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Abstract

Insulin-like growth factor II (IGF-II) mRNA binding protein 3 (IMP3) is emerging as a useful 

indicator of the progression and outcome of several cancers. IMP3 expression is associated with 

triple-negative breast carcinomas (TNBCs), which are aggressive tumors associated with poor 

outcome. In this study, we addressed the hypothesis that signaling pathways, which are 

characteristic of TNBCs, impact the expression of IMP3 and that IMP3 contributes to the function 

of TNBCs. The data obtained reveal that IMP3 expression is repressed specifically by estrogen 

receptor β (ERβ) and its ligand 3βA-diol but not by ERα. EGF receptor (EGFR) signaling and 

consequent activation of the MAP kinase pathway induce IMP3 transcription and expression. 

Interestingly, we discovered that the EGFR promoter contains an imperfect estrogen response 

element and that ERβ represses EGFR transcription. These data support a mechanism in which 

ERβ inhibits IMP3 expression indirectly by repressing the EGFR. This mechanism relates to the 

biology of TNBC, which is characterized by diminished ERβ and increased EGFR expression. We 

also demonstrate that IMP3 contributes to the migration and invasion of breast carcinoma cells. 

Given that IMP3 is an mRNA binding protein, we determined that it binds several key mRNAs 

that could contribute to migration and invasion including CD164 (endolyn) and MMP9. Moreover, 

expression of these mRNAs is repressed by ERβ and enhanced by EGFR signaling, consistent with 

our proposed mechanism for the regulation of IMP3 expression in breast cancer cells. Our findings 

show that IMP3 is an effector of EGFR-mediated migration and invasion and they provide the first 

indication of how this important mRNA binding protein is regulated in cancer.
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Introduction

IMP3 is a member of a family of insulin-like growth factor II (IGF-II) mRNA binding 

proteins (IMPs) consisting of IMP1, IMP2 and IMP3 (1). IMPs play important roles in RNA 

trafficking, stabilization, localization and cell migration, especially during early stages of 

both human and mouse embryogenesis (2). IMPs are expressed in developing epithelium, 

placenta and muscle but they are undetectable in normal adult tissues (3). Importantly, 

however, IMP3 is re-expressed in several malignant tissues including pancreatic, lung, renal 

cell, ovarian, endometrial and cervical cancers (4–9). This phenomenon has been exploited 

for the prognostic assessment of specific cancers. In particular, IMP3 is an accurate 

predictor of renal-cell carcinoma metastasis and prognosis (4), and similar trends are 

emerging for other cancers (10–12). We are interested in breast cancer in this context, 

especially in light of the finding that IMP3 is expressed preferentially in triple negative 

breast cancers (10). Triple negative breast cancer (TNBC) is a molecular subtype of breast 

cancer characterized by the absence of estrogen receptor-α (ERα), progesterone receptor 

(PR) and human epidermal growth factor receptor-2 (HER2) amplification. Clinically, 

TNBCs are usually of high histological grade, poorly differentiated and more aggressive 

compared to other subtypes of breast cancer (13). In fact, treatment of TNBC patients 

remains a challenge because of the lack of targeted therapeutic options and the high 

metastatic potential of TNBC cells. These observations indicate that IMP3 could prove 

useful for the clinical management of TNBC but much remains to be learned about its 

regulation and function in these tumors.

In this study, we addressed the hypothesis that signaling pathways, which are characteristic 

of TNBCs, impact the expression of IMP3 and that IMP3 contributes to the function of 

TNBCs. A salient feature of TNBC is the absence of or diminished ER signaling. More 

specifically, TNBCs are ERα negative and they express low levels of ERβ (14). A 

reasonable possibility based on these observations is that ER signaling represses IMP3. 

