in 
pancreatic cell proliferation [Iglesias et al., 2012]. 
Genetic reprogramming of oxidative metabolism 
genes is also involved in PPARβ/δ regulation of 
muscle response to physical stress and muscle 
endurance. Activation of PPARβ/δ by ligand treatment 
or transgenic expression leads to a general 
upregulation of genes involved in fatty acid transport, 
beta-oxidation, and mitochondrial respiration [Tanaka 
et al., 2003], which further increases when coupled 
with exercise [Narkar et al., 2008]. Microarray also 
identified Lactate b dehydrogenase and AMPK as two 
of the main enzymes involved in the endurance 
program [Gan et al., 2011]. Moreover, the classical 
switch toward fiber type I observed in PPARβ/δ-
activated genetic reprogramming goes through a 
distinct muscle microRNA (miRNA) network and the 
signaling of estrogen-related receptor gamma 
(ERRgamma) [Gan et al., 2013]. 
 
Another aspect of PPARβ/δ-mediated gene regulation 
relates to this receptor’s role as a potent anti-
inflammatory player [Iwaisako et al., 2012; Kaddatz et 
al., 2010; Mukundan et al., 2009; Stockert et al., 
2011; Stockert et al., 2013]. In fact, PPARβ/δ deletion 
triggered a reduced expression of anti-inflammatory 
cytokine and opsonins in macrophages [Mukundan et 
al., 2009]. As a mirror image, PPARβ/δ activated by 
ligand stimulation is able in fibroblasts to counteract 
TGFβ-activated genes and to activate TGFβ-
repressed genes [Kaddatz et al., 2010; Stockert et al., 
2011]. Importantly, different agonists can exert 
different activation of genetic regulation by PPARβ/δ. 
For example in liver, KD3010 but not GW501516, 
attenuates the gene expression signature consistent 
with inflammation and hepatocyte cell death, 
stimulates ROS protection pathways and down-
regulates pro-fibrotic factor expression [Iwaisako et 
al., 2012]. 
 
Genome-wide regulation of gene expression 
mediated by PPARβ/δ in tumor development also 
reflects the controversies discussed above. In 
mammary epithelium, PPARβ/δ acts as an oncogene 
affecting cell invasion, motility, but also inflammation-
related pathways [Yuan et al., 2013]. Actin 
cytoskeleton and cell migration genes were 
deregulated after PPARβ/δ agonist treatment and 
ANGPLT4 has been highlighted as a central step in 
tumor cell invasion [Adhikary et al., 2012]. In contrast, 
activation of PPARβ/δ in keratinocytes seems to be 
protective against tumor formation by controlling the 
expression of members of the ubiquitin-proteasome 
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degradation pathway [Kim et al., 2004] or by 
repressing E2F target genes through the interaction 
with p130/p107 [Zhu et al., 2012]. These 
discrepancies may be due to the fact that the analysis 
has been performed in isolated tissues/cells, thereby 
losing the contribution of the paracrine activity exerted 
by other cell types residing in the tumor environment 
(tumor stroma). 
 
Particular attention should be given to two microarray 
studies, performed in myofibroblasts [Adhikary et al., 
2011] and in keratinocytes [Khozoie et al., 2012], 
where all the collected data comparing the absence 
and presence of a PPARβ/δ activator have been 
filtered by PPARβ/δ silenced or PPARβ/δ KO derived 
gene expression profiles, in cells treated with the 
same experimental conditions in order to exclude 
non-specific signals. By combining microarray profile 
with ChIP-seq data, the authors described different 
types of PPARβ/δ-mediated gene regulation 
(summarized in the next section “ChIP and ChIP-seq 
with PPARβ/δ antibody”), from repression in presence 
of ligand to activation in absence of ligand. 
Interestingly, genes belonging to a given regulatory 
pattern were directly associated with particular 
functional pathways, thereby confirming the biological 
relevance of these findings. 
 
