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Abstract: For a large ensemble of complex systems, a Many-System Problem (MSP) studies how
heterogeneity constrains and hides structural mechanisms, and how to uncover and reveal hidden
major factors from homogeneous parts. All member systems in an MSP share common governing
principles of dynamics, but differ in idiosyncratic characteristics. A typical dynamic is found
underlying response features with respect to covariate features of quantitative or qualitative data
types. Neither all-system-as-one-whole nor individual system-specific functional structures are
assumed in such response-vs-covariate (Re–Co) dynamics. We developed a computational protocol
for identifying various collections of major factors of various orders underlying Re–Co dynamics.
We first demonstrate the immanent effects of heterogeneity among member systems, which constrain
compositions of major factors and even hide essential ones. Secondly, we show that fuller collections
of major factors are discovered by breaking heterogeneity into many homogeneous parts. This
process further realizes Anderson’s “More is Different” phenomenon. We employ the categorical
nature of all features and develop a Categorical Exploratory Data Analysis (CEDA)-based major
factor selection protocol. Information theoretical measurements—conditional mutual information
and entropy—are heavily used in two selection criteria: C1—confirmable and C2—irreplaceable.
All conditional entropies are evaluated through contingency tables with algorithmically computed
reliability against the finite sample phenomenon. We study one artificially designed MSP and then
two real collectives of Major League Baseball (MLB) pitching dynamics with 62 slider pitchers and
199 fastball pitchers, respectively. Finally, our MSP data analyzing techniques are applied to resolve a
scientific issue related to the Rosenberg Self-Esteem Scale.

Keywords: CEDA; Magnus effect; conditional entropy; heterogeneity; mutual information; Rosen-
berg Self-Esteem Scale

1. Introduction

A Many-System Problem (MSP) is a scientific study involving many complex sys-
tems [1–3]. Such systems are basically governed by the same dynamic principles with many
complex tuning parameters that embrace hardly measured idiosyncratic characteristics.
This nature of MSPs can be seen in almost all scientific areas and real-world research
involving any sort of heterogeneity, such as study subjects of different ages and genders in
psychology and neuroscience [4], many distinct households in microeconomics [5], and the
well-known many-body problem in physics [6], just to name a few. It is notable that the
name MSP is inspired by the many-body problem.

Data observed from each individual system, in general, might not be large enough in
size to sustain an insightful study into its individual governing principles and characteris-
tics. Therefore, we need to aggregate all data from all systems in order to understand the
systems’ fundamental dynamics. However, as we pool all individual ID-marked data sets
into a huge data set, this data pooling generates many confounding effects due to existing
diverse aspects of dissimilarity across all systems. Such confounding effects are collectively
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termed as heterogeneity. That is, the effects of governing principles are expected to interact
with the effects of the heterogeneity contained in the data. This is the dilemma facing every
MSP, which is the topic of this paper.

In the literature of complex system study [3,6], as well as statistical physics [7], we
could not find effective approaches to coherently resolve such a dilemma in any MSPs.
One chief difficulty underlying any MSP rests on the categorical nature of data in both
response and covariate sides of system dynamics. Certainly, the system-ID is categorical.
Another chief difficulty is heterogeneity among all member systems. These two difficulties
are linked. This categorical feature naturally gives rise to multiscale issues that are closely
tied to the heterogeneity potentially existing among all member systems. First, systems’
individual and distinct characteristics as fine-scale manifestations of heterogeneity can
hardly be accommodated into any analytic equation or modeling structure in a systematic
fashion. Secondly, the effects of interactions between the system-ID and all other features
as mid-scale manifestations of heterogeneity are nearly impossible to capture precisely
in man-made system descriptions. Thirdly, some individual systems are similar, while
being dissimilar from other systems. Such similarity and dissimilarity among all involving
systems can cause large-scale manifestations of heterogeneity.

In this paper, we first design an artificial MSP that captures the above multiscale
structures and then reveals permeating effects of heterogeneity. In this example, we
clearly show how heterogeneity constrains and hides essential mechanisms, and then
how homogeneity can open up and reveal the true mechanisms. Then we turn to the real
MSPs of interest in this paper; we consider physical pitching dynamics in Major League
Baseball (MLB) in the US. A healthy starting pitcher throughout the entire season could
pitch up to or even over 3000 pitches of several pitch types. Therefore, there are only
several hundred pitches belonging to each pitch type for each pitcher. This amount of data
is unlikely to sustain a detailed study on pitch-type specific pitching dynamics. In fact,
pitching dynamics are known to be governed by the biomechanics of musculoskeletal
construction and the Magnus effect of spinning baseballs in aerodynamics [8]. There are
many parameters for each of these two governing principles.

Even though the biomechanics derived from musculoskeletal construction is more
or less the same across all MLB pitchers, slight differences via many tuning parameters
collectively make up large differences. Likewise, the Magnus effect is a universal physical
phenomenon when spinning a baseball, but there are fine-scale differences in creating
spins that will result in significantly distinct Magnus effects. This is why all pitchers are
different. Some pitchers’ pitching dynamics are closer to those of some pitchers than
others. Further, different pitch types require slightly distinct biomechanical gestures and
spinning mechanisms. As such, studying a collective of pitchers’ pitching dynamics for
biomechanical and physical governing principles is rather complicated. In this paper, we
only focus on pitch-type specific MSPs in MLB.

In this paper, we demonstrate a computational approach for effectively studying an
ensemble of pitchers’ pitch-type specific dynamic systems through two stages. In the first
stage, we resolve the following essential questions. Where are the effects of heterogeneity
in this MSP example? How do these effects come about? How do they interfere with the
effects of governing Magnus and biomechanical effects? We explicitly explore and confirm
the answers to these questions with explicit details. In a nutshell, all answers are tied to the
categorical feature of system-IDs because it is highly associative with almost all response
and covariate features.

In the second stage, after exploring and confirming the effects of heterogeneity, it is es-
sential to mitigate all aforementioned effects in order to unravel critical pattern information
on governing principles. To achieve this goal, ideally, we need to partition the ensemble
of pitchers by grouping similar pitchers into a collection of homogeneous groups, only
within which we are able to retain a large enough data set to study group-specific pitching
dynamics. Consequently, the differences among these homogeneous groups are surely
large-scale effects of heterogeneity.
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With the resulting manifestations in the two stages, we can see and appreciate the
effects of heterogeneity. These effects weave magical fabrics contained in data’s information
content. This magic phenomenon mirrors what was described by Nobel laureate physicist
P.W. Anderson [9] in his 1972 Science paper titled “More is Different”: from more data to
more relevant scales of patterns to more surprising discoveries. In this Big Data era, MSPs
are and will become even more ubiquitous in the internet. The merits of such two-stage
data analysis endeavors could be critical when studying a large collection of many complex
systems. We demonstrate such merits by resolving an interesting scientific problem related
to the Rosenberg Self-Esteem Scale in psychology and sociology [10] by analyzing a real
data set collected online.

2. Structural Formation and Major Factors in MSP

In this section, we postulate a generic structural formation for any MSP setting.
From each single complex system member of an MSP, a data point is measured and col-
lected in a L + KD vector format. Let the first L(= 2) components be measurements or
categories of the response features denoted as Y = (Y1, . . . , YL)

′ and the rest of K(= 10)
components be measurements or categories of K one-dimensional covariate features de-
noted as {V1, . . . , VK}. It is essential to note that one covariate feature, say VK, is the
categorical feature of system labels or IDs.

An unspecified complex structural relation between Y and {V1, . . . , VK} consists
of a collection of M unknown constituent mechanisms defined by M major factors
{Fm{A∗m}|m = 1, . . . , M}, in the following fashion:

Y =


Y1
Y2
...

YL

 ∼= G(F1{A∗1},F2{A∗2}, . . . ,FM{A∗M}) + ε. (1)

Here, we do not have any prior knowledge or assumptions of M, functional forms of
Fm{·}, the random noise ε, nor the governing structural function G(·). We only focus
on identifying feature memberships of each A∗m(⊂ {V1, . . . , VK}) with m = 1, . . . , M.
By acquiring these memberships, the layouts or patterns of constituent mechanisms within
dynamics underlying Y should be visible and explainable through contingency tables of
A∗m-vs-Y and

⋃
m∈S A∗m-vs-Y .

Therefore, our computational task can be simply described as: to discover the collec-
tion of major factors {A∗m|m = 1, . . . , M}. This computational task of major factor selection
primarily relies on information theoretical measures, as will be seen in the next section.

3. Methods

In this section, we first briefly review the selection protocol for the major factors under-
lying Y as proposed and illustrated in [11]. The basic foundation is the recently developed
computational paradigm called Categorical Exploratory Data Analysis (CEDA) [12,13].
The name EDA was originally coined by John Tukey [14]. The fundamental idea behind
CEDA is to let all features’ natural categories assemble freely in order to shed light on the
true pattern information contained in data. Then, we present a new efficient algorithm for
reliability checking and a generic plan for studying any Many-System Problem.

3.1. Developments of CEDA

The first step of CEDA is to categorize each response and covariate feature via its
histogram, which can be properly built using an effective algorithm developed in [15]. This
step serves to reduce the noise inherent in all measurements in order to reveal the intrinsic
categorical structure of the histogram. The second step employs a contingency table for
all developments involving information theoretical measures. The contingency table is
used as a platform for coupling multiple categorized features together to form and define
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a new composite variable. This contingency table platform also serves as a platform for
visualizing and evaluating possibly non-linear associations between any two variables.
The two directional associations are numerically evaluated through conditional (Shannon)
entropy. By properly rescaling with respect to corresponding marginal (Shannon) entropy,
a Mutual Conditional Entropy (MCE) [16] is calculated. This association measure is the
correct one when considering categorical features.

The third step of CEDA computes the conditional entropies of Y given all possible
covariate feature combinations or feature sets, since the structural categories of features
are allowed to reassemble freely in these response-vs-covariate contingency tables without
being subject to man-made constraints. This collection of all possible directional asso-
ciations should ideally contain all vital associative patterns that indicate all constituent
mechanisms underlying the designated response variable Y within an MSP. Our selection
protocol identifies exactly such a collection of major factors. Each major factor is subject to
reliability checks.

3.2. Major Factor Selection Based on Information Theoretical Measurements

In this subsection, we briefly review the approach to major factor selection based on
the information theoretical measurements proposed in [11].

All features in Y and all covariate features, denoted as Vk with k = 1, . . . , K, are
either categorical or categorized 1D covariate features. Let capital letters A or B denote
different subsets of covariate features. Within the categorical nature of all features and the
contingency table as a synthesizing platform, Y , A, and B can be treated as 1D composite
categorical variables in the fashion of each occupied hypercube in their corresponding
contingency table as a category.

Furthermore, any pair of 1D categorical features defines a contingency table, as do
any pair of 1D composite categorical variables such as (Y , A), (Y , B), and (A, B). For a
contingency table, information theoretical measurements are natural tools for discovering
associative patterns. Take (Y , A) as an example. Let all categories of Y be arranged along the
column-axis, while all categories of A are arranged along the row-axis. Then, the resultant
contingency table, denoted as < Y , A >, is constructed as a rectangle array of cell counts.
With suitable permutations on column- and row-axes, by aggregating unoccupied zero cells
as much as possible, associative patterns and relations between Y and A become graphically
visible. All information theoretical measurements used here are invariant with respect to row
and column permutations. Using a contingency table, we can still visualize the global and
large-scale pattern formations contained in < Y , A >.

The aforementioned associative patterns can in fact be numerically evaluated via
various versions of conditional entropies (CEs) by basically treating < Y , A > as a 2D
histogram of bivariate (Y , A). Given a column, say Y = y, we define a discrete conditional
variable. Its Shannon entropy is calculated on this column’s vector of proportions, i.e., cell
counts divided by its column sum, and is denoted as H[A|Y = y]. Across all rows, we
calculate the weighted sum of H[Y|A = a] with respect to the weighting scheme of row
sum proportions. This is the conditional entropy (CE), denoted as H[Y|A]. Likewise along
the column-axis, we calculate the expected CE H[A|Y|A].

The intuitive meanings of H[A|Y ] and H[Y|A] are evidently visible through their con-
tingency tables. This CE H[Y|A] conveys the amount of expected remaining uncertainty in
Y after knowing A. The CE drop H[Y ]− H[Y|A] indicates the information explained by A.
Therefore, it is natural to select the major factor based on the CE drop. It is worth empha-
sizing the fact that the conditional entropy drop indicates the shared amount information
between A and Y ; see also the review paper [17]:

H[Y ]− H[Y|A] = H[A]− H[A|Y ]
= H[A] + H[Y]− H[A,Y ]
= I[Y ; A].
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where H[A,Y ] is the joint Shannon entropy of bivariate variable (Y , A), while I[Y ; A] is
the mutual information between Y and A.