Interestingly, our data reveal that ERβ and its ligand 3βA-diol (5α-Androstane-3β, 17β-diol) 

repress IMP3 expression but that ERα does not contribute to this repression. Further 

analysis demonstrated that EGFR signaling induces IMP3 expression and that ERβ represses 

EGFR transcription, revealing a mechanism in which ERβ inhibits IMP3 expression 

indirectly by repressing the EGFR. This finding is relevant to the biology of TNBC because 

these tumors are characterized by over-expression of the EGFR and concomitant EGFR 

signaling (15). Our observation that IMP3 contributes to the migration and invasion of 

TNBC cells provides a functional role for this IMP in breast cancer and it suggests that 

IMP3 can be an effector of EGFR-mediated migration and invasion.

Results

Estrogen receptor-β suppresses IMP3 expression

To assess the possible role of ERs in regulating IMP3 expression, we used MDA-MB-231 

and MDA-MB-468 cells, which are triple negative breast carcinoma cell lines that express 

IMP3 but lack ERα and they express low levels of ERβ. Exogenous expression of ERα in 

MDA-MB-231 cells did not alter IMP3 expression (Fig. 1A). Also, inhibition of endogenous 

ERα activity by ICI-182780 (a selective ERα antagonist) was unable to induce IMP3 
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expression in MCF7 cells, which express ERα and ERβ but not IMP3 (Fig. 1A). Based on 

these results, we focused our attention on ERβ. PHTPP (4-[2-Phenyl-5, 7-bis 

(trifluoromethyl) pyrazolo [1,5-a] pyrimidin-3-yl] phenol) is a specific ERβ antagonist and it 

caused a significant increase in IMP3 expression in both MDA-MB-231 and MDA-MB-468 

cells (Fig. 1B). This finding was substantiated using 3βA-diol, an androgen metabolite that 

is a specific ligand of ERβ (16). 3βA-diol decreased IMP3 expression in MDA-MB-231 

cells indicating that ligand-dependent activation of ERβ represses IMP3 (Fig. 1C). Also, 

depletion of ERβ using shRNAs increased IMP3 expression in both MDA-MB-231 and 

MDA-MB-468 cells significantly (Fig. 1D). Interestingly, PHTPP did not induce IMP3 

expression in MCF7 cells (Fig. 1E), indicating that the ERβ-mediated repression of IMP3 

may be restricted to triple negative breast cancer cells.

We observed that estrogen (E2) increased IMP3 expression in MDA-MB-231 cells (Fig. 1F) 

Although this result seems unexpected, we also found that estrogen increased EGFR 

phosphorylation in these cells (Fig. 1F) and that the ability of estrogen to increase EGFR 

phosphorylation was not affected by either inhibition (PHTPP) or stimulation (3βA-diol) of 

ERβ function (Fig. 1F). These findings are consistent with the report that estrogen exerts its 

non-genomic action through EGFR signaling (17).

EGFR signaling positively regulate IMP3 expression

Given that high EGFR expression is associated with TNBC (15), we assessed the possibility 

that EGFR signaling regulates IMP3 expression. Treatment of both MDA-MB-231 and 

MDA-MB-468 cells with an EGFR function blocking Ab reduced IMP3 expression 

significantly compared to IgG- treated cells (Fig. 2A). This Ab also diminished EGFR 

phosphorylation and MAP kinase activation, which is a bona fide downstream effector of 

the EGFR signaling pathway (18) (Fig. 2A). To substantiate the involvement of EGFR 

signaling pathway in regulating IMP3 expression, we inhibited MEK1/2 (upstream 

component of MAPK) using two different inhibitors (PD98059 and U0126). As shown in 

Fig. 2B, IMP3 mRNA and protein expression is reduced significantly upon treatment with 

these inhibitors. Similar results were obtained using MDA-MB-468 cells (Fig. 2C). We also 

assayed the activity of the IMP3 promoter in the presence of the MEK1/2 inhibitors using a 

reporter construct containing the human IMP3 proximal promoter. As shown in Fig. 2D, 

inhibition of MEK1/2 using either U0126 or PD98059 decreased luciferase activity 

considerably. Collectively, our data indicate that an EGFR/MEK/MAPK pathway regulates 

IMP3 expression.