In conclusion, microarray analysis of PPARβ/δ 
activities contributed to a better knowledge of the 
molecular properties and biological functions of this 
ubiquitously-expressed receptor, highlighting both 
pan-tissue and tissue-specific genetic regulation. 
Nonetheless, a rigorous meta-analysis across all data 
obtained in microarrays remains to be done. 
 
ChIP and ChIP-seq with PPARβ/δ antibodies 
 
The analysis of the binding landscape of a given 
transcription factor is an important approach currently 
used to identify its possible target genes in the 
genome. However, binding of a TF in the vicinity of a 
gene is not sufficient, but only increases the 
probability that this gene is regulated by this TF. 
Therefore, combining the binding analysis above with 
a gene expression analysis greatly facilitates 
interpretation of the data. Irrespective of 
transcriptional regulation, the whole genome binding 
landscape may also give some insights into general 
DNA-binding properties. 
 
Chromatin Immunoprecipitation (ChIP) is a technique 
used to study the interaction between DNA and 
proteins within the cellular context, rather than using a 
synthetic piece of DNA in in vitro experiments such as 
the gel electro-mobility shift assay. It is clear that the 
quality (specificity and affinity) of the antibody is a 
crucial determinant of the effectiveness of such an 
experiment. This is indeed a critical issue for 
PPARβ/δ, as well as for many other NRs, because of 

the relatively poor efficiency and specificity of NR 
monoclonal or polyclonal antibodies available 
commercially. However, we present below first a 
series of papers demonstrating PPARβ/δ interaction 
on known gene sequences, and second two papers 
analyzing genome-wide binding sites of PPARβ/δ. 
 
ChIP has successfully elucidated PPARβ/δ interaction 
with the promoter of proteolipid protein (PLP) when 
cells are treated with the fibrate Gemfibrosil [Jana et 
al., 2012]. PPRE sequences binding to PPARβ/δ were 
also identified by ChIP in the promoter region of the 
calreticulin gene [Riahi et al., 2010]. Animal studies 
demonstrated that oral administration of GSK3787 
antagonizes the GW0742-induced PPARβ/δ promoter 
occupancy of Angptl4 and ADRP genes. This 
correlates with a reduced ADRP and Angptl4 mRNA 
expression in WT but not in PPARβ/δ null mice colon, 
which is consistent with the ChIP results [Palkar et al., 
2010]. The PPARβ/δ antibody used in this study was 
developed by Girroir et al. [Girroir et al., 2008]. 
 
ChIP experiments were also very useful in suggesting 
indirect mechanisms of PPARβ/δ-mediated 
transcriptional regulation. Indeed, the enhanced 
expression of the SIRT1 gene after PPARβ/δ ligand 
activation is not associated with PPARβ/δ binding to 
its 5’ flanking region, but is mediated instead by a 
canonical Sp1 binding site. Consistently, this potent 
trans-activating effect of PPARβ/δ/GW501506 was 
completely abolished in the presence of Mithramycin, 
an inhibitor of Sp1, suggesting that Sp1 could act as 
an ancillary factor for PPARβ/δ [Okazaki et al., 2010]. 
Finally, in HCT116 colorectal carcinoma cells, VEGFA 
transcription is regulated by PPARβ/δ via β-catenin-
mediated chromatin loops. The authors show that 
chromatin loops around VEGFA are released upon 
PPARβ/δ activation. The model predicts that β-
catenin mediates repressive looping and that 
PPARβ/δ-specific ligands release the loops, creating 
an active transcription unit [Hwang et al., 2012]. 
 