Next, consider the CE drop of bivariate (A, B) from the CE of Y . It is shown that

H[Y ]− H[Y|(A, B)] = {H[Y ]− H[Y|A] + H[Y ]− H[Y|B]}+ {I[A; B|Y ]− I[A; B]}.

This simple difference {I[A; B|Y ] − I[A; B]} indeed conveys the essence of inter-
pretable meaning of conditional mutual information and plays a key role in the fea-
ture selection protocol. Considering the case of A and B being marginally stochasti-
cally independent, which means I[A; B] = 0, the positivity of I[A; B|Y ] indicates that
the CE drop of A and B jointly is larger than the sum of the marginal ones. Similarly,
if the difference {I[A; B|Y ]− I[A; B]} is significantly larger than zero, this positiveness of
I[A; B|Y ]− I[A; B] acts like the so-called “ecological effect”; the whole is larger than the
sum of its parts. The ecological effects are essential in the process of identifying a vital
collection of major factors of Y , which offers an avenue for understanding mechanisms
underlying Y .

On the other hand, this difference I[(A, B)|Y ]− I[A; B] could be nearly zero or even
negative when A and B are highly associative. In this case, at most, either A or B may be a
candidate of major factors of Y , but not both. This choice of major factor is a conservative
way of decision-making.

Based on the concepts above, the following two criteria, “confirmable” and “irreplace-
able”, are proposed to identify a major factor of Y :

[C1: confirmable]: A feature-set A is confirmable if a feature-set Ã is obtained by sub-
stituting any one of the feature members of A with a feature that is
completely independent of Y and A; we have I[Y ; A] significantly
larger than I[Y ; Ã].

[C2: irreplaceable]: A feature-subset A is replaceable if I[Y ; A] ≤ I[Y ; A1] + I[Y ; A2] for
any compositions of A, i.e., A = A1

⋃
A2 and A1

⋂
A2 = ∅. For A to

be declared irreplaceable, we require that A is not replaceable and
simultaneously satisfies the following two extra conditions: (a) its
CE drop is larger the sum of the top ranked CE drop and at least |A|-
times its complementary feature-subset CE drop; (b) the candidate
A joined with any already identified major factor A∗m must achieve
I[Y ; A

⋃
A∗m] ≥ I[Y ; A] + I[Y ; A∗m].

The criterion [C1: confirmable] is mainly used as a reliability check. This is carried out
by Algorithm 1.

Algorithm 1: Simulate a contingency table with addition of a random noise feature.
Input: The number of categories of a random noise feature is χ, and the

contingency table CT0 of size p× q, where p is the number of outcomes of
the feature-set and q is the number of category of the response variable Y

Output: A contingency table with a random noise added, CT1 of size pχ× q
for each row in CT0 do

Initial a χ by q temporary table CT2 with all cell values being 0.
for each nonzero cell of the row do

Distribute the value of this cell into the corresponding column by the
uniform multinomial distribution.

end
Insert CT2 into CT1.

end
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As for criterion [C2: irreplaceable], the condition (a) ensures that some kind of struc-
tural dependency among all subsets of A is embraced under the constraints imposed by Y ,
not just the occurrence of ecological effects. This condition allows the following to happen:
A∗m ⊂ A∗m′ for (m, m′) with |A∗m| < |A∗m′ | and A∗m′ − A∗m = B, in the sense that B is the
complement of A∗m in A∗m′ . This selection of A∗m′ is realistic only when the CE drop of A∗m′
minus the CE drop of A∗m is many times of B’s CE drop. That is, A∗m and B have to form
some “strong” bonds under the conditioning of Y in order to jointly become a higher-order
major factor.

For the convenience of checking this condition, the difference between the CE drop
of A and the top ranked CE drop of its feature-subsets is routinely calculated. It is called
“successive CE drop” or denoted as “SCE drop” in tables.

The condition (b) again ensures the ecological effect among identified major factors.
Though obvious, it is worth mentioning the difference between conditions (a) and (b).
Condition (a) sets a very high bar for building up any high-order major factors, such as
order-3 or higher, while condition (b) only requires the fulfillment of an ecological effect
for any two major factors to coexist. That is, there still exists potential for a union of two
identified major factors to become a high-order major factor, but condition (a) is rather
hard to fulfill.

3.3. Reliability Checking Algorithm

To check the condition [C1: Confirmable], Algorithm 1 simulates a contingency ta-
ble by expanding the covariate feature-set by including an extra random-noise feature.
However, when the size of the covariate feature-set is large, the number of rows of the
contingency table becomes very large. This largeness renders the algorithm inefficient.
In this subsection, we propose a new algorithm to resolve this computing issue. This
algorithm directly estimates the mean and variance of the conditional entropies (CEs) when
expanding a covariate feature-set with an extra random-noise feature.

To achieve the goal of Algorithm 1, it suffices to estimate a CE in the case of breaking a
single row into χ rows, which is the number of bins of the random-noise feature. The final
CE estimate would be the weighted sum of the CE estimates across all the rows in the
expanded contingency table. Consider a contingency table

[
nij
]

χ×P as a random matrix.
Each column is a multinomial random variable with a uniform probability {1/χ, . . . , 1/χ}.
Let n·1, . . . , n·P be the vector of original row sums. We break each of them into χ row sums.
We have

n·j =
χ

∑
i=1

nij.

Let sample size n

n =
P

∑
j=1

n·j

and row sums ni·

ni· =
χ

∑
j=1

nij.

The goal is to obtain the distribution of the empirical conditional entropy Ĥ(Y|R):

Ĥ(Y|R) =
χ

∑
i=1

ni·
n

P

∑
j=1

(−1)
nij

ni·
log(

nij

ni·
).

with some calculations below:
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Ĥ(Y|R) =
χ

∑
i=1

ni·
n

P

∑
j=1
−

nij

ni·
log(

nij

ni·
)

= − 1
n

χ

∑
i=1

P

∑
j=1

nij log(
nij

ni·
)

= − 1
n

χ

∑
i=1

P

∑
j=1

nij log(nij) +
1
n

χ

∑
i=1

P

∑
j=1

nij log(ni·)

= − 1
n

P

∑
j=1

χ

∑
i=1

nij log(nij) +
1
n

χ

∑
i=1

ni· log(ni·) (2)

=

[
P

∑
j=1

n·j
n

χ

∑
i=1
−

nij

n·j
log(

nij

n·j
)

]
−

P

∑
j=1

n·j
n

log(
n·j
n
) +

χ

∑
i=1

ni·
n

log(
ni·
n
)

The first term of the last equation, ∑P
j=1

n·j
n ∑χ

i=1−
nij
n·j

log(
nij
n·j
) can be viewed as the

weighted empirical conditional entropy ∑P
j=1

n·j
n Ĥ(multi(n·j, [ 1

χ , . . . , 1
χ ])). The second term

−∑P
j=1

n·j
n log(

n·j
n ) is the empirical conditional entropy of {n·1, . . . , n·P}, which is a fixed

number. The last term ∑χ
i=1

ni·
n log( ni·

n ) is the empirical conditional entropy
−Ĥ(multi(n, [ 1

χ , . . . , 1
χ ])).

In practice, it is easier to use (2) to understand Ĥ(Y|R). The mean of Ĥ(Y|R) equals
the mean of ∑P

j=1 ∑χ
i=1 nij log(nij) +

1
n ∑χ

i=1 ni· log(ni·), where each term can be numerically
computed separately. For a positive integer N, let x = (x1, . . . , xχ) be the random variable
from multi(N, [ 1

χ , . . . , 1
χ ]). Define a function h(x) as

h(x) =
χ

∑
i=1

xi log(xi).

We can numerically compute the mean and variance of h(x). Denote m(N) and v(N)
as the mean of h(x) for x from multi(N, [ 1

χ , . . . , 1
χ ]). From (2), we have

E[Ĥ(Y|R)] = 1
n

[
m(N)−

P

∑
j=1

m(n·j)

]
. (3)

For the variance, there is no exact and simple form, since the row sums ni·’s are
dependent on columns. However, since the entropy of the row sums is positively correlated
to the sum of the entropies of the columns, it is safe to have ∑P

j=1 v(n·j)/n2 as the upper
bound of the variance of Ĥ(Y|R):

Var[Ĥ(Y|R)] ≤ 1
n2

P

∑
j=1

v(n·j). (4)

In practice, when there are many rows in a contingency table, the number in each cell
of the contingency table will not be large. That is, the unique numbers in the contingency
table are relatively few. Therefore, it will become efficient to estimate the mean and
variance using (3) and (4). Here we remark that the estimate of the mean by (3) is in fact
more accurate than that from Algorithm 2, and the variance estimation is usually within
1.2 times the true value from our experimental experience.
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Algorithm 2: Estimating the mean and the variance of the conditional entropy
with a random noise feature included.

Input: The number of category of a random noise h, and the contingency table
CT0 =

[
nij
]

p×q, where p is the number of outcomes of the feature-set and q
is the number of categories of the response variable Y

Output: The mean µ and the variance σ2 of the conditional entropy with a
random noise feature included.

Compute the row sums: ni· = ∑
q
j=1 nij and the total sample size: n = ∑

p
i=1 ni·

Compute A = {unique numbers from {nij}} and
B = {unique numbers from {ni·}}.

for each x in A or B do
Simulate 1000 samples from the multinomial distribution

multi(x, [1/h, . . . , 1/h]).
For each sample c = (c1, . . . , ch), compute g(c) = ∑h

i=1 ci log(ci).
Compute the mean and the variance of g(c)’s, and record them as m(x) and

v(x).
end

Compute µ = 1
n

[
∑i m(ni·) −∑i,j m(nij)

]
.

Compute σ2 = 1
n2 ∑i,j v(ij).

3.4. A Generic Plan for Studying Any Many-System Problem

How can we effectively deal with complexity and heterogeneity embedded within any
MSP? We propose the following study plan for MSPs under a framework with a designated
response variable Y and a collection of covariate features {V1, . . . , VK−1} across all the
individual systems.

MSP-1: Make the system-ID into an extra categorical feature and denote it as VK;

MSP-2: Treat the MSP as a system described by Equation (1);

MSP-3: Perform the CEDA-based feature selection protocol to identify a vital collection
of major factors, each of which is a feature-subset of {V1, . . . , VK} that satisfies
both criteria [C1: confirmable] and [C2: irreplaceable];

MSP-4: Apply the hierarchical clustering algorithm to partition the collection of systems
into homogeneous system-clusters. This clustering is undertaken based on
measurement vectors of major factors without including VK.

Here, a homogeneous system-cluster means that we find no major factors containing
VK when a system-cluster is treated and studied as a small version of MSP by going through
the steps MSP-1 to MSP-3. The collection of homogeneous system-clusters explicitly reveals
the systemwise heterogeneity. Through computational results of MSP-2 and MSP-3, we will
evidently see the interacting relationships between complexity and heterogeneity through
memberships of major factors within the original MSP under study.

The above study plan for MSPs is proposed based on experience. As expected, and
as will be demonstrated in the MLB examples, the complexity and heterogeneity of any
MSP interact with each other in many unknown ways across multiple scales. Recognizing
this leads us to adopt Equation (1) by having all the functional structures be completely
unspecified and unknown. Without knowing the global functional structure G(.) and
the component-wise structures {Fm(.)|m = 1, . . . , M}, our feature selection protocol can
freely discover “major factors of various orders” by being free from man-made structural
constraints. It is worth reiterating that this study plan works equally well for all data types.

Being free from structural and data-type constraints is critical and essential to under-
stand and resolve real-world problems reliably. That is, we can not only build understand-
ing of any complex system with a large amount of available data, but also realistically
resolve MSPs in their original forms with reliability. Especially in this Big Data era, nearly
all researchers admit that no modeling can stand true when faced with large amounts of
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data. Although the phrase: “All models are wrong, but some are more useful than others”,
still rings true, we do have one viable alternative: CEDA-based selection for major factors.

Certainly, such freedom of functional structures and universal validity for all data
types come at the cost of facing the “finite sample phenomenon”, since reliable contingency
tables can only be constructed with a limited number of covariate features, which mirror
the “curse of dimensionality”. Such a cost could result in missing high-order major factors
in MSPs. However, all data sets are finite. On the other hand, high-order major factors are
harder to confirm. Nevertheless, vital and reliable collections of low- and median-order
major factors constitute authentic intelligence when they are fully supported by visible and
explainable patterns using contingency table platforms.

4. A Designed MSP Example

In this section, we design an MSP to demonstrate the complicated effects of hetero-
geneity. It is intuitive that such effects are especially profound when many complex systems
are involved within an MSP, since a large number of constituent systems means that data
points within each category of response features are spread thinner across all system-IDs,
coupled with other covariate features. Consequently, all conditional entropy computations
within such an MSP study are prone to the finite sample phenomenon. With such intuition
in mind, we design our experimental MSP as follows.