Estrogen receptor-β suppresses EGFR expression

The contrasting data we obtained with ERβ and EGFR regulation of IMP3 expression raised 

the possibility that these receptors function in a common pathway. This possibility was 

supported by our observation that depletion of ERβ expression in both MDA-MB-231 and 

MDA-MB-468 cells increased EGFR mRNA and protein expression significantly compared 

to control cells expressing GFP shRNA (Fig. 3A & 3B). Similarly, over-expression of ERβ 

reduced EGFR protein and mRNA (Fig. 3C). To substantiate our hypothesis, we inhibited 

ERβ function using the selective antagonist PHTPP and observed increased EGFR protein 

expression (Fig. 3D). In contrast, PHTPP did not induce EGFR expression in MCF7 cells 
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(Fig. 3D). Interestingly, restoration of ERα expression in MDA-MB-231 cells did not affect 

EGFR expression (Fig. 3E), consistent with our finding that ERα does not contribute to the 

regulation of IMP3.

The EGFR promoter contains an imperfect estrogen response element (ERE) at −1.949 kb 

(AATCAACGTGAAT) suggestive of the possibility that ERβ may repress EGFR 

transcription. This imperfect ERE was identified based on its homology with the imperfect 

ERE present in the human vascular endothelial growth factor (VEGF) promoter which is 5'-

AATCAGACTGACT-3' (19). The putative ERE present in the EGFR promoter differs from 

that in the VEGF promoter by a single nucleotide `A' as shown in italics, whereas the 

imperfect ERE present in the VEGF promoter differs from the perfect ERE 

(GGTCAnnnTGACC) (20) by three nucleotides (underlined). This observation suggested 

that the core ERE sequence TCAnnnTGA is critical for the sequence to be functional. To 

assess the contribution of this sequence to EGFR regulation, we generated reporter 

constructs containing the 2.2 kb wild type EGFR promoter or this construct containing a 

mutation in the core sequence (TCAACGTGA to CATACGTGA). The data obtained with 

these constructs revealed that mutation of the imperfect ERE increased luciferase activity by 

~2-fold suggesting that this sequence has a repressive role in EGFR transcription (Fig. 3F).

IMP3 increases migration and invasion of breast cancer cells

Given that triple negative breast cancers are more aggressive, possess high metastatic 

potential and over-express IMP3 (10, 13), it is reasonable to hypothesize that IMP3 

contributes to their aggressive behavior. To address this hypothesis, we depleted IMP3 

expression in MDA-MB-231 cells using siRNA and assessed their ability to migrate and 

invade using transwell assays. As shown in Fig. 4A, depletion of IMP3 reduced migration 

and invasion significantly. Moreover, expression of IMP3 in MCF7 cells, a non-triple 

negative and non-invasive cell line increased their migration and invasion (Fig. 4B & 4C). A 

functional link between ERβ and IMP3 is supported by our finding that ERβ expression 

represses migration and invasion as evidenced by modulation of its expression in MDA-

MB-231 cells (Fig. 4D & 4E). Moreover, a functional link between EGFR signaling and 

IMP3 is supported by the observation that U0126, a MEK inhibitor, reduced migration and 

invasion significantly (Fig. 4F).

The fact that IMP3 is an mRNA binding protein suggests that it contributes to migration and 

invasion by regulating specific mRNAs. The obvious target for IMP3 is IGF-II but depletion 

of IMP3 in MDA-MB-231 cells or expression in MCF-7 cells had no effect on IGF-II 

mRNA expression (Fig. 5A & 5B). Several putative mRNA targets of IMP3 were recently 

identified based upon PAR-CLIP (Photoactivatable-Ribonucleoside-Enhanced-Crosslinking 

and Immunoprecipitation) (21) that could contribute to cell motility and invasion. These 

targets include CD164 (endolyn), RhoA, CCNG1 and CCND2, which are known to play a 

role in carcinogenesis (22–25). We assayed these candidate mRNAs by qPCR in IMP3-

depleted MDA-MB- 231 cells and in MCF7 cells engineered to express IMP3. Although no 

significant change in RhoA, CCNG1 and CCND2 mRNA expression was observed (data not 

shown), CD164 mRNA expression was significantly decreased in IMP3-depleted MDA-

MB-231 cells and it was increased in IMP3-expressing MCF7 cells (Fig. 5C & 5D). We also 
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assayed the hyaluronan receptor CD44 expression because it is known to contribute to tumor 