In concert, this limited number of examples (this 
presentation is not exhaustive) demonstrate that ChIP 
of PPARβ/δ can be obtained in certain contexts. 
Other contexts were not so successful and required, 
for example, the use of a V5- PPARβ/δ tagged protein 
[Yamamoto et al., 2011]. Recently, however, two 
groups have succeeded in performing genome-wide 
analyses of PPARβ/δ binding. Adhikary et 
al.,[Adhikary et al., 2011] performed genome-wide 
analyses of human myofibroblasts (WPMY-1 cell line), 
treated with or without agonist (GW501516), in control 
cells and in PPARβ/δ-depleted cells, to identify 
PPARβ/δ-mediated gene regulation. ChIP-Seq 
analyses of PPARβ/δ, RNA POL II, and H3K4me3 
have been performed, using for PPARβ/δ a Santa 
Cruz antibody. The sequencing data identified a total 
of 4542 enriched peaks for PPARβ/δ, most of them 
inside transcribed genomic regions or less than 25Kb 
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upstream. Among the 4542 enriched peaks for 
PPARβ/δ, the high confidence peak set defined as 
having a false discovery rate (FDR) <0.05 led to the 
identification of 443 peaks. This high confidence peak 
set was then filtered for H3K4m3 and RNA POL II 
enrichment as markers for active and inducible 
proximal promoter. The identified enriched sites were 
subsequently combined with transcriptional profiling 
derived from both agonist GW501516-treated or 
PPARβ/δ-silenced myofibroblasts. This additional 
analysis enabled the definition of 112 bona fide 
PPARβ/δ target genes classified according to three 
distinct types of transcriptional response: ligand-
independent repression by PPARβ/δ; ligand-induced 
activation and/or derepression by PPARβ/δ; and 
ligand-independent activation by PPARβ/δ. The 
majority of enriched pathways were associated with 
carbohydrate and lipid metabolism. However, the 
analysis highlighted PPARβ/δ involvement in non-
metabolic functions including hematopoiesis and 
muscle/heart development. No analysis for the 
presence of other transcription factor sites coupled to 
PPARβ/δ genome-specific peaks was proposed. 
Sequencing data were deposited at EBI ArrayExpress 
(E-MTAB-371) [Adhikary et al., 2011]. 
 
In 2012, a second study coupling the expression 
profiles with ChIP-seq allowed examination of 
PPARβ/δ-dependent regulation of gene expression in 
primary culture of mouse keratinocytes, [Khozoie et 
al., 2012]. The study was carried out on primary 
keratinocytes derived from both PPARβ/δ wild type 
and PPARβ/δ KO mice, in the presence and absence 
of the selective agonist GW0742. An initial microarray 
analysis identified a total of 612 target genes for 
PPARβ/δ. These target genes were then classified 
according to the type of transcriptional regulation, 
resulting in a total of eight different types of regulation 
ranging from repression to activation with or without 
ligand stimulation, plus combinations of these effects. 
 
ChIP-seq was subsequently performed to examine 
the molecular mechanism by which PPARβ/δ 
differentially regulates these target genes. The 
authors used the polyclonal antibody anti-PPARβ/δ 
described by Girroir et al. [Girroir et al., 2008]. ChIP-
seq data revealed 6839 sites occupied by PPARβ/δ in 
chromatin prepared from control cells, while more 
than twice as many sites were identified in chromatin 
prepared from agonist-treated cells, the specificity of 
which was controlled by comparing with chromatin 
prepared from PPARβ/δ null mice. Only 203 out of the 
612 PPARβ/δ-regulated genes displayed in the 
microarray have been found to be occupied by 
PPARβ/δ at the chromatin level within 10Kb of the 
transcriptional start site. The search for DNA binding 
motifs proximal to PPARβ/δ binding regions identified 
two main phylogenic families of transcription factors, 
the ETS and the CREB/ATF/AP1, associated with the 
PPARβ/δ binding site in various combinations 

depending on the type of regulation. More particularly, 
ATF4 is required for ligand-dependent induction of 
PPARβ/δ target genes for some of the types of gene 
regulation identified in the study [Khozoie et al., 
2012]. 
 