Let the V1 be a categorical feature with 80 categorical-IDs digital coded as: 1 to 80.
These 80 ID-codes are equally divided into eight homogeneous groups defined as follows:

G1. Y = V2 + sin(2π × (V4 + V5 + V6))/2 + N(0, 1)/10,

G2. Y = V2 + sin(2π × (V3 + V5 + V6))/2 + N(0, 1)/10,

G3. Y = V2 + sin(2π × (V3 + V4 + V6))/2 + N(0, 1)/10,

G4. Y = V2 + sin(2π × (V3 + V4 + V5))/2 + N(0, 1)/10,

G5. Y = V2 + sin(2π ×U(5)[0, 1])/2 + N(0, 1)/10,

G6. Y = V2 + sin(2π ×U(6)[0, 1])/2 + N(0, 1)/10,

G7. Y = V2 + sin(2π ×U(7)[0, 1])/2 + N(0, 1)/10,

G8. Y = V2 + sin(2π ×U(8)[0, 1])/2 + N(0, 1)/10,

where, beside V1, all 11 covariate features {V2, . . . , V12} are mutually independent and
distributed according to Uni f orm[0, 1]. There are the four unobserved hidden covariates
{U(k)[0, 1]|k = 5, . . . , 8} contained in G5 through G8. That is, the six observed covariate
features {V7, . . . , V12} have nothing to do with the response variable Y and are independent
of other covariate features.

For each ID via V1, we simulate 500 (Y, V2, . . . , V12) data points. Each group contains
10 IDs, so there are 5000 data points for each of the eight groups. Based on the whole
set of 40, 000 data points, we compute all conditional entropy of Y given all possible
feature subsets of {V1, . . . , V12}. In particular, we also compute and report the successive
conditional entropy (SCE) drops of such feature subsets. Here we reiterate once more,
for a feature-set A, its SCE drop is defined as: CE drop of A (H[Y]− H[Y|A]) minus the
maximum of CE drops of all subsets of A. We report SCEs in Table 1 across one-feature
to three-feature settings. All feature-sets within all settings with more than three features
do not meet criterion [C1:confirmable]. We summarize the results derived from our major
factor selection protocol as follows.
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Table 1. Top 12 ranked successive CE drops of feature-sets across one-feature to three-feature settings
of the designed MSP. CE of Y is equal to 2.4338.

One-Feature SCE Drop Two-Feature SCE Drop Three-Feature SCE Drop

V2 0.3332 V1_V4 0.1350 V1_V4_V5 1.0734
V1 0.0106 V1_V5 0.1349 V1_V3_V6 1.0708
V11 0.0017 V1_V3 0.1336 V1_V3_V4 1.0706
V5 0.0016 V1_V6 0.1322 V1_V3_V5 1.0706
V10 0.0015 V1_V8 0.1229 V1_V4_V6 1.0682
V3 0.0014 V1_V12 0.1214 V1_V5_V6 1.0682
V8 0.0014 V1_V9 0.1213 V1_V3_V9 1.0327
V4 0.0013 V1_V10 0.1207 V1_V3_V12 1.0326
V9 0.0013 V1_V11 0.1201 V1_V4_V12 1.0308
V6 0.0013 V1_V7 0.1193 V1_V5_V12 1.0300
V12 0.0012 V1_V2 0.1035 V1_V3_V10 1.0300
V7 0.0011 V10_V11 0.0194 V1_V5_V9 1.0289

Selection of Major Factors in the Designed MSP

1 In the one-feature setting of Table 1, V2 achieves the smallest CE with the largest CE
drop: 0.3332. We surely recognize V2 as the potential candidate for order-1 major
factor. In contrast, V1 achieves the second ranked CE with a CE drop of 0.0106, which is
significantly less than that of V2, but it is almost 10 times the CE drop of any of the rest
of the 10 features, including the four features {V3, . . . , V6} involving G1 through G4, all
of which achieve tiny CE drops around 0.001. In fact, V1 does not meet criterion [C1:
confirmable], since its CE, 2.4231, is beyond the center of CE distribution of ε (having 80
categories) with mean 2.4229 and sd = 5.2654× 10−4. Therefore, V1 is not a candidate
of order-1 major factor. Furthermore, no individual feature of {V3, . . . , V12}meets the
criterion [C1: confirmable].

2 In the two-feature setting, we can see that the first 11 pairs of the 12 ranked SCEs are
made of V1 coupling with {V2, . . . , V12}, and their SCEs are all many times larger than
their corresponding individual CE drops. Therefore, all these feature-pairs satisfy the
criterion [C2: irreplaceable]. However, even the top four pairs, V1_V3, V1_V4, V1_V5 and
V1_V6, do not meet criterion [C1: confirmable]. Through Algorithm 2, the distribution
of CEs of (V1, ε) is found to have a mean of 2.2894 and an SD of 0.0019. The CE of V1_V3,
2.2895, is slightly larger than the mean. This is partly due to the fact that there are 80
categories of V1. Thus, there are no confirmed candidates of order-2 major factors. It is
notable that the pair (V1, V2) achieves a SCE of 0.1035, which is about 10 times as large
as the CE drop achieved by V1. That is, by satisfying the ecological effect, V2 and V1
can be order-1 major factors simultaneously.

3 In the three-feature setting, the top six feature triplets are V1 coupling any pairs of
{V3, V4, V5, V6}. They achieve SCEs that satisfy criterion [C2: irreplaceable], but they
do not fulfill the criterion [C1: confirmable]. The CEs of these triplets, which range
between 1.2146 and 1.2198, are all larger than the mean (1.2051) of the distribution
of the CEs of (V1, V3, ε). Therefore, there are no confirmed candidates for order-3
major factors.

4 In the four-feature setting, the four feature quartets, V1 coupling any triplets of {V3, V4, V5, V6},
do not meet the criterion [C1: confirmable].

From the above summary, it becomes evident that the effects of heterogeneity of V1
permeate and blur candidacies of order-2 and order-3 major factors. Such blurred pictures
are primarily due to the finite sample phenomenon. That is, the heterogeneity causes the
loss of full views of the true underlying mechanisms. Accordingly, based on results from
our major factor selection protocol, we conclude that the chief collection of major factors is
{V2} and there are no alternative collections.
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Next, we proceed with the decomposition of the whole data set’s heterogeneity into
homogeneous parts. Indeed, as shown in Figure 1, G1 to G8 are correctly identified on
a heatmap clustering 80IDs’ vectors of means pertaining to the 11 features. When the
exclusive data of G1 through G8 are analyzed separately, we can precisely confirm major
factors of various orders underlying each of the eight groups. The order-1 major factor V2 is
confirmed, but no candidates of order-2 major factors are confirmed across the eight groups.
As for potential candidate order-3 major factors, for instance in G1, the feature-triplet
(V4, V5, V6) achieves a CE of 1.0432, satisfying the criterion [C2: irreplaceable], and meets
[C1: confirmable] in the following fashion. By applying Algorithm 2, this triplet’s CE is
more than 10 SD below the CE distribution of (V4, V5, ε) with mean 1.1094 and SD 0.0058,
where ε is a uniform noise feature. Likewise, we confirm the order-3 major factors in G2
through G4, respectively. We summarize the results of our major factor selection within
this designed MSP in Table 2. It is noted that the results of G6, G7, and G8 are identical to
those of G5.

Figure 1. Clustering on 80 IDs’ vectors of means of 11 features.

Table 2. Designed MSP: comparisons of collections of major factors based on the whole data set with
heterogeneity and homogeneous groups.

Whole or Group Order-1 MF Order-3 MF Alternative MF

Whole-data V2 none confirmed none confirmed
G1 V2 (V4, V5, V6) none confirmed
G2 V2 (V3, V5, V6) none confirmed
G3 V2 (V3, V4, V6) none confirmed
G4 V2 (V3, V4, V5) none confirmed
G5 V2 none confirmed none confirmed

5. MLB’s Two MSPs: Sliders and Fastballs

In this section, we study Major League Baseball (MLB) pitching dynamics from an
MSP perspective.

MLB owns two databases, namely PITCHf/x and Statcast, that record every pitch
delivered in all MLB games since 2006. In this paper, we study two large real-world MSPs
of slider and fastball pitching dynamics in the 2017 season. From the PITCHf/x database,
we select all pitchers who have pitched more than 500 sliders or fastballs, respectively.
There are 62 slider pitchers and 199 fastball pitchers that meet this 500 pitches criterion.
The pitch-ID is denoted as pitN.

In a structured data format, biomechanical and physical features include a pitched
baseball’s releasing coordinates {x0, z0}, speeds {vX0, vY0, vZ0, }, and accelerations
{aX, aY, aZ} along the horizontal (X−), vertical (Z−), and pitcher-to-catcher (Y−) di-
rections. The feature of starting speed denoted by startSp is very close to vY0. Two
features are measured for each pitch’s spin information: spin direction spinD and spin
rate spinR. The aforementioned features are the covariate features of pitching dynamics
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measured around the pitcher mound, while the two features measured around the home
plate, horizontal and vertical movements denoted by p f xx and p f xz, are designated as a
2D response variable Y = (p f xx, p f xz). In both pitch-type specific MSPs, each pitching
dynamic of (p f xx, p f xz) is found to be dominated by (aX, aZ) under the presence of pitN.
Therefore, we use (aX, aZ) = Y as a 2D response variable against the remaining covariate
features to further explore the effects of pitN. All aforementioned features, except pitN, are
quantitative and undergo categorization. All categorized features retain the same names
throughout this paper.

MLB pitching dynamics are basically governed by biomechanical forces in the X, Y,
and Z directions, coupled with the Magnus effect of the “spinning baseball” created by
the friction between the pitcher’s fingers and the baseball surface, and the gravity of earth.
The Magnus effect is a 3D force constantly acting on the baseball with a 2D direction on
the 2D disk that is perpendicular to the baseball’s trajectory at all time. Its 2D direction is
measured by spin direction (spinD), while its stability is determined by spin rate (spinR)
and various directional speeds, accelerations, and other elements. It is not an easy task
to clearly separate the force due to the Magnus effect from the biomechanical ones in
pitching dynamics.

Different pitch types require different kinds of spinning. Back-spinning in fastballs
persistently shows four or two seams rotating backward when viewed from the catcher or
batter’s perspective. This is a natural type of spin that can be easily created. Its Magnus
effect points upward against gravity. The top-spinning in curveballs shows seams rotating
forward instead. Its Magnus effect points downward to the ground and adds to gravity.
Sliders are slower than fastballs, but much faster than curveballs in speed. Their spinning
direction has a much wider range than fastballs and the curveballs. That is, the Magnus
effect makes sliders have wider ranges of vertical movement (measured and denoted by
p f xZ) and horizontal movement (measured and denoted by p f xX) than that of fastballs
and curveballs.

These two measurements measured around the home plate are critical to pitchers
when trying to effectively deal with batters. Therefore, we first designate (p f xZ, p f xX)
as the 2D response variable. Then, the MSP of interest can be very precisely depicted as
the fundamental question: what are the major factors underlying (p f xZ, p f xX) among
many pitchers? This description does not mean that the identified collection of major
factors would manifest and separate Magnus effects and biomechanical forces in a clear-cut
fashion. On the contrary, the collective of major factors only reveals major factors that most
directly cause the designated response variable. That is, major factors are very sensitive to
the choice of response variables.

For the two focal pitch types in the 2017 MLB season, there are 62 slider pitchers
and 199 fastball pitchers who pass the 500 pitches threshold. We have a 2D response
variable Y = (p f xZ, p f xX) and 12 covariate features that all are measured around the
pitcher’s mound.

5.1. Sliders MSP

A heatmap and a network of MCE-based associative patterns of these 14 features,
responses, and covariates are given in panels (A) and (B) of Figure 2. It is clear that feature-
pairs (p f xX, aX) and (p f xZ, aZ) are highly associative, while aX and aZ are not. Based
on the heatmap and network, we clearly see diverse associative patterns among these
14 features.

We computed conditional entropies for all possible combinations of 12 covariate
features. The resultant table is too large to be included entirely. Thus, we report only top-
ranked CEs up to five-feature setting in Table 3 and SCE drops up to four-feature setting
in Table 4. These two formats of tables are used throughout the three MLB-related MSPs
for expositional efficiency of showing potential candidates of major factors. However, our
search for feature selection of major factors is conducted based on all possible feature-sets.
We summarize patterns from our feature selection protocol and list our reasoning based on
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the criteria [C1:confirmable] and [C2:irreplaceable] across all feature settings. The CE of Y
is calculated as 4.6890.
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Figure 2. Associative patterns of sliders among 14 features: (A) heatmap based on MCE-matrix;
(B) network built with linkages with thickness proportional to one minus pairwise MCE and subject
to a threshold 0.2 (=1.0 −MCE).