progression and there is evidence that it can be regulated by IMP3 in HeLa cells (26). Our 

data, however, did not support IMP3- mediated regulation of CD44 mRNA expression in 

breast carcinoma cells (Fig. 5E). CD44 functions as docking site for the matrix 

metalloproteinase MMP9, which contributes to invasion (27). Although MMP9 had not 

identified as an IMP3 target, however, we observed that MMP9 mRNA expression is 

regulated by IMP3 (Fig. 5C & 5D). We performed Ribo-Immunoprecipitation-qPCR (RIP-

qPCR) analysis to establish that IMP3 indeed binds with IGF-II, MMP9 and CD164 mRNA 

(Fig. 5F).

Based on our findings, IMP3 mRNA targets that we identified should be regulated by ERβ 

and EGFR. Indeed, depletion of ERβ increased the expression of MMP9 and CD164 

mRNAs significantly in MDA-MB-231 cells (Fig. 6A). In contrast, Ab-mediated inhibition 

of the EGFR decreased the expression of these mRNAs (Fig. 6B). We also observed a 

significant reduction in the expression of these mRNAs in cells treated with MEK1/2 

inhibitor U0126 (Fig. 6C).

Discussion

The data obtained in this study provide insight into the mechanisms that regulate the 

expression of IMP3 in breast carcinoma cells and that are associated with the function of this 

mRNA binding protein in migration and invasion. Our data revealed that IMP3 expression is 

repressed by ERβ but not ERα, and that it is stimulated by EGFR signaling. More 

specifically, we demonstrate that ERβ represses transcription of the EGFR and that EGFR 

signaling regulates IMP3 expression directly. An important and novel implication of this 

study is that IMP3 is an effector of EGFR-driven migration and invasion. Our findings have 

important implications for the biology and therapy of TNBC, which is characterized by 

elevated expression of EGFR and IMP3 (10, 28), and reduced expression of ERβ (14).

Our results highlight a role for ERβ in regulating the functions of breast carcinoma cells that 

is distinct from ERα. It is surprising that a role for ERα in regulating IMP3 expression was 

not revealed by our data because loss of ERα is a defining characteristic of TNBC (29). 

Establishing a distinct function for ERβ is significant because much less is known about 

ERβ than ERα in breast cancer biology. In addition to its ability to repress IMP3, ERβ has 

been shown to inhibit breast cancer cell proliferation and invasion by suppressing cell cycle 

genes including c-Myc, cyclin D1 and cyclin A (30). The report that ERβ expression 

correlates inversely with tumor grade (14) supports our conclusion that ERβ represses IMP3 

because TNBC is usually high grade. Our data also indicate that there is ligand specificity in 

the regulation of IMP3 expression. Specifically, we demonstrated that 3βA-diol functions as 

an ERβ-specific ligand that represses IMP3 expression. Estrogen, in contrast, actually 

increased IMP3 expression in TNBC cells. Given that these cells are ERα-negative, we 

conclude that this effect of estrogen is non-genomic and it may be explained by its effect on 

EGFR signaling (17). This conclusion is supported by our observation that estrogen 

increased EGFR phosphorylation in ERα-negative cells independently of ERβ function.
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An unexpected and novel finding in this study is that ERβ represses EGFR expression and 

signaling, possibly through its ability to repress EGFR transcription. Our identification of an 

imperfect ERE sequence in the EGFR promoter and demonstration that this sequence 

represses EGFR transcription supports this hypothesis. Moreover, there is precedence in the 

literature that ERβ can repress transcription by recruiting co-repressors such as NCoR (31). 

There is also indirect evidence that expression of ERβ in malignant pleural mesothelioma 

(MME) cells impedes EGFR signaling (32). An important issue that arises from these 

observations is the extent to which diminished ERβ expression in TNBC contributes to the 

elevated expression of EGFR that is characteristic of this breast cancer sub-type. There is 

evidence that EGFR gene amplification is more common in TNBCs than non-TNBC (33), 

but the possibility that a reduction in ERβ expression functions in concert with gene 

amplification should be considered.