In conclusion, these studies offer an important 
glimpse into the complexity of PPARβ/δ-mediated 
transcriptional regulation. Not only ligand stimulation, 
but also the DNA binding of other transcription factors 
influences the transcriptional activity of PPARβ/δ itself 
[Khozoie et al., 2012]. However, it would be of major 
interest to complete the picture with genome-wide 
analyses in different cellular and treatment contexts. 
This would require having access to a fully reliable 
antibody. Alternatively, developing a flag-tagged 
knock-in PPARβ/δ mouse model might help to 
overcome the lack of a highly specific and efficient 
PPARβ/δ antibody. 
 
Human PPARβ/δ (PPARD) gene polymorphisms 
 
The search for human polymorphisms and their 
consequences on human physiology might reveal 
important activities of PPARβ/δ in human. 90 single 
nucleotide polymorphisms have been identified and 
listed in the NCBI reference assembly, among which 
21 SNPs have been cited in the literature. We briefly 
describe below a few polymorphisms that have been 
associated with a phenotype (see Table 3). It must be 
noted that none of the polymorphisms identified to 
date change the amino acids sequence of the protein, 
being either in untranslated regions, promoter 
sequences, intron sequences, or giving rise to a 
synonymous codon. Some studies evaluated the 
impact of such variations on PPARβ/δ expression 
levels, as mentioned in the table (Table 3), albeit no 
further mechanistic studies have been done so far. 
However, we believe that at this present time of major 
expansion of individual genome analyses, GWAS 
analyses will be significantly empowered. 
 
Skogsberg et al. [Skogsberg et al., 2003a] were the 
first to screen the proximal promoter and the 5'-UTR 
for functional polymorphisms in the human gene for 
use as tools in association studies. Four 
polymorphisms were detected: -409C/T in the 
promoter region, +73C/T in exon 1, +255A/G in exon 
3, and T+294C (rs2016520) in exon 4. The authors 
found that only the rs2016520 showed significant 
association with a metabolic trait. Homozygotes for 
the rare C allele had a higher plasma LDL–cholesterol 
concentration than homozygotes for the common T 
allele. This association was verified in an independent 
cohort of 282 healthy men. Transfection studies 
showed that the rare C allele is more efficiently 
transcribed than the common T allele. Electrophoretic 
mobility shift assays demonstrated that the T+294C 
polymorphism influenced binding of Sp-1. Using the 
West of Scotland Coronary Prevention Study 
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(WOSCOPS), the authors found that individuals 
carrying the rare PPARβ/δ T+294C allele had 
significantly lower high-density lipoprotein cholesterol 
(HDL-C) concentration than subjects homozygous for 
the common T-allele. Homozygous carriers of the C-
allele also showed a tendency towards higher risk of 
Coronary Heart Disease (CHD) compared with 
homozygous carriers of the T-allele. In addition, a 
gene–gene interaction involving T+294C 
polymorphism and the PPARα L162V polymorphism 
may influence the plasma LDL-C concentration 
[Skogsberg et al., 2003b]. Finally, a recent study on 
another PPARβ/δ polymorphism, the rs9794, 
suggested its association with hypertriglyceridemia 
[Gu et al., 2013]. 
 