Table 3. Sliders: 12 top ranked CEs of five settings of feature-sets for response variable Y =

(p f xX , p f xZ). CE of Y is 4.6890.

One-Feature CE Two-Feature CE Three-Feature CE Four-Feature CE Five-Feature CE

aX 2.7631 aZ_aX 0.9264 aZ_aX_pitN 0.6617 aY_aZ_aX_pitN 0.3694 aY_aZ_vZ0_aX_pitN 0.1070
aZ 2.8121 aX_spinD 1.8411 aZ_vY0_aX 0.6922 aZ_vZ0_aX_pitN 0.3726 aY_aZ_vZ0_z0_aX 0.1313

spinD 3.0063 aZ_spinD 1.8678 aZ_aX_startSp 0.6946 aZ_vY0_aX_pitN 0.4377 aY_aZ_vY0_vZ0_aX 0.1400
pitN 3.5526 aZ_pitN 1.9508 aZ_aX_spinR 0.8216 aZ_aX_startSp_pitN 0.4390 aY_aZ_vZ0_aX_startSp 0.1430

x0 4.3582 aX_pitN 2.1953 aZ_z0_aX 0.8238 aZ_aX_spinR_pitN 0.4537 aY_aZ_vY0_z0_aX 0.1439
vX0 4.3719 spinD_pitN 2.4467 aY_aZ_aX 0.8251 aZ_vY0_vZ0_aX 0.4596 aY_aZ_z0_aX_startSp 0.1448

startSp 4.4369 aZ_vX0 2.4929 aZ_vZ0_aX 0.8342 aZ_vY0_z0_aX 0.4603 aZ_vY0_vZ0_z0_aX 0.1479
vY0 4.4392 aZ_x0 2.4961 aZ_vX0_aX 0.8388 aZ_z0_aX_startSp 0.4618 aZ_vZ0_z0_aX_startSp 0.1485
vZ0 4.5399 aZ_vY0 2.5263 aZ_x0_aX 0.8505 aZ_vZ0_aX_startSp 0.4627 aY_aZ_vZ0_aX_spinR 0.1538

spinR 4.5482 aZ_startSp 2.5290 aZ_aX_spinD 0.8845 aY_aZ_vY0_aX 0.4635 aY_aZ_z0_aX_spinR 0.1556
z0 4.6012 aX_startSp 2.5462 aZ_spinD_pitN 1.3791 aZ_vX0_aX_pitN 0.4640 aY_aZ_vY0_aX_pitN 0.1575
aY 4.6261 vY0_aX 2.5463 aY_aZ_pitN 1.4649 aY_aZ_aX_startSp 0.4663 aY_aZ_aX_startSp_pitN 0.1594

Table 4. Sliders: 12 top ranked CE drops of four settings of feature-sets for the response variable
Y = (p f xX , p f xZ).

One-Feature SCE Drop Two-Feature SCE Drop Three-Feature SCE Drop Four-Feature SCE Drop

aX 1.9261 aZ_aX 1.8367 aY_vZ0_pitN 1.1533 aY_vY0_vZ0_z0 1.6601
aZ 1.8771 aZ_spinD 0.9443 aY_vZ0_z0 1.0929 aY_vZ0_z0_spinR 1.6535

spinD 1.6829 aX_spinD 0.9220 vZ0_z0_spinR 1.0343 aY_vZ0_z0_startSp 1.6521
pitN 1.1366 aZ_pitN 0.8614 aY_z0_spinR 1.0241 aY_vX0_vZ0_z0 1.6374

x0 0.3310 aX_pitN 0.5679 aY_vZ0_spinR 1.0032 aY_vX0_vZ0_spinR 1.6105
vX0 0.3173 spinD_pitN 0.5595 vY0_vZ0_z0 0.9929 aY_vY0_vZ0_spinR 1.5936

startSp 0.2523 vZ0_pitN 0.4544 vZ0_z0_startSp 0.9863 aY_vZ0_spinR_startSp 1.5859
vY0 0.2500 aY_pitN 0.4456 aY_vY0_z0 0.9850 aY_vY0_z0_spinR 1.5651
vZ0 0.1493 spinR_startSp 0.3788 aY_vX0_z0 0.9798 aY_vX0_vY0_z0 1.5645

spinR 0.1410 vY0_spinR 0.3772 aY_z0_startSp 0.9784 aY_vX0_z0_spinR 1.5644
z0 0.0880 vX0_startSp 0.3728 aY_vY0_vZ0 0.9674 vY0_vZ0_z0_spinR 1.5629
aY 0.0631 vX0_vY0 0.3722 aY_vZ0_startSp 0.9589 aY_vX0_vY0_vZ0 1.5616
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1: In the one-feature setting, we see four features—{spinD, aX, pitN, aZ}—that achieve
CE drops more than 1.1000. They are potential candidates of order-1 major factors.
Among these four features, {spinD, aX, pitN} are moderately associated based on
Figure 2A,B. This fact would significantly reduce their potentials to simultaneously be
order-1 major factors.

2: Considering the two-feature setting, the feature-pair (aX, aZ) achieves the lowest CE,
0.9264, and meets the criterion [C1: confirmable], see Figure 3A. However, its CE drop,
3.7626, is almost equal to the sum of individual CE drops of aX and aZ: 3.8032. Even
though, based on Figure 2A,B, aX and aZ are not moderately dependent to each other,
this observation of I[aX; aZ|Y ] ≤ I[aX; aZ] strongly indicates that both can not be
order-1 major factors simultaneously. Certainly, the feature-pair (aX, aZ) is not an
order-2 major factor because of the criterion [C2:irreplaceable]. In fact, the rest of five
feature-pairs derived from {spinD, aX, pitN, aZ} share the same situations, such as
(aX, aZ).

Four feature-pairs (aY, pitN), (z0, pitN), (spinR, pitN) and (vZ0, pitN), which are
formed by coupling pitN with one member of feature-set{aY, vZ0, spinR, z0}, are poten-
tial candidates for order-2 major factors. In fact, they meet the criterion [C1:confirmable],
and their SCE drops from pitN, respectively, are six and three times the individual CE drops
of aY, z0, spinR, and vZ0. We also find the 10 pairs {aY, z0}×{x0, vY0, vX0, vZ0, spinR}
and (aY, z0) are also candidates of order-2 major factors, satisfying the two criteria. Here
we use the threshold of “3 times” in condition (a) of criterion [C2:irreplaceable], while
the two pairs (spinR, vY0) and (spinR, startSp) are excluded, since their SCE drops are
0.3788 and 0.3772 from either vY0 or spartSp, which are at most 2.5 times the individual
CE drop of spinR.

If we accept any of these 15 as order-2 major factors, then we consequently decide
which one {spinD, aX, pitN, aZ} is an order-1 major factor subject to the criterion
[C2:irreplaceable]. For example, if we pick (aY, vZ0) as an order-2 major factor, then
only aX, aZ, and pitN are qualified to be order-1 major factors. The collections
{aX, (aY, vZ0)} and {aZ, (aY, vZ0)} achieve CE values 2.2452 and 2.3466, respectively.
Both collections meet the [C1:confirmable] criterion.

In contrast, it is interesting and important to note that, though the collection
{pitN, (aY, vZ0)} achieves a CE value 1.9449, which is smaller than the aforemen-
tioned collections, it does not meet the [C1:confirmable] criterion. By applying Algo-
rithm 2, the simulated CE distribution of (pitN, vZ0, ξ) has a mean value 1.7586 and an
SD of 1.9830× 10−3. The underlying reason is the finite sample phenomenon caused
by the 62 categories of pitN. The effect of this finite sample phenomenon becomes less
when the ensemble of 62 pitchers is partitioned into groups.

If we pick (vY0, z0) as an order-2 major factor, then only aZ and pitN are qualified to
be order-1 major factors. The collection {aZ, (vY0, z0)} achieves a CE value 2.1633,
while the collection {pitN, (vY0, z0)} achieves a CE value 2.6462.

If we pick either (vZ0, z0) or (spinR, z0) as an order-2 major factor, then aX, aZ, pitN,
and spinD are qualified to be order-1 major factors. The two collections {aX, (vZ0, z0)}
and {aZ, (spinR, z0)}, respectively, achieve the smallest CE values of 2.2224 and 2.2534
within the two packs of the four collections.

3: In the 3-feature setting, the top 10 feature triplets have achieved rather uniform CEs,
while the 12 ranked triplets have rather uniform SCE drops. Such uniformness is
likely a sign of the finite sample phenomenon. Hence, it becomes necessary to test
whether our feature selection should stop before the three-feature setting. This testing
is first performed on the triplet (aZ, vY0, aX). It indeed meets the [C1:confirmable]
criterion; see panel (B) of Figure 3. However, it is far from meeting the criterion
[C2:irreplaceable].

As for triplet (aY, vZ0, pitN), it achieves the largest SCE drop and seemingly has potential
to be order-3 major factor. However, it is not, due to the criterion [C2:irreplaceable].
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The reason is this is that triplet (aY, vZ0, pitN) is a union of (aY, pitN) and (vZ0, pitN)
with individual CE drops of 1.5820 and 1.5908, respectively. The sum of both CE
drops, 3.1728, is much larger than the CE drop of the triplet: 2.7441(= 4.6890− 1.9449).
Despite this, as indicated above, the collection {pitN, (aY, vZ0)} is a valid one. That
is, it takes much more to become a high order major factor.

In contrast, the remaining 11 triplets achieve rank 2 to 12 successive CE drops in
Table 4, such as {aY, vZ0, z0}, do not meet the criterion [C1:confirmable]; see Figure 3C.
In conclusion, there are no order-3 major factors confirmed.

4: In four-feature setting, the top two quartets (aZ, aY, aX, pitN) and (aZ, vZ0, aX, pitN)
achieve the lowest CE. They consist of three potential order-1 major factors, aX, aZ,
pitN, so they do not meet the criterion [C2:irreplaceable]. Similar reasoning is appli-
cable to the quartets (aZ, vY0, aX, pitN), (aZ, startSp, aX, pitN), (aZ, aY, aX, startSp),
and (aZ, z0, aX, vY0).

5: In the 5-, 6- and 7-feature settings, they fail to meet the criterion [C1:confirmable] due to the
finite sample phenomenon. For instance, if we collect members of confirmed potential major
factors of all orders, we arrive at a seven-feature set (aZ, aX, vY0, vZ0, pitN, spinR, aY).
THis indeed achieves the lowest CE in the seven-feature setting. However, it does not
meet the criterion [C1:confirmable], since, according to Algorithm 2, its CE of 0.0236 is far
beyond the range of the simulated CE distribution of (aZ, aX, vY0, vZ0, pitN, spinR, ξ),
with mean 8.9602× 10−3 and SD 5.8219× 10−4.
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Figure 3. Testing for [C1: confirmable] on Y = (p f xX , p f xZ): (A) (aX, aZ) (red-marked) against his-
togram of (aX, ξ); (B) (aX, aZ, pitN) and (aX, aZ, vY0) (red-marked) against histogram of (aX, aZ, ξ);
(C) (vZ0, z0, aY) (red-marked) against histogram of (vZ0, z0, ξ).

From the above feature-selection, we identify {aZ, (vY0, z0)} as the chief collection of
major factors of Y = (p f xX, p f xZ), and two alternative collections: {aX, (vZ0, z0)} and
{aX, (vZ0, aY)}. These three collections contain one order-1 and one order-2 major factor.
We found no order-3 or higher orders. Each order-1 major factor, either aZ or aX, within any
of these three collections contributes significantly more than its corresponding order-2 major
factor. If the fourth alternative collection is needed, then it would be {aZ, (spinR, z0)}.

It is also evident that the effect of heterogeneity is not explicitly present because of
pitN is not selected as an order-1 major factor, while the Magnus effect is also not visible,
since spinD is not selected as one of order-1 major factors in the three selected collections.
However, collections such as {spinD, (vZ0, z0)} and {spinD, (spinR, z0)} are not selected
because their CE values are much higher than the selected ones.

Finally, all these collections of major factors of Y = (p f xX , p f xZ) involve two features
of four aspects of the pitching dynamics: (1) the acceleration in the Y-direction (aY), (2) the
vertical releasing speed (vZ0), (3) spin rate spinR, (4) the vertical coordinate of the releasing
point z0. This fact collectively indicates that our understanding of the underlying dynamics
of Y = (p f xX , p f xZ) should be derived from multiple perspectives. It is also evident that
the effect of spinR is not ignorable; nonetheless, it is definitely not the primary effect.
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On the other hand, aX and aZ seem to play key roles in Y = (p f xX , p f xZ). This pair
achieves a CE drop of 3.7626 from a CE of Y : 4.6890. In contrast, the chief and alternative
collections of major factors of Y = (p f xX , p f xZ) have CE drops of about or less than 2.6890.
That is, we need to further investigate by using Y = (aX, aZ) for the 25% unexplained CE
beyond our collections of major factors.