The relationship between EGFR and IMP3 that we uncovered has important implications for 

the biology and therapy of breast cancer. EGFR signaling has profound effects on the 

proliferation, survival and invasion of tumor cells (15). Enhanced expression of EGFR in 

primary breast tumors predicts poor prognosis and renders them more aggressive (34–37). In 

the context of our findings, EGFR-driven migration and invasion contribute to tumor 

progression and metastasis, and the mechanisms involved have been the focus of numerous 

studies (38–40). We conclude from our findings that IMP3 can be an effector of EGFR-

driven migration and invasion, and suggest that this contribution of IMP3 needs to be 

integrated with other mechanisms of EGFR-mediated migration and invasion. From a 

clinical perspective, the EGFR is considered to be a viable target for therapy of TNBC. 

Although small molecule EGFR inhibitors including gefitinib (Iressa) and the monoclonal 

antibody cetuximab are in clinical trials for this aggressive sub-type of breast cancer (41), 

none of these drugs has shown efficacy to date. We postulate based on our data that small 

molecule inhibitors of IMP3 would augment anti-EGFR therapy for the treatment of TNBC.

The overarching issue raised by our data is how IMP3 contributes to the aggressive behavior 

of breast cancers. In fact, this issue is important for several cancers in which IMP3 

expression has been correlated with progression and poor outcome (4, 7, 10). A role for 

IMP3 in invasion was foreshadowed by the finding that IMPs (specifically IMP1 and IMP3) 

induce invadopodia formation by regulating the expression of CD44 in HeLa cells (26). 

Although our data did not reveal that CD44 expression is regulated by IMP3 in breast 

cancer, the induction of invadopodia formation by IMPs is consistent with our data. Recent 

studies have implicated IMP3 in the migration of HeLa cells (Lu et al, 2011) and in the 

aggressive behavior of glioblastoma cells including invasion (Suvasini 2011). In addition to 

a role in migration and invasion, IMP3 has been implicated in proliferation, anchorage-

dependent cell growth and survival (42, 43). However, depletion of IMP3 expression in 

breast carcinoma cells did not affect cell cycle and anchorage-dependent growth (data not 

shown).

Given that IMP3 is an RNA binding protein, the most feasible hypothesis to account for its 

role in migration and invasion is that it affects the expression or localization of specific 

mRNAs that are critical for invasion and progression. Our finding that IMP3 binds and 

stabilizes CD164 and MMP9 mRNAs provides potential insight into this hypothesis. 
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CD164, a cell surface receptor for sialomucin, has been implicated in prostate cancer 

metastasis (22) and MMP9, a type IV collagenase, contributes to carcinogenesis by several 

mechanisms including degradation of the basement membrane (44) and promoting the 

release of growth factors from the extracellular matrix (45). Moreover, MMP9 expression is 

correlated with poor prognosis in node negative breast cancer (46). Another relevant 

observation in our study is that IMP3 binds IGF-II and CD44 mRNAs but it does not alter 

their expression. This finding is distinct from other reports that have shown that IMP3 can 

activate the translation of IGF-II in leukemia cells (47) and glioblastoma cells (Suvasini et 

al., 2011), and regulate the expression of CD44 in Hela cells (26). The possibility that IMP3 

regulates the localization or other aspects of these mRNAs merits investigation because both 

IGF-II and CD44 are important in the biology of breast cancer (48, 49).

In summary, our data provide the first insight into mechanisms that regulate the expression 

of an mRNA binding protein that is associated with TNBC and that is prognostic for 

progression and outcome in other cancers. These regulatory mechanisms are intimately 

linked to the biology of TNBC and they also reveal a novel mechanism of EGFR-driven 

migration and invasion. Our data also suggest that targeted IMP3 therapy could augment 

growth factor receptor (EGFR) inhibition in the treatment of TNBC.