In 2004, in an effort to identify polymorphic markers in 
candidate genes for type 2 diabetes and associated 
phenotypes, Shin et al. [Shin et al., 2004] identified 
nine polymorphisms in PPARβ/δ: four in the intron, 
one in the 5' untranslated region (UTR), and four in 
the 3' UTR. Among identified polymorphisms, five 
were common sites, namely c.-13454G>T, c.-87T>C, 
c.2022-12G>A, c.2629T>C and c.2806C>G. While the 
authors did not find significant associations with the 
risk of type 2 diabetes, several positive associations 
of PPARβ/δ polymorphisms with fasting plasma 
glucose and BMI were detected in non-diabetic 
control subjects [Shin et al., 2004]. Intriguingly, in a 
study encompassing more than 11000 individuals, 
association of PPARβ/δ polymorphisms with BMI, 
HDL, leptin and TNFα was positive only in a gender-
dependent manner, for example significant 
association of rs2016520 and increased HDL 
cholesterol in males, whereas HDL cholesterol tended 
to be decreased in females [Burch et al., 2010]. 
Increased risk of diabetes was also observed in 
female but not male carriers of the C allele of 
rs6902123 in a study including 769 subjects 
participating in the STOP-NIDDM trial [Andrulionyte et 
al., 2006]. Along this line, but independent of gender, 
the C allele of the T+294C polymorphism was 
associated with higher fasting plasma glucose 
concentrations in both normoglycemic and diabetic 
subjects in a study of 663 Shangaï men and women 
[Hu et al., 2006]. The same polymorphism (genotype 
CC) is associated with increased risk of coronary 
artery disease [Aberle et al., 2006; Nikitin et al., 
2010]. In other studies, association of the T+294C 
allele with the metabolic syndrome or with Type 2 
diabetes was at best suggested [Robitaille et al., 
2007] or denied [Villegas et al., 2011]. 
 
A series of studies revealed the interaction between 
polymorphisms. One in particular, is the interaction of 
PPARβ/δ polymorphisms with the gly482-to-ser 
polymorphism in PGC1α, shown to increase the risk 
for diabetes [Andrulionyte et al., 2006], or be 
associated with polycystic ovary syndrome [San-
Millan and Escobar-Morreale, 2010]. Searching for 

interaction between the three PPAR isotypes, Luo et 
al. [Luo et al., 2012] found that in the group of 820 
Chinese subjects (non obese and obese) rs2016520 
(T+294C) is associated with lower obesity risk, in 
contrast to the observations of Skogsberg et al. 
[Skogsberg et al., 2003a]. However, the authors 
pointed out that interactions among rs2016520, 
rs9794 on PPARβ/δ and rs10865170 (PPARγ) are 
associated with higher obesity risk. 
 
Because of the link between cholesterol metabolism 
and Alzheimer's disease (AD) pathogenesis, 
Holzapfel et al. [Holzapfel et al., 2006] investigated 
three frequent polymorphisms located in exons 4 
(rs2016520) and 9 (rs3734254 and rs9794) of PPARD 
for their putative influence on the risk of Alzheimer's 
disease and on cholesterol, 24S-hydroxycholesterol 
and 27-hydroxycholesterol plasma levels. The study 
population consisted of 167 AD patients and 194 
controls. No single PPARβ/δ haplotypes influenced 
the risk of AD. However, a two-marker haplotype 
consisting of rs2016520 and rs9794 in AD patients 
showed a significant effect on the relative plasma 
levels of 24S-hydroxycholesterol and 27-
hydroxycholesterol, but not in non-demented controls. 
Their results suggest that PPARβ/δ haplotypes might 
influence levels of cholesterol metabolites in AD 
patients, but not act as risk factors for AD. Indeed, a 
Finnish study showed no association between 
PPARβ/δ polymorphism and AD [Helisalmi et al., 
2008]. 
 
As described above, PPARβ/δ plays an important role 
in energy metabolism, particularly in muscle. Studies 
were therefore designed to investigate whether SNPs 
in the PPARD gene can modulate the effect of 
exercise training on aerobic physical fitness and 
insulin sensitivity. Stefan et al., genotyped and 
described in detail SNPs rs1053049, rs6902123 and 
rs2267668 in PPARD [Stefan et al., 2007]. After 9 
months of lifestyle intervention (Tuebingen Lifestyle 
Intervention Program), the minor G allele of 
rs2267668 in PPARβ/δ and the gly482-to-ser 
polymorphism in PGC1α (PPAR gamma co-activator 
1alpha) were independently associated with less 
increase in aerobic physical fitness, with a possible 
additive effect of these two SNPs. The interpretation 
is that the minor alleles of the tested PPARβ/δ SNPs 
would allow a lesser benefit from exercise and weight 
loss than the major alleles, thereby providing a 
mechanistic explanation for the reduced aerobic 
physical fitness and insulin sensitivity of these 
substances [Stefan et al., 2007]. These results are in 
line with those of Thamer et al. [Thamer et al., 2008], 
showing that SNPs rs1053049, rs6902123 and 
rs2267668 in PPARβ/δ after lifestyle intervention 
induced changes in overall adiposity, hepatic fat 
storage, and relative muscle mass. In contrast, no 
association of PPARβ/δ polymorphism with  
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SNPs  