Another motivation for looking at the dynamics of Y = (aX, aZ) is the fact that the
significance of the Magnus effect is not evidently reflected in the collections of identified major
factors of Y = (p f xX , p f xZ). In fact, the spin direction (spinD) is not a primary member of
the identified collections of major factors. Obvious reasons might be that this 2D response
variable is highly and directly associated with aX, aZ and the heterogeneous effect via pitN.
That is, the Magnus effect and the heterogeneity effect have likely been overshadowed by aX
and aZ. To further investigate this speculation, we need to conduct another study via feature
selection for major factors of response variable Y = (aX, aZ).

There are 10 covariate features for this investigation in the same MSP of 62 slider pitchers.
Likewise we compute all CEs for all possible combinations of 10 features. We report up top 10
CE values across five feature-settings in Table 5 and the top 10 SCE drops in Table 6 across four
feature-settings. Computational results of feature selection for major factors are summarized
below starting from one-feature setting to five-feature setting. The CE of Y is 4.7213.

Table 5. Sliders: 10 top ranked CEs of five settings of feature-sets for the response variable Y =

(aX, aZ). CE of Y is 4.7213.

One-Feature CE Two-Feature CE Three-Feature CE Four-Feature CE Five-Feature CE

spinD 3.0301 spinD_pitN 2.4891 aY_vZ0_pitN 1.9577 aY_vZ0_spinR_pitN 0.9624 aY_vY0_vZ0_spinR_pitN 0.3837
pitN 3.6086 vX0_spinD 2.8168 vZ0_spinD_pitN 1.9577 aY_vZ0_spinD_pitN 0.9732 aY_vZ0_spinR_startSp_pitN 0.3873

x0 4.3981 x0_spinD 2.8689 aY_spinD_pitN 1.9657 aY_vY0_vZ0_pitN 0.9867 aY_vX0_vZ0_spinR_pitN 0.3922
vX0 4.4110 vZ0_spinD 2.8779 vX0_spinD_pitN 2.1228 aY_vZ0_startSp_pitN 0.9961 aY_vX0_vZ0_z0_spinR 0.4034

startSp 4.4923 spinD_startSp 2.8848 spinD_startSp_pitN 2.1355 aY_vX0_vZ0_pitN 1.0258 aY_vY0_vZ0_z0_spinR 0.4053
vY0 4.4950 vY0_spinD 2.8854 vY0_spinD_pitN 2.1387 aY_vZ0_z0_pitN 1.0853 aY_vZ0_spinR_spinD_pitN 0.4074
vZ0 4.5698 spinR_spinD 2.9170 spinR_spinD_pitN 2.1541 aY_vX0_spinD_pitN 1.2414 aY_vZ0_z0_spinR_startSp 0.4098

spinR 4.5811 z0_spinD 2.9294 z0_spinD_pitN 2.1892 aY_spinR_spinD_pitN 1.2517 aY_vX0_vY0_vZ0_pitN 0.4125
z0 4.6370 aY_spinD 2.9413 aY_spinR_pitN 2.2981 vZ0_spinR_spinD_pitN 1.2582 aY_vX0_vY0_vZ0_z0 0.4153
aY 4.6526 vZ0_pitN 3.1350 vZ0_spinR_pitN 2.3014 vY0_vZ0_spinD_pitN 1.2639 aY_vX0_vZ0_startSpeed_pitN 0.4176

Table 6. Sliders: 10 top ranked CE drops of four settings of feature-sets for the response variable
Y = (aX, aZ).

One-Feature SCE Drop Two-Feature SCE Drop Three-Feature SCE Drop Four-Feature SCE Drop

spinD 1.6912 spinD_pitN 0.5410 aY_vZ0_pitN 1.1774 aY_vY0_vZ0_z0 1.6804
pitN 1.1127 vZ0_pitN 0.4736 aY_vZ0_z0 1.1105 aY_vZ0_z0_startSp 1.6727

x0 0.3233 aY_pitN 0.4644 vZ0_z0_spinR 1.0418 aY_vZ0_z0_spinR 1.6705
vX0 0.3104 spinR_startSp 0.3855 aY_z0_spinR 1.0417 aY_vX0_vZ0_z0 1.6459

startSp 0.2290 vY0_spinR 0.3832 aY_vZ0_spinR 1.0220 aY_vX0_vZ0_spinR 1.6207
vY0 0.2263 vX0_startSp 0.3641 vY0_vZ0_z0 1.0173 aY_vY0_vZ0_spinR 1.6133
vZ0 0.1515 vX0_vY0 0.3627 aY_vY0_z0 1.0129 aY_vZ0_spinR_startSp 1.6066

spinR 0.1402 x0_startSp 0.3625 vZ0_z0_startSp 1.0103 aY_vY0_z0_spinR 1.5845
z0 0.0844 vY0_x0 0.3597 aY_z0_startSp 1.0040 vY0_vZ0_z0_spinR 1.5809
aY 0.0687 vX0_spinR 0.3530 aY_vX0_z0 0.9978 aY_vX0_z0_spinR 1.5770

1 In the one-feature setting, spinD and pitN achieve the top two lowest CEs. Their CE
drops, 1.6912 and 1.1127, respectively, are many time larger than the rest of eight
features’ CE drops. However, we do not expect them to become two separate order-1
major factors due to their moderate mutual association. This can be seen through
the fact that the feature-pair (spinD, pitN) achieves a SCE drop of 0.5410 from spinD,
which is less than half the CE drop of pitN. Again, the selection of an order-1 major
factor is highly dependent on the selection of order-2 major factors.
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2 Considering the two-feature setting, the three feature-pairs: pitN coupled with one
member of feature-set {aY, vZ0, z0} have SCE drops at least three times the CE drop of
aY, z0, and vZ0, respectively. They satisfy the criterion [C2: irreplaceable] and meet the
criterion [C1:confirmable]. We also have 10 pairs, {aY, z0}×{x0, vY0, vX0, vZ0, spinR},
and (aY, z0), that fulfill the two criteria. They are potential candidates for order-2 ma-
jor factors. Any of them could become an order-2 major factors depending on which
order-1 major factor is selected.

With respect to all order-1 and order-2 candidates for major factors, we select the
collection {spinD, (vZ0, z0)} as the chief collection of major factors of Y = (aX, aZ).
We also select two alternative collections:{spinD, (aY, vZ0)} and {spinD, (aY, z0)}. All
candidate collections involve pitN, and the aforementioned candidates of order-2 major
factors can not meet the criterion [C1:confirmable] under the three-feature setting.

3 In the three-feature setting, all top 10 triplets of CEs involve pitN, while seven out of
ten involve the spinD. These 10 triplets are not the top 10 of CE drops and they achieve
rather uniform CEs. According to Algorithm 2, they all fail to meet the criterion
[C1:confirmable]. For example, the triplet (vZ0, pitN, aY) achieves the lowest CE
of 1.9577 in this three-feature setting. This CE value is far beyond the range of the
simulated CE distribution of (vZ0, pitN, ξ), with mean 1.7702 and SD 1.9173× 10−3.

4 Regarding the four- and five-settings, they achieve rather uniform CEs. This is a sign of
the effect of the finite sample phenomenon. That is, based on Algorithm 2, they all fail
to meet the criterion [C1:confirmable]. For example, (vZ0, spinR, pitN, aY) has a CE of
0.9624, far beyond the range of the simulated CE distribution of (vZ0, spinR, pitN, ξ),
with mean 0.7718 and SD 1.172166× 10−3. Furthermore, (vY0, vZ0, spinR, pitN, aY)
has a CE of 0.3837, far beyond the range of the simulated CE distribution of
(vY0, vZ0, spinR, pitN, ξ), with mean 0.2649 and SD 7.378123× 10−4.

Our conclusion in this investigation where Y = (ax, az) is that the fact that the
three collections have spinD as the order-1 major factor is rather natural based on general
knowledge of pitching dynamics. The three members of order-2 major factors are pairs
from {z0, aY, vZ0}. That is, the biomechanical features do play some important roles
underlying the dynamics of Y = (ax, az). Further, the effects of heterogeneity within this
collective of 62 slider pitchers systems seem evidently overshadowed by the finite sample
phenomenon in the three-feature setting and beyond, though these effects are reflected
through presences of multiple candidates of order-2 major factors.

5.2. Fastballs: 199 Pitchers

The MSP of fastballs in the 2017 MLB season consists of 199 pitchers with 14 features.
In the two panels of Figure 4, the heatmap and the network based on the 14× 14 MCE
matrix reveal again that feature-pairs (p f xX, aX) and (p f xZ, aZ) are highly associative,
but that the pair (aX, aZ) is not.

Again, we first consider the 2D bivariate response variable Y = (p f xX , p f xZ). The CE
of Y is calculated as 4.7167. According to the two criteria [C1: confirmable] and [C2:
irreplaceable], we summarize our feature selection for major factors of Y = (p f xX , p f xZ)
based on the CEs of all the possible feature-sets from the 12 covariate features. Only the
top ranked CEs and SCE drops are reported in Tables 7 and 8.
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Figure 4. Associative patterns of fastballs among 14 features: (A) heatmap based on MCE-matrix;
(B) network built with linkages with thickness proportional to one minus pairwise MCE and subject
to a threshold 0.2 (= 1.0−MCE).

Table 7. Fastballs: 12 top ranked CE of five settings of feature-sets for the response variable Y =

(p f xX , p f xZ). The CE of Y is 4.7167.

One-Feature CE Two-Feature CE Three-Feature CE Four-Feature CE Five-Feature CE

spinD 2.9688 aZ_aX 1.7424 aZ_vY0_aX 1.0888 aZ_vY0_aX_pitN 0.7295 aY_aZ_vZ0_spinR_pitN 0.2540
aX 2.9935 aZ_spinD 1.9326 aZ_aX_startSp 1.1046 aZ_vZ0_aX_pitN 0.7318 aY_aZ_vZ0_aX_pitN 0.2638

pitN 3.5048 aZ_pitN 2.0718 aZ_aX_pitN 1.1695 aZ_aX_startSp_pitN 0.7407 aY_aZ_vY0_vZ0_pitN 0.2763
aZ 3.5102 aX_spinD 2.4713 aZ_spinD_pitN 1.2602 aY_aZ_vZ0_pitN 0.7540 aY_aZ_vZ0_startSp_pitN 0.2806

vX0 4.0981 spinD_pitN 2.5521 aZ_vY0_spinD 1.2951 aY_aZ_aX_pitN 0.7687 aZ_vY0_vZ0_aX_pitN 0.2944
x0 4.1266 aX_pitN 2.5772 aZ_spinD_startSp 1.3106 aZ_vZ0_spinD_pitN 0.8125 aZ_vZ0_aX_startSp_pitN 0.2984
aY 4.5772 vX0_spinD 2.8220 aZ_vZ0_pitN 1.5956 aZ_vY0_spinD_pitN 0.8190 aY_aZ_vZ0_spinD_pitN 0.3062

vZ0 4.5960 aY_spinD 2.8287 aZ_vY0_pitN 1.5965 aZ_aX_spinR_pitN 0.8211 aZ_vZ0_aX_spinR_pitN 0.3080
z0 4.6173 aZ_vY0 2.8443 aZ_startSp_pitN 1.6070 aZ_spinD_startSp_pitN 0.8293 aY_aZ_vY0_aX_pitN 0.3249

spinR 4.6676 aY_aX 2.8474 aY_aZ_pitN 1.6196 aY_aZ_spinD_pitN 0.8453 aY_aZ_aX_startSp_pitN 0.3306
startSp 4.6728 vZ0_spinD 2.8520 aZ_aX_spinD 1.6315 aZ_vZ0_spinR_pitN 0.8567 aY_aZ_vX0_vZ0_pitN 0.3307

vY0 4.6740 aZ_startSp 2.8558 aY_aZ_aX 1.6560 aZ_vY0_vZ0_pitN 0.8660 aZ_vY0_vZ0_spinR_pitN 0.3348

Table 8. Fastballs: 12 top ranked CE drops of four settings of feature-sets for the response variable
Y = (p f xX , p f xZ).