Materials and Methods

Cells, reagents and treatments

The breast cancer cell lines MDA-MB-231, MDA-MB-468 (mentioned as MDA-231 and 

MDA-468 in the figures) and MCF7 were obtained from American Type Culture Collection 

(ATCC) and maintained in DMEM (low glucose) containing 10% fetal bovine serum, 1% 

streptomycin and penicillin at 37°C in an incubator supplied with 5% CO2. IMP3 specific 

siRNA was purchased from Santa Cruz Biotechnology, Inc. A non-targeting pool was used 

as negative control. Dharmafect-4 was used for siRNA delivery and was purchased from 

Thermo Scientific. Lipofectamine-2000 was used for regular DNA transfection and 

purchased from Invitrogen. The control plasmid vector pcDNA3 was purchased from 

Invitrogen and pcDNA4/His/Max was a gift from Dr. Michael Green, UMass Medical 

School. The lentiviruses (PLKO.1) containing ERβ shRNAs or shGFP (Open Biosystems, 

clone ID: TRCN0000003326, TRCN0000003327 and RHS4459) were generated in 

HEK293T cells and infected in MDA-MB-231 cells following standard protocols described 

elsewhere (50). The MEK1/2 inhibitors U0126 and PD98059 were purchased from LC 

Laboratories. ICI was purchased from Sigma-Aldrich. The IMP3 antibody was obtained 

from DAKO, Germany. ERα, EGFR and pEGFR (Tyr-1263) Abs were purchased from 

Santa Cruz Biotechnology Inc. pMAPK (p42/44) and pAkt (ser473) Abs were obtained from 

Cell Signaling Technology. The ERβ antibody was purchased from Gen Tex Inc. The IGF-II 

and CD44 antibodies were purchased from Abcam. Estrogen (E2), PHTPP and 3βA-diol 

were purchased from Tocris Biosciences and dissolved in DMSO. For 3βA-diol treatment, 

MDA-MB-231 cells were cultured in DMEM (low glucose) supplemented with 5 % 

charcoal stripped fetal bovine serum. For treatment with all other reagents, cells were 

cultured in normal medium (mentioned above) and serum-starved for 24 h prior to 

treatment.
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Immunoblotting

Whole cell extracts were prepared using RIPA buffer containing EDTA and EGTA (Boston 

Bioproducts). A protease and phosphatase inhibitor cocktail was added separately (Roche 

Applied Biosciences). Extracts (40–50 μg protein) were blotted with the appropriate primary 

Abs and then incubated with mouse/ or rabbit IgG horse radish peroxidase conjugated 

secondary antibody. ECL kit (Pierce Biotechnology) was used to develop the blots.

RNA isolation and real time PCR analysis

Total RNA was isolated from cultured cells using Trizol reagent (Invitrogen) following the 

manufacturer's protocol. cDNA was synthesized using superscript-II reverse transcriptase 

(Invitrogen). mRNAs were quantified by real time PCR analysis (ABI Prism, Applied 

Biosystems) using Power Syber Green PCR master mix (Applied Biosystems). 

Quantification was performed using ΔΔCt method and GAPDH was used as reference gene. 

The following primer pairs were used for real time PCR analysis:

IMP3-forward: 5'-CCGCAGTTTGAGCAATCAGAA-3'

IMP3-reverse: 5'-CGAGAAAGCTGCTTGATGTGC-3'

EGFR-forward: 5'-GCCCCCACTGCGTCAAGACC-3'

EGFR-reverse: 5'-ACCTGGCCCAGTGCATCCGT-3'

ERβ-forward: 5'-AAGGTTAGTGGGAACCGTTG-3'

ERβ-reverse: 5'-ACATCCTTCACACGACCAGA-3'

MMP9-forward: 5'-TTTGACAGCGACAAGAAGTGG-3'

MMP9-reverse: 5'-AGGGCGAGGACCATAGAGG-3'

CD164-forward: 5'-GAGTGCTGTAGGATTAATTGGAAAAT-3'

CD164-reverse: 5'-GGGAGGAATGGAATTCTGC-3'

IGFII-forward: 5'-CCGAAACAGGCTACTCTCCT-3'

IGFII-reverse: 5'-AGGGTGTTTAAAGCCAATCG-3'

CD44-forward: 5'-GCCCTTCCATAGCCTAATCC-3'

CD44-reverse: 5'-CTTTGGTGTCTCCCAGAAGC-3'

Migration and invasion assays

Assays were performed using transwell chambers (8 μm polycarbonate membrane, Costar, 

Corning Inc) that had been coated with either collagen I or Matrigel (BD Biosciences) for 

migration and invasion, respectively, as described previously (51). Assays were quantified 

by counting the number of stained nuclei in 5 independent fields in each transwell.