Reference 

HGVS Names Chr 6 position Functional 

position 

Sequence Associated manifestations References 

rs1053049 *1762C>T  35395618(+) 3’ UTR CCCTAT/CGGGCG ↓ Loss of fat mass  and hepa#c lipid a'er Life 

Intervention 

Heterozygous minor allele carrier present  

↑ mRNA expression of PPARβ/δ, associated 

with ↑ADIPOR1 expression. 

[Thamer et al., 

2008]  

[Ordelheide et 

al., 2011]  

rs6902123 -102+15494T>C  35330421(+) Intron CCTGGT/CGCTGT ↑ Insulin Resistance and risk of diabetes; no 

change in mRNA expression levels. 

↑ Risk of diabetes in women 

↑ Risk of diabetes in elderly Chinese 

↓ Loss of fat mass and hepa#c lipid a'er Life 

Intervention  

[Andrulionyte et 

al., 2006] 

[Cresci, 2008]  

[Lu et al., 2012] 

[Thamer et al., 

2008]  

rs2267668  -101-842G>A 35377922(+) Intron TATCTA/GAGAGT  ↑ aerobic physical fitness and insulin 

sensitivity 

↓ Loss of fat mass a'er Life Interven#on 

 

↑ mRNA expression of PPARβ/δ  

 

Not associated with higher longevity 

[Stefan et al., 

2007] 

[Thamer et al., 

2008]  

[Ordelheide et 

al., 2011]  

[Santiago et al., 

2013]  

rs2016520 -87C>T or T+294C 35378778(-) 5’UTR 

Exon 4 

Exonic splicing 

enhancer 

ACAGGA/GTGGTT ↑ plasma LDL cholesterol ; the rare variant 

5’UTR confers higher PPARβ/δ expression 

↓ plasma cholesterol level in Alzheimer's 

disease but not in controls  

↓ plasma HDL in women; ↑ Coronary heart 

disease  

 

↑ plasma cholesterol  

 

↑ and ↓ body mass index in women and men, 

respectively. ↓ and ↑ HDL cholesterol in 

women and men, respectively. 

↓ obesity risk in Chinese Han popula#on  

↑ fas#ng insulin ↓insulin sensi#vity in 

Polycystic ovary syndrome 

 

↑ fas#ng plasma glucose  in HGT or diabe#c  

Chinese subject/ impaired insulin sensitivity  

↓ stature adults & children;  

 

Associated with elite-level endurance athletes  

 

 

↑ risk of chronic kidney disease  

[Skogsberg et al., 

2003] 

[Holzapfel et al., 

2006] 

[Aberle et al., 

2006; Nikitin et 

al., 2010]  

[Gallicchio et al., 

2008]  

[Burch et al., 

2010] 

 

[Luo et al., 2013] 

[San-Millan& 

Escobar-

Morreale, 2010]  

[Hu et al., 2006] 

 

[Burch et al., 

2009] 

[Eynon et al., 

2009] 

 

[Hishida et al., 

2013] 

 rs3734254  *1154C>T  35395010(+) 3’UTR CTGCCT/CCTCCA ↑ risk of diabetes; no change in mRNA levels 

 

No significant association with plasma 

cholesterol levels in Alzheimer patients 

[Andrulionyte et 

al., 2006]  