One-Feature SCE Drop Two-Feature SCE Drop Three-Feature SCE Drop Four-Feature SCE Drop

spinD 1.7480 aZ_pitN 1.4329 aY_vZ0_pitN 1.0297 vY0_vZ0_z0_spinR 1.4772
aX 1.7232 aZ_aX 1.2511 vZ0_spinR_pitN 0.8179 aY_vZ0_z0_spinR 1.4731

pitN 1.2120 aZ_spinD 1.0362 aY_spinR_pitN 0.7552 vZ0_z0_spinR_startSp 1.4700
aZ 1.2065 aZ_vY0 0.6659 vY0_vZ0_pitN 0.7349 aY_vY0_vZ0_spinR 1.3818

vX0 0.6186 aZ_startS 0.6544 vZ0_startSp_pitN 0.7316 aY_vZ0_spinR_startSp 1.3622
x0 0.5901 aZ_vX0 0.6232 aZ_spinD_pitN 0.6724 aY_vY0_z0_spinR 1.3555
aY 0.1395 aZ_x0 0.5920 aY_vY0_pitN 0.6717 aY_vY0_vZ0_z0 1.3527

vZ0 0.1207 aX_spinD 0.4975 aY_startSp_pitN 0.6612 aY_z0_spinR_startSp 1.3390
z0 0.0995 aY_pitN 0.4280 aZ_vY0_aX 0.6536 aY_vZ0_z0_startSp 1.3321

spinR 0.0491 spinD_pitN 0.4167 aZ_vX0_vY0 0.6467 vX0_vY0_vZ0_spinR 1.1691
startSp 0.0439 aX_pitN 0.4163 aZ_vX0_startSp 0.6465 vY0_vZ0_x0_spinR 1.1612

vY0 0.0428 vZ0_pitN 0.3883 aZ_aX_startSp 0.6378 vX0_vZ0_spinR_startSp 1.1605



Entropy 2022, 24, 170 19 of 30

1: With regard to the one-feature setting, we see four features, {spinD, aX, pitN, aZ}, that
achieve CE drops larger than 1.2000. They are clearly potential candidates for order-1
major factors, since spinD and aX are highly associated and both are moderately
associated with pitN. Such associative relations among these three features keeps
them from being order-1 major factors simultaneously. In contrast, aZ is a strong
potential candidate for an order-1 major factor.

2: In the two-feature setting, the feature-pair (aX, aZ) achieves the lowest CE of 1.7424,
with a CE drop of 2.9763, which is almost equal to the sum of the individual CE
drops of aX and aZ: 2.9197; that is, I[aX; aZ|Y ] ' I[aX; aZ] . Together with the fact
that, based on Figure 4A,B, aX and aZ are independent; only one of them can be an
order-1 major factor in a collection of major factors. We also identify six feature-pairs,
(aZ, vY0), (aY, vY0), (z0, vY0), (vZ0, pitN), (vY0, pitN), and (aY, pitN), that satisfy
the two criteria [C1: confirmable] and [C2: irreplaceable].

Therefore, we select the chief collection {aX, (vZ0, aZ)} because it achieves the lowest CE
value in the three-feature setting, and just barely satisfies the criterion [C2: irreplaceable].
Two alternative collections are: {aZ, (vY0, aY)} and {aZ, (vY0, z0)}. On the other hand,
collections {aZ, (vZ0, pitN)}, {aZ, (vY0, pitN)}, and {aZ, (aY, pitN)} fail to meet the
criterion [C1: confirmable].

3: In the three-feature setting, the triplets (aX, aZ, vY0) and (aX, aZ, startSp) (see Figure 5A
pass the test of [C1:confirmable]. They achieve the top two ranked CEs with their CE
drops of 0.6536 and 0.6378, respectively, from feature-pair (aX, aZ). On the other hand,
if we take (aZ, vY0) as a major factor, then triplet (aX, aZ, vY0) is a union of two major
factors: aX and (aZ, vY0). The SCE drop of this triplet from (aZ, vY0) is calculated as
1.8724, which is very close to the CE drop 1.7232 of aX. That is, these two triplets do not
meet the [C2:irreplaceable] criterion, so these two triplets are not order-3 major factors.

The largest CE drop among all feature-triplets is achieved by (aY, vZ0, pitN). Its successive
CE drop from (aY, pitN) is 1.0297(= 3.0768− 2.0471), which is very significant compared
to the CE drop of vZ0. However, if we take both (aY, pitN) and (vZ0, pitN) as two order-2
major factors, then triplet (aY, vZ0, pitN) is a union of (aY, pitN) and (vZ0, pitN). The CE
drop of (aY, vZ0, pitN) is calculated as 2.6697, which is less than the sum of the two pairs’
individual CE drops: 3.2402(= 1.6399 + 1.6003). For the same arguments, the follow-
ing four feature-triplets: (aY, pitN, spinR), (vZ0, pitN, spinR), (aY, pitN, sartSp), and
(vZ0, pitN, startSp), are not potential order-3 major factors. These five triplets do not pass
meet the criterion [C1:confirmable]; see Figure 5B.

4: If we consider the four-feature-setting, all top 12 quartets on CEs involve pitN, while all
12 quartets of top CE drops do not involve pitN, but 10 out of 12 involve spinR. The 12
quartets on the top CE list all fail to meet the [C2:irreplaceable] criterion, primarily
because they contain multiple major factors: either of the two order-1 or three order-2
or four order-3 major factors if we replace features with their highly associated ones,
such as startSp for vY0 and spinD for aX, etc. All quartets on the top list of CE drops
also fail to meet the criterion [C1:confirmable] by applying Algorithm 2.

5: Five-feature and greater feature settings share the same characteristics with feature-sets
in the four-feature setting. They all fail to meet either criterion [C1:confirmable] via
Algorithm 2 or criterion [C2: irreplaceable] for the same reasons.

For the response variable Y = (p f xX , p f xZ), we can confidently identify the following
three collections of major factors: {aX, (aZ, vY0)}, {aZ, (vY0, aY)}, and {aZ, (vY0, z0)}.
We clearly see the effect of heterogeneity, through pitN is overshadowed by the finite
sample phenomenon in the three-feature setting within this MSP of 199 fastball pitchers.
No order-3 or higher order major factors are confirmed. Again, the joint effects aX and aZ
still overshadow the Magnus effect and the effects of heterogeneity. Therefore, we deepen
our investigation with the response variable Y = (aX, aZ).
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Figure 5. Testing for [C1: confirmable] on Y = (p f xX , p f xZ): (A) (aX, aZ, vY0) and (aX, aZ, startSp)
red-marked against histogram of (aX, aZ, ε); (B) (aY, pitN, spinR) and (aY, pitN, startSp) red-
marked against histogram of (aY, pitN, ε); on Y = (ax, az): (C) (spinD, pitN, aY) red-marked against
histogram of (spinD, pitN, ε).

Likewise we report top ranked CEs and SCE drops in two tables, Tables 9 and 10,
respectively: that is, our results of feature selection based on CEs of all possible feature-sets
among the 10 covariate features.

Table 9. Fastballs: 10 top ranked CE drops of four settings of feature-sets for the response variable
Y = (aX, aZ). CE of Y is 4.7000.

One-Feature CE Two-Feature CE Three-Feature CE Four-Feature CE Five-Feature CE

spinD 2.9447 spinD_pitN 2.4991 aY_spinD_pitN 1.9962 aY_vZ0_spinR_pitN 0.9875 aY_vY0_vZ0_spinR_pitN 0.3918
pitN 3.4559 aY_spinD 2.7193 vZ0_spinD_pitN 2.0159 aY_vZ0_spinD_pitN 1.0371 aY_vZ0_spinR_spinD_pitN 0.3965
vX0 4.0743 vX0_spinD 2.7908 aY_vZ0_pitN 2.0286 aY_vY0_vZ0_pitN 1.0750 aY_vZ0_spinR_startSp_pitN 0.3989
x0 4.1036 vZ0_spinD 2.8114 spinR_spinD_pitN 2.1612 aY_vZ0_startSp_pitN 1.0889 aY_vZ0_z0_spinR_pitN 0.4428
aY 4.4743 x0_spinD 2.8391 spinD_startSp_pitN 2.1878 aY_vX0_vZ0_pitN 1.1993 aY_vX0_vZ0_spinR_pitN 0.4434

vZ0 4.5634 spinD_startSp 2.8422 vY0_spinD_pitN 2.1966 aY_vZ0_z0_pitN 1.1993 aY_vY0_vZ0_spinD_pitN 0.4435
startSp 4.5861 vY0_spinD 2.8526 vX0_spinD_pitN 2.2366 vZ0_spinR_spinD_pitN 1.2426 aY_vZ0_spinD_startSp_pitN 0.4504

vY0 4.5964 z0_spinD 2.8873 z0_spinD_pitN 2.2529 aY_spinR_spinD_pitN 1.2773 aY_vX0_vY0_vZ0_pitN 0.4966
z0 4.6030 spinR_spinD 2.8900 vZ0_spinR_pitN 2.2775 vY0_vZ0_spinD_pitN 1.3018 aY_vY0_vZ0_z0_pitN 0.5008

spinR 4.6380 aY_pitN 3.0293 aY_spinR_pitN 2.2950 vZ0_spinD_startSp_pitN 1.3043 aY_vX0_vZ0_startSp_pitN 0.5064

Table 10. Fastballs: 10 top ranked CE drops of four settings of feature-sets for the response variable
Y = (aX, aZ).

One-Feature SCE Drop Two-Feature SCE Drop Three-Feature SCE-Drop Four-Feature SCE Drop

spinD 1.7553 spinD_pitN 0.4457 aY_vZ0_pitN 1.0006 vY0_vZ0_z0_spinR 1.4383
pitN 1.2441 aY_pitN 0.4266 vZ0_spinR_pitN 0.8026 vZ0_z0_spinR_startSp 1.4257
vX0 0.6257 vZ0_pitN 0.3757 aY_spinR_pitN 0.7343 aY_vZ0_z0_spinR 1.4129
x0 0.5964 spinR_pitN 0.2689 vY0_vZ0_pitN 0.7276 aY_vY0_vZ0_spinR 1.3119
aY 0.2257 aY_x0 0.2566 vZ0_startSp_pitN 0.7262 aY_vY0_z0_spinR 1.3024

vZ0 0.1366 aY_vX0 0.2550 aY_vY0_pitN 0.6490 aY_vZ0_spinR_startSp 1.2933
startSp 0.1139 startSp_pitN 0.2485 aY_startSp_pitN 0.6422 aY_z0_spinR_startSp 1.2879

vY0 0.1036 vY0_pitN 0.2380 vZ0_z0_pitN 0.6047 aY_vY0_vZ0_z0 1.2832
z0 0.0970 aY_spinD 0.2255 spinR_startSp_pitN 0.5933 aY_vZ0_z0_startSp 1.2641

spinR 0.0620 z0_pitN 0.2069 vX0_vZ0_pitN 0.5911 vX0_vY0_vZ0_spinR 1.1406

1: In the one-feature setting, spinD and pitN achieve top two ranked CE values. It is
not surprising that spinD plays the sole role of order-1 major factor in the identified
collections of major factors. It is surprising that, as seen below, we need to bring in aY and
vZ0, two separate order-1 major factors, for the sake of improving the CE performances
beyond spinD, to construct collections of major factors.

2: In the two-feature setting, the top nine feature pairs achieving the lowest CEs involve
spinD. However, none of these nine pairs fulfill the criterion [C2: irreplaceable].
On the other hand, the feature-pair (pitN, aY) and (pitN, vZ0) ranked second and
third on the list of top 10 SCE drops, both fail to meet the criterion [C2: irreplaceable],
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while (pitN, spinR) satisfies both criteria. We also report no candidates for order-2
major factors that do not include pitN. This is a rather surprising observation.

However, collections {vZ0, (spinR, pitN)} and {aY, (spinR, pitN)} fail to satisfy the
criterion [C1: confirmable]. As such, these collections evidently reflect the effects of
heterogeneity being overshadowed by the finite sample phenomenon.

3: Considering the three-feature setting, the top 10 feature triplets on CEs are primarily
extended from feature pair (spinD, pitN). This is not surprising due to the domi-
nant effect of spinD. They satisfy the criterion [C1: confirmable] (see panel (C) of
Figure 5) but not [C2: irreplaceable]. In contrast, the top 10 feature triplets on SCE
drops are all involved pitN. They satisfy the criterion [C2: irreplaceable], but not [C1:
confirmable].

4: As for the four-feature and greater feature settings, they all fail to meet the criterion
[C1:confirmable] based on Algorithm 2. The same example as in sliders, (vZ0, spinR,
pitN, aY), has its CE of 0.9875 far beyond the range of the simulated CE distribu-
tion of (vZ0, spinR, pitN, ξ), with mean 0.7949 and SD 6.4739× 10−4. Furthermore,
(vY0, vZ0, spinR, pitN, aY) has its CE of 0.3918 far beyond the range of the simulated
CE distribution of (vY0, vZ0, spinR, pitN, ξ), with mean 0.2619 and SD 3.7392× 10−4.

The identified three collections of major factors ofY = (aX, aZ) are then (1) {spinD, aY},
(2) {spinD, vZ0}, and (3) {spinD}. We cannot find any collections of major factors consist-
ing of three features.