RIP-qPCR

Identification of endogenous mRNA targets of IMP3 was performed by RIP 

(riboimmunoprecipitation) assay as described previously with minor modifications (47). 
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Briefly MDA-MB-231 cells (~2 × 107) were harvested and extracted for 15 min on ice in 

250 μl of ice-cold lysis buffer (100 mm KCl, 5 mm MgCl2, 10 mm HEPES (pH 7.0), 0.5% 

Nonidet P-40, 10 μm dithiothreitol) supplemented with RNase and protease inhibitors (1 ml 

of lysis buffer contains 5.25 μl of 40 units/ml RNase OUT (Invitrogen), 2 μl of 0.2% 

vanadyl ribonucleoside complexes (New England Biolabs), 50 μl of complete protease 

inhibitor mixture (Roche Applied Science). Extracts were cleared by centrifugation for 15 

min at 13,000 rpm and supernatant was transferred to a fresh 1.5-ml tube. To pre-clear the 

cytoplasmic extracts, 25 μg of non-immune rabbit IgG (Sigma) was added to the supernatant 

and kept on ice for 45 min, then incubated with 50 μl of a 50% (v/v) suspension of protein 

G-Sepharose beads (Biovision, SF, California, USA) for 3 h at 4 °C with rotation. This was 

centrifuged at 13,000 rpm and the supernatant was recovered (pre-cleared lysate). For 

immunoprecipitation, the pre-cleared extract was incubated with 100 μl of a 50% suspension 

of protein G-Sepharose beads (Sigma) pre-coated with the same amount of either non-

immune rabbit IgG (Sigma) or anti-human IMP3 antibody (25 μg) in 800 μl of NT-2 buffer 

(150 mm NaCl, 1 mm MgCl2, 50 mm Tris-HCl (pH 7.4), 0.05% Nonidet P-40) containing 

RNase inhibitor and protease inhibitors for over-night at 4 °C with rotation. Beads were 

washed 10 times using ice-cold NT-2 buffer, digested with 20 units of RNase-free DNase I 

(Promega) in 100 of μl of NT-2 buffer for 20 min at 30 °C, washed with NT-2 buffer, and 

further digested with 0.5 mg/ml protease K (Ambion) in 100 μl of NT-2 buffer containing 

0.1% SDS at 55 °C for 30 min. RNA was extracted with Trizol (Invitrogen). Glycogen 

(Roche Applied Science) was added to facilitate precipitation of RNA. Real time PCR was 

performed with equal amount of RNA to detect IGF-II, MMP9 and CD164 mRNAs using 

previously described primers.

IMP3 and EGFR promoter analysis

The human IMP3 promoter (2.872 kb) was PCR amplified from human genomic DNA. The 

PCR amplified fragments were confirmed by restriction mapping and cloned at the NheI-

Hind III sites into the pGL3 basic vector (Promega). Similarly, the EGFR promoter (2.2 kb) 

was cloned and ERE (AATCAACGTGAAT) was mutated to (AACATACGTGAAT) using 

site-directed mutagenesis (QuikChange XL Site-Directed Mutagenesis Kit, Agilent 

Technologies). Primer pairs used:

IMP3 promoter:

Forward: 5'-TATGATGCTAGCACTTGAAGTGCTAGTGCAAGACAACT

Reverse: 5'-CAGTAGAAGCTTTCCACCAGTCTTCCTAAGTCTTAGGA

EGFR promoter:

Forward: 5'-TAGAAGACGCGTCAGGTACTAGCCAAGGACTACA

Reverse: 5'-AATCGTCTCGAGGATCAATACTGGACGGAGTCAG

Luciferase reporter assays

MDA-MB-231 cells were transfected with the desired luciferase reporter constructs (express 

firefly luciferase) along with another construct expresses renilla luciferase to normalize the 

transfection efficiency. Relative Light Units (RLU) was calculated as the ratio of firefly 
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luciferase to renilla luciferase activity (normalized luciferase activity). The protocol used for 

transfection and measurement of luciferase activity has been described previously (52). 