[Holzapfel et al., 

2006]  

rs9794  *1939G>A or 

*1939G>C  

35395795(+) 3’UTR 

Exon 9 

GCCCCA/C/GACCCG  ↓ plasma cholesterol in Alzheimer's disease 

patients   

 Hypertriglyceridemia in Chinese Han 

Population 

↓ Obesity risk in Chinese Han Popula#on 

[Holzapfel et al., 

2006]  

[Gu et al., 2013] 

 

[Luo et al., 2013] 

rs2267665  -101-9273A>G  35369491(+) Intron GTGCCG/ACACCT Significant association with susceptibility to 

Bipolar disorder using a family-based study 

[Zandi et al., 

2008] 

rs9462082 131-1863A>G 35386041(+) Intron CAGGCA/GTCCAC Significant association with susceptibility to 

Bipolar disorder using a family-based  study 

[Zandi et al., 

2008] 

rs2076167  c.489C>T 35391787(-) Exon 6 

-substitution  

N [Asn] ⇒ N 

[Asn]   

-Coding 

synonimous 

CCCTCA/GTTTGC ↑obesity risk [Saez et al., 

2008] 

rs2076168 424+264G>A or 

424+264G>T 

35389999(-) Intron GAATGA/C/TGTAAA ↓ PPARβ/δ mRNA expression of rare allele.  

PPARβ/δ basal level of expression correlates 

with slow and fast twitch markers expression. 

[Nilsson et al., 

2007]  

rs2076169  285+421A>G 35388479(-) Intron AGATTT/CTGATG ↑ insulin sensi#vity [Grarup et al., 

2007]  

Table 3. PPARβ/δ single nucleotide polymorphisms associated with disease. PPARβ/δ SNPs associated with 
diseases are listed according to SNPs Reference, Human Genome Variation Society (HGVS) nomenclature, chromosome 

and functional position. The target sequences are also reported together with the main observations on associated 
disease phenotype. 
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performance of marathon athletes was found [Tsianos 
et al., 2010], while the interaction of rs2016520 and 
Gly482-to-Ser polymorphism in PGC1α is suggested 
in elite level endurance athletes [Eynon et al., 2009]. 
 
In conclusion, some but not all studies indicate a 
significant association with either propensity for 
diabetes or obesity. These difficulties in pointing to a 
specific phenotype underline the role of PPARβ/δ as a 
subtle regulator rather than a master key in metabolic 
regulation. It is likely that the galloping development 
of the new generation sequencing technology will 
provide a wealth of difficult to handle but extremely 
rich information, particularly in the context of gene-
gene interaction studies. 
 
Conclusion and future perspectives 
 
In the present review we have summarized different 
issues surrounding PPARβ/δ trying to sum up the 
present knowledge in a systems biology-oriented 
view. The different mouse models plus the ligand 
treatment strategies, microarray, and ChIP-seq 
highlighted that PPARβ/δ plays its role in three main 
fields: i) regulation of energy metabolism, ii) cell 
proliferation and differentiation and iii) protection in 
stress conditions such as oxidative stress and 
inflammation. Whereas interest in developing new 
PPARβ/δ-based therapeutics for obesity remain, this 
is impaired by its possible use as a doping substance. 
In addition, a design for tissue-specific delivery of 
PPARβ/δ agonists would limit the systemic effects 
due to improper activation of PPARβ/δ in other 
compartments. A better understanding and 
characterization of coregulators (coactivators and/or 
corepressors) interacting with PPARβ/δ in different 
cell types will be fundamental in this regard. However, 
our knowledge about the PPARβ/δ interactome 
remains poor because of the difficulties inherent in 
generating suitable tools, such as high performance 
antibodies or modified (e.g. epitope-tagged) 
PPARβ/δ. 
 
In conclusion, while significant strides have been 
made in understanding PPARβ/δ function, a number 
of questions still remain open. Further studies are 
needed in order to better characterize this receptor in 
a more systemic manner, to strengthen the possibility 
that PPARβ/δ might be used as a therapeutic target in 
metabolic disorders, muscle endurance improvement 
and inflammation control. 
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