5.3. Comparisons of Summarized Results from Slider and Fastball

We collect and compare major identified factors of various orders via our feature
selection protocol on both pitch types, sliders and fastballs, with respect to two different
kinds of response variables, Y : (p f xX , p f xZ) and (aX, aZ), in Table 11. Such comparisons
reveal fundamental differences of these two pitching dynamics, and at the same time, shed
light on the effects of heterogeneity within both MSPs.

Table 11. Comparison of major factors of sliders and fastballs with respect to Y = (p f xX , p f xZ) and
Y = (aX, aZ).

Pitch Type Y Order-1 MF Order-2 MF Alternative MFs Alternative MFs

slider (p f xX , p f xZ) aZ (z0, vY0) {aX, (z0, vZ0)} {aX, (aY, vZ0)}
slider (aX, aZ) {spinD} (z0, vZ0) {spinD, (aY, vZ0)} {spinD, (aY, z0)}

fastball (p f xX , p f xZ) aX (aZ, vY0) {aZ, (vY0, aY)} {aZ, (vY0, z0)}
fastball (aX, aZ) spinD, aY none confirmed! {spinD, vZ0} {spinD}

When considering Y = (p f xX , p f xZ) as the response variable, both pitch types select
three collections of triplets in an identical format: one order-1 major factor, either aX or
aZ, and one biomechanical order-2 major factor. Newton’s second law of force dictates
that aX and aZ as directional forces govern the two directional horizontal and vertical
movements: Y = (p f xX , p f xZ). In both pitch types, we also see the heterogeneity effects
via pitN commonly interacting with biomechanical features in a format of candidates
of order-2 major factors such as, (aY, pitN), (z0, pitN), (spinR, pitN), and (vZ0, pitN).
From a biomechanical perspective, we find that slight differences rest on the candidates for
order-2 major factors: (spinR, vY0) for sliders, and (aZ, vY0) and (pitN, vY0) for fastballs.

In other words, their differences are primarily tied to “speed” (vY0 or startSp).
The coupling effect of (spinR, vY0) might be closely related to the capacity of control
of slider pitches. As for fastballs, the speed (vY0 or startSp) is a basic requirement. It is
surprising to see that the coupling effects of speed vY0 and vertical acceleration aZ on
Y = (p f xX , p f xZ) are somehow critical in this MSP of fastball pitching dynamics. The can-
didacy of order-2 major factor (pitN, vY0) indicates that there are significant differences
among the 199 fastball pitchers, while this is not the case in sliders.
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When Y = (aX, aZ) is the response variable in both pitch types, we found three
triplet-based collections of major factors in the sliders, but only two pair-based and one
singleton-based collections of major factors in the fastballs. The feature spinD is apparently
an order-1 major factor for Y = (aX, aZ) in both pitch types.This clearly points to the fact that
the Magnus effect is primarily contained in horizontal and vertical accelerations (aX, aZ).

The effects of heterogeneity among 62 slider pitchers and 199 fastball pitchers are
manifested through the same four candidates of order-2 major factors: pitN coupled
with one biomechanical member of feature-set {aY, vZ0, spinR, z0}. The impacts of such
heterogeneity effects via pitN seem much more severe in fastballs than in sliders.

Further, the presences of (spinR, vX0), (spinR, vY0) as candidates for order-2 major
factors in sliders, but not in fastballs, imply characteristic differences between these two
pitch types. These two pairs clearly reveal the effects of spinR by coupling the two speed
features vX0 and vY0, which are commonly shared by all 62 slider pitchers. Therefore,
spinR is most likely linked to better control and reliable stability of slider pitches. In con-
trast, spinR only plays a minor role in fastballs through one aspect of interacting relations
with pitN.

Here, we reiterate that pitN appears in candidates of order-2 major factors by coupling
wirh primary biomechanical features under Y = (p f xX, p f xZ) and Y = (aX, aZ). This
evidence strongly indicates that the heterogeneity in these two MSPs must be accommo-
dated before performing any inferences on Y = (p f xX, p f xZ). This is one of the chief
characteristics of MSPs.

5.4. Taking Care of Heterogeneity

From the results reported above, it is essential to recognize that pitN neither ever
stands alone as an order-1, nor is a member of identified order-2 major factors. Its effects
are always revealed through interacting relations with biomechanical and physical features
due to it being a candidates for an order-2 major factor. Such interacting relations severely
constrain our understanding of the pitching dynamics of both pitch types. In fact, such
interacting relations reflect pitN’s diverse associations with a majority of the biomechanical
and physical features. As such, these relations are pieces of information on heterogeneity
revealed in many feature-specific aspects. What about global information on heterogeneity
regarding similarity and dissimilarity among pitchers in both MSPs?

With such global information in mind, it becomes necessary to correspondingly
partition the whole collection of pitchers into homogeneous pitcher-groups. By doing
so, we want to discover more diverse aspects of pitching dynamics, and at the same time
bring out the global distinctions across various homogeneous groups.

For the two MSPs of slider pitchers and fastball pitchers, we propose here to perform
hierarchical clustering (HC) on the two collections of pitchers with respect to contingency
tables of triplet (aX, aZ, vY0) against pitN. These three features in the triplet involve order-
1 and order-2 major factors of Y = (p f xX , p f xZ). The two resulting HC-trees are given in
Figure 6. Each HC-tree is marked with various scales of composition of pitcher-groups.

For the sliders, we first consider partitioning the 62 pitchers into five branch-based
groups indexed A to E. We designate each branch-based group as one MSP and check
whether it embraces homogeneity or not. For such a goal in each branch-based MSP, we
conduct feature selection for major factors of the response variable Y = (aX, aZ). We
summarize our findings of major factors of these five MSPs in Table 12.

Table 12. Table of major factors of Y = (aX, aZ) in five groups of slider pitchers (A–E).

Pitch Groups CE of Y Order-1 MF Order-2 MF Alternative MFs Alternative MFs

A 3.3574 spinD, aY None confirmed! None None
B 4.2448 spinD, vX0 None confirmed! {spinD, x0} {spinD, vZ0}
C 4.1125 spinD, z0 None confirmed! {spinD, aY} {spinD, spinR}
D 4.0750 spinD, vZ0 None confirmed! {spinD, z0} {spinD, aY}
E 4.6577 spinD, vZ0 None confirmed! {spinD, aY} {spinD}
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In this table, when checking the criterion [C2: irreplaceable], we make sure that the
SCE drop is at least three times that of Condition (a) for any candidate feature-sets. To
test for the criterion [C1:confirmable], we use Algorithm 2. The selected collections across
these ive MSPs share spinD as the chief order-1 major factor. Then spinD is coupled with
various biomechanical features as order-1 major factors with relatively minor effects.

We see that pitN appears as one member of the candidates of order-2 major factors of
Y = (aX, aZ) in MSPs defined by branches B, D and E, but not by branches A and C. That
is, the branch A- and C- based MSPs embrace homogeneity among pitcher-systems, while
branch B-, D-, and E-based MSPs still embrace heterogeneity to a much less extent because the
number of such candidates is just two. It is also noted that throughout these five MSPs, pitN
achieves the top 2 ranked individual CE drops, which are significantly smaller than the CE
drops of the order-1 major factor spinD. We also observe that the SCE drop of (spinD, pitN)
is rather small. Therefore, pitN is ruled out as a candidate for an order-1 major factor.

Another essential visible pattern in Table 12 is that the candidates for order-2 major
factors of Y = (aX, aZ) become abundant and diverse by involving only biomechanical fea-
tures in these 5 MSPs. This phenomenon is different from the interacting relations between
pitN and biomechanical features in the original MSP consisting of 62 slider pitchers. This
fact reflects P.W. Anderson’s “More is Different” perspective of MSPs; its homogeneous
components likely reveal more diverse and detailed group-idiosyncratic characteristics.

For fastballs, we first partition the 199 pitchers into three large groups with respect to
the three major branches marked and indexed by A, B, and C, in panel (B) of Figure 6. These
three large branches are unlikely to embrace homogeneity. Hence, we further partition the
C branch into six sub branches marked and indexed by {C1, C2, . . . , C6}. These six sub
branch-based MSPs seemingly embrace homogeneity, as seen in Table 13. That is, all their
major factors of Y = (aX, aZ) in the six MSPs do not explicitly contain pitN. Throughout
these six MSPs, pitN achieves an individual CE drop that is significantly smaller than the
CE drop of spinD.

Table 13. Table of major factors of Y = (aX, aZ) in six subgroups of the C group of pitchers.

Pitch Groups CE of Y Order-1 MF Order-2 MF Alternative MFs Alternative MFs

C1 3.6074 spinD, vZ0 none confirmed {spinD, aY} {spinD, vX0}
C2 3.8715 spinD (aY, vZ0) {spinD, vZ0} {spinD, aY}
C3 4.1491 spinD (aY, vZ0) {spinD, (aY, spinR)} {spinD, aY}
C4 3.5763 None confirmed! (vZ0, spinR), (aY, vZ0) {(aY, vZ0), (vZ0, z0)} {spinD, aY}
C5 3.9358 spinD (aY, z0) {spinD, (aY, spinR)} {spinD, (vZ0, spinR)}
C6 3.9408 spinD (vZ0, spinR) {spinD, (vZ0, z0)} {spinD, vZ0}

The MSP C1 does not support any triplets because of the criterion [C1:confirmable].
Only two collections of order-1 major factors are identified within this MSP. Three collec-
tions consist of spinD coupling with one of the members of {vZ0, aY, vX0}. The fourth
collection is {spinD, spinR}.

The MSP C2 does support one collection of triplets in the format of one order-1 major
factor and one order-2 major factor. The other two collections consist of spinD coupled with
another less effective order-1 major factor such as vZ0 and aY. There are 13 candidates for
order-2 major factors identified, but not a single pair contains pitN as a member. Likewise,
in MSP C3, there are two collections of triplets: one order-1 major factor and one order-2
major factor. The alternative is a collection of two order-1 major factors: {spinD, aY}. There
are also 12 candidates of order-2 major factors identified without pitN as a member. In a
similar fashion, in MSP C5 there are three collections of triplets supported by the data
and there are 13 candidates for order-2 that do not include pitN. In MSP C6, identified
collections are similar to those found in MSP C3.

In MSP C4, the first two selected collections of triplets share an unusual format: two
order-2 major factors. The members of these two triplets are all biomechanical features
without spinD. The third collection is {spinD, aY}. There are no other candidates for
order-2 major factors.
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Figure 6. Hierarchical clustering trees marked with pitcher groups: (A) 62 slider pitchers; (B) 199
fastball pitchers with 3 colored major branches A, B, and C (from left to right). The C-branch is
further partitioned into six colored sub-branches: C1 to C6 (left to right).
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Overall, we identify abundant candidates for order-2 major factors that do not involve
pitN at all across the six MSPs. In other words, the effect of heterogeneity seems to
have disappeared.

Up to this point, our slider and fastball examples strongly suggest that a rigorous
way for analyzing any MSPs containing a large number of complex systems must take the
following steps. Firstly, we explore and understand how the complexity of the underlying
dynamics interacts with heterogeneity. Secondly, this exploration leads us to find a proper
clustering and grouping scheme, such that similar members of the original collection
of systems are grouped together in order to embrace homogeneity. Thirdly, when such
homogeneity is achieved across all subdivided groups, a more diverse and finer scale
group-specific complexity can be discovered. This is because a group of similar systems
will collectively retain a much larger number of data points than any of its single member
systems. This approach for analyzing any large MSPs by going from the heterogeneity of the
whole to the diverse homogeneity of its constituents is a way of seeing and understanding
“More is Different” in MSPs.

6. Self-Esteem Across Gender and Age Human Complex Systems

In the very last section of this paper, we explore a potential merit of MSP study in a
research area where psychology, psychiatry, and sociology intersect. The scientific question
can be simply stated as: do people of different genders and ages respond to the Rosenberg
Self-Esteem Scale differently? Prof. Morris Rosenberg studied dynamic changes of late
adolescents’ self-image in his well known 1965 book [10]. Boys and girls of 15 to 18 years
of age, the so-called late adolescence, must make drastic self-image changes in response to
drastic physiological and psychological developments due to changes in their own bodies,
as well as the different societal potentials being discovered and the many career decisions
that must be made. In order to study this topic, he designed the popular Rosenberg
Self-Esteem Scale with 10 questions for his study subjects.

More than half of a century has passed since the publication of his book. Intuitively
speaking, human self-image might be shaped, for example, by the abundant information
available on the Internet. In fact, nowadays, all age and gender groups are exposed to and
share a huge amount of information in regard to our world’s drastic environmental and
technological changes. Do such visible world-wide changes in our living conditions motivate
and affect people’s self-image differently or similarly?