Luciferase activity was measured in Beckman Coultier, DTX 880 luminomiter.

Construction of IMP3, ERα and ERβ expression vectors

Human IMP3 (NM_006547) cDNA was PCR amplified using total RNA isolated from 

MDA-MB 231 cells and cloned into pcDNA4/His/Max vector at EcoRI/XhoI sites under 

CMV promoter. PCR amplified cDNA was confirmed by restriction mapping and the cloned 

expression vector was confirmed by sequence analysis. The ER-α and ER-β expression 

constructs were obtained from Shuk-Mei Ho (University of Cincinnati).

IMP3 Primers:

Forward: 5'-GCCATAGAATTCATGAACAAACTGTATATCGGAAACC-3'

Reverse: 5'-TAAGTACTCGAGTTACTTCCGTCTTGACTGAGGT-3'

Statistical analyses

The data are shown as the ± S. E. p values (*) were determined using student's t test and p ≤ 

0.05 was considered as significant.
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Figure 1. ERβ suppresses IMP3 protein expression
(A, left) ERα was expressed in MDA-MB-231 cells by transfecting them with an expression 

vector, pcDNA3/ERα (pERα). (A, right) MCF7 cells were treated with either DMSO or the 

ERα antagonist ICI (1 μM) and analyzed for IMP3 expression by immunoboltting. MDA-

MB-231 cells were used as positive control for IMP3 expression. (B) & (E) Immunoblots 

show IMP3 expression in MDA-MB-231, MDA-MB-468 and MCF7 (E) cells treated with 

the ERβ antagonist PHTPP (10 μM). (C) MDA-MB-231 cells were treated with 3βA-diol 

(10 μM). Graphs on the right side of each blot represent densitometry analysis (Image J 

software) of IMP3 expression. (D) Blots show the effect of ERβ depletion on IMP3 

expression in MDA-MB-231 and MDA-MB-468 cells. ERβ expression was depleted by 

transfecting cells with plasmids expressing two different shRNAs. A plasmid expressing 

GFP-shRNA was used as control. (F, left) Immunoblot shows the effect of estrogen (E2, 10 

nM) on IMP3 protein expression in MDA-MB-231 cells. (F, right) Effect of PHTPP and 

3βA-diol (24 hr) on IMP3 expression in estrogen treated MDA-MB-231 cells. The 

expression of IMP3, ERα and ERβ was assessed 48 hrs post-transfection. DMSO was used 

as control for estrogen, PHTPP and 3βA-diol treatment.
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Figure 2. EGFR signaling positively regulates IMP3 expression
(A) Immunoblots show the effect of blocking EGFR on IMP3 expression using a specific 

Ab (2 μg /mL) in MDA-MB-231 (left) and MDA-MB-468 (right) cells. Rabbit IgG was used 

as control. (B) & (C) MDA-MB-231 and MDA-MB-468 cells were treated with MEK1/2 

inhibitors u0126 (10 μM) and PD98059 (50 μM) for different time points as indicated in the 

figure, and the expression of IMP3, as well as pMAPK, was analyzed by immunoblotting. 

IMP3 mRNA from cells treated with U0126 for 10 hr was assessed by qPCR. (D) MDA-

MB-231 cells were transfected with a luciferase reporter construct containing 2.872 kb 

IMP3 promoter (wild type) in presence or absence of U0126 and PD98059, and luciferase 

activity was measured 24 h post-transfection. Data represent the mean of three independent 

experiments. p value (*) < 0.05.
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Figure 3. ERβ suppresses EGFR expression
(A) & (B) ERβ was transiently depleted in MDAMB-231 and MDA-MB-468 cells using