Nowadays, the Rosenberg Self-Esteem Scale has become a popular on-line test. Many
persons who are far outside the original domain of application of this test have taken the
test and their results are recorded. A Rosenberg Self-Esteem Scale data set from Kaggle can
be found via the following link: https://www.kaggle.com/yamqwe/rosenberg-selfesteem-
scale (accessed on 3 January 2022). When addressing such data, it is reasonable to first ask
whether seemingly diverse systems defined across gender and age axes are equal through
the perspective of the Rosenberg Self-Esteem Scale, This is one version of an MSP without
specifically targeted Re–Co dynamics. Only by arriving at an answer to this MSP question
can the second question be formulated accordingly.

Under the MSP setting, the first question can be stated as: does potential heterogeneity
exist across spans of the age-axis and gender-axis or not? This is a rather interesting issue
from the perspective of psychiatry, psychology, and sociology. We want to shed some light
on this issue via the computational major factor selection method developed and illustrated
in the previous sections.

This data set consists of the results of 47,974 subjects who took the online Rosenberg
Self-Esteem Scale. We deleted subjects younger than 10 or older than 70. Subjects who
did not indicate their gender information are collected into the “none was chosen” cat-
egory of the gender variable. There are 10 questions in the Rosenberg Self-Esteem Test.
Each subject can respond on the following scale: 1 = strongly disagree, 2 = disagree,
3 = agree, and 4 = strongly agree (0 = no answer).

https://www.kaggle.com/yamqwe/rosenberg-selfesteem-scale
https://www.kaggle.com/yamqwe/rosenberg-selfesteem-scale
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Q1. I feel that I am a person of worth, at least on an equal plane with others.

Q2. I feel that I have a number of good qualities.

Q3. All in all, I am inclined to feel that I am a failure.

Q4. I am able to do things as well as most other people.

Q5. I feel I do not have much to be proud of.

Q6. I take a positive attitude toward myself.

Q7. On the whole, I am satisfied with myself.

Q8. I wish I could have more respect for myself.

Q9. I certainly feel useless at times.

Q10. At times I think I am no good at all.

Here we propose one fundamental way of resolving the aforementioned issue by
looking into all possible response-to-covariate (Re–Co) dynamics and checking the effects
of heterogeneity. For expositional simplicity, we use only one instance as an example. Given
Q1, it is taken as a 1D response feature Y = Q1, while the rest of the nine questions Q2–Q10
are taken as covariate features. These 10 features are ordinal. We also take Age and Gender
as two additional covariate features. Specifically, Age takes categorical-membership values
among the ordinal age-groups [10, 14], [15, 18], [19, 22], [23, 30], [31, 40], [41, 50], [51, 60],
and [61, 70], while V11 = Gender takes categorical values of 1 =“male”, 2 =“female”, 3 =
“other”; 0 =”none was chosen”. That is, the MSP under study here is specified by the
collection of complex systems encoded with the bivariate categories of (Age, Gender).

The pairwise associations among these 12 categorical features are presented through
an MCE-based heatmap and its network in Figure 7. A glimpse of an associative map
of these 12 features is seen through the three small communities in the network. When
showing heterogeneity effects via our major factor selection, Age and Gender will be treated
as two separate covariate features, as is demonstrated in Tables 14 and 15.
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(A) (B)

Figure 7. Associative patterns among 12 features of Rosenberg Self-Esteem Scale:(A) heatmap based
on MCE-matrix; (B) network built with linkages with thickness proportional to one minus pairwise
MCE and subject to a threshold 0.2 (= 1.0−MCE).
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Table 14. Top 12 ranked CEs of feature-sets across one-feature to three-feature settings on the
Rosenberg Self-Esteem Test. CE of Y(= Q1) is 1.2204.

One-Feature CE Two-Feature CE Three-Feature CE

Q2 0.8840 Q2_Q6 0.8039 Q2_Q4_Q6 0.7696
Q6 0.9761 Q2_Q3 0.8131 Q2_Q3_Q6 0.7709
Q7 1.0057 Q2_Q7 0.8136 Q2_Q6_Q10 0.7766
Q4 1.0209 Q2_Q10 0.8216 Q2_Q3_Q7 0.7782
Q3 1.0211 Q2_Q4 0.8304 Q2_Q3_Q4 0.7793
Q10 1.0349 Q2_Q5 0.8334 Q2_Q4_Q7 0.7795
Q5 1.0409 Q2_Q9 0.8354 Q2_Q5_Q6 0.7795
Q9 1.0727 Q2_Q8 0.8429 Q2_Q7_Q10 0.7831
V8 1.1141 Q2_Age 0.8806 Q2_Q6_Q7 0.7831

Age 1.2002 Q2_Gender 0.8821 Q2_Q6_Q9 0.7832
Gender 1.2133 Q4_Q6 0.8908 Q2_Q4_Q10 0.7849

Table 15. Top 12 ranked successive CE drops of feature-sets across one-feature to three-feature
settings of the Rosenberg Self-Esteem Test.

One-Feature SCE Drop Two-Feature SCE Drop Three-Feature SCE Drop

Q2 0.3364 Q3_Q4 0.1022 Q3_Q4_Q7 0.0447
Q6 0.2443 Q4_Q10 0.0965 Q4_Q7_Q10 0.0439
Q7 0.2147 Q4_Q7 0.0937 Q4_Q5_Q10 0.0408
Q4 0.1995 Q4_Q5 0.0899 Q3_Q4_Q6 0.0394
Q3 0.1993 Q4_Q6 0.0852 Q3_Q4_Q10 0.0390
Q10 0.1855 Q2_Q6 0.0800 Q4_Q5_Q7 0.0389
Q5 0.1795 Q2_Q3 0.0708 Q4_Q6_Q10 0.0369
Q9 0.1477 Q4_Q9 0.0707 Q2_Q4_Q10 0.0367
V8 0.1063 Q2_Q7 0.0704 Q4_Q5_Q6 0.0361

Age 0.0202 Q3_Q7 0.0703 Q2_Q4_Q5 0.0354
Gender 0.0071 Q5_Q10 0.0662 Q2_Q3_Q7 0.0349

Selection of major factors in the Self-esteem test example with heterogeneity.

1 In the one-feature setting of Tables 14 and 15, Q2 achieves the smallest CE with the
largest CE drop: 0.3364. Q6 achieves the second ranked CE with a CE drop of 0.2443.
These two features are potential order-1 major factors. Q7, Q4 and Q3 are ranked
third, fourth, and fifth, with CE drops near 0.2000. In sharp contrast, Age and Gender
individually have rather low CE drops. These two pieces of evidence indicate the
absence of heterogeneity effects. This fact is significantly distinct from the presence of
effects of heterogeneity discussed in previous sections for our designed MSP and all
MLB-based MSP examples.

2 In the two-feature setting, we can see that the SCEs are all significantly lower than
corresponding CE drops among features from Q3 to Q10. That is, all feature-pairs fail
the criterion [C2: unreplacable], including pairs involving Age and Gender. Therefore,
no order-2 major factors can be seen. The primary reason for this phenomenon is that
Q2 is associated with all other covariate features to the degree that there are no pairs
satisfying the ecological effects.

We conclude that Q2 is the solo order-1 major factor of the Q1-based Re–Co dynamics
and that the effects of heterogeneity of Age and Gender are absent. In other words, from the
perspective of the Q1-based Re–Co dynamics, all age-vs-gender defined systems are not
heterogeneous. To fully resolve this issue, we need all possible Re–Co dynamics. This task
will be undertaken in a separate report.

To further address this issue in depth, we go into the phase of decomposing the
collection of complex systems into homogeneous groups; that is, the categories of the
bivariate (Age, Gender) are clustered into homogeneous groups, as shown in Figure 8.
Then, we apply our major factor selection protocol to further check whether the effects of
Age or Gender exist within any of these homogeneous groups of systems.
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Figure 8. Decomposing the collection of systems defined by Age and Gender into homogeneous
groups in the Rosenberg Self-Esteem Scale. Bivariate-encoded Age-vs-Gender systems are arranged
along the column-axis, while the bivariate-encoded Q2-vs-Q6 categories are arranged along the
row-axis. An HC-tree is superimposed on the column-axis for identifying homogeneous groups
of systems.

Based on Figure 8, we select three obvious cluster-based groups: R1 = {(2, 2), (3, 2)},
R2 = {(4, 2), (3, 1)}, and R3 = {(2, 1), (4, 1), (5, 1), (5, 2)}. The sample size is 16,800 for
R1, 11,721 for R2, and 15,312 for R3. The single major factor collection {Q2} is selected
for R3 and R3, while a collection of two order-1 major factors {Q2, Age} is selected for R2,
since Q2 and Age jointly achieve a SCE drop of (0.0046) against the CE drop of Age of
(0.0024). Thus, the ecological effect is satisfied. In addition, Age also meets the criterion
[C1:confirmable], since its CE of 1.1713 is below the CE distribution of ε (having the same
number of categories of Age) with a mean of 1.1736 and SD of 1.2193× 10−4. Therefore, Q2
and Age can both be order-1 major factors. Nevertheless, Q2 is still the dominant order-1
major factor. Hence, we still conclude with a coherent result: systems within these three
homogeneous groups are not heterogeneous from the perspective of Q1 dynamics.
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At the end of this example, we remark that the widely used Rosenberg Self-Esteem
Scale was conceptualized by its author as a single-factor scale with scores ranging along a
continuum of low self-esteem to high self-esteem [10]. From this perspective, our identifi-
cation of Q2 as the single major factor is seemingly coherent. Further, when three versions
of rewording on Rosenberg Self-Esteem Scale were devised and a much smaller data set
was collected and analyzed [18], the results of factor analysis [19] indeed indicated that
the original version fits a two-factor model, while positively and negativey reworded
versions fit single-factor models. It is noted that these results based on factor analysis are
fundamentally irrelevant to the issue under study here.

7. Conclusions

We demonstrated the versatile merits of a CEDA-based protocol for selecting major
factors of various orders as a proper way of studying any MSP. First, it is essential to reveal
patter -information of “complexity interacting with heterogeneity” embedded within MSPs.
Secondly, the heterogeneity embedded within the whole ensemble of complex systems
needs to be broken down into homogeneity embraced by constituent groups of similar
complex systems. Finally, similarity-based homogeneity and largeness of the data set will
enable each constituent group to manifest detailed multiscale characteristics via major
factors of various orders. This is taken as the true implication of P. W. Anderson’s “More is
Different” under a structured data setting. This MSP implication of breaking heterogeneity
for the sake of unraveling possibly distinct collections of hidden major factors across
homogeneous parts may be fundamental and critical in this Big Data era.

With an understanding of such an MSP implication, we further demonstrate its merits
in formulating resolutions to a scientific problem related to the Rosenberg Self-Esteem
Scale in psychology and sociology. This demonstration helps us recognize the degree of
the spread of MSPs in the real world and simultaneously indicates the huge potential of
our computational major factor selection techniques.

As scientists, we want to prevent data-driven understandings being twisted and
information content being compromised. Nowadays, MSPs can be ubiquitously found in
diverse research fields and real-world businesses. Proper discovery of data’s authentic
information content and true understanding of it should greatly help our societies. In this
paper, we demonstrate that data-driven understandings can be supported by visible and
explainable relational patterns found on the simple platform of contingency tables. This is
essential and important for data analysis in this Big Data era.

Furthermore, we emphasize that our CEDA computations work for all data types. This
is an essential virtue of data analysis, since its categorical nature involves features of any
data types. By employing such a categorical nature in data, the contingency table platform
becomes natural, as do information theoretical measurements. Consequently, the pattern-
formation brought out by conditional entropy and mutual information is natural, so it
reveals and facilitates understanding pertaining to MSPs of interest. In other words, this
CEDA-based data analysis is an effective way of studying an ensemble of complex systems.

By visualizing how complexity interacts with heterogeneity and how homogeneity
unravels many more major factors in the two MLB-related MSPs, we recognize the fact that
a group of similar pitchers’ collective pitching dynamics is indeed much more involved in
many aspects than the whole collection of pitchers, as well as a single pitcher’s pitching
dynamics. This recognition allows us to fundamentally resolve the issue of how to properly
compare the pitching dynamics of a group of pitchers.

By resolving these real-world MSPs, we also demonstrated how to successfully im-
plement the two criteria [C1: confirmable] and [C2: irreplaceable] together with reliability
checks. By recognizing existential heterogeneity and exploring its complicated effects
and then teasing out diverse versions of homogeneity in all constituent groups, our various
collections of major factors bring out the common governing mechanisms shared by all
involved complex systems and, at the same time, they manifest distinctive mechanisms
that characterize each of the identified groups of similar complex systems. The reliability
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check using Algorithm 2 is critical when subject to the finite sample phenomenon, even in
the Big Data era.

Finally, we summarize the chief concept underlying our CEDA-based feature selection
for major factors: “Let data’s categorical nature assemble freely and naturally to shed light
on complexity, heterogeneity, and homogeneity in MSPs”.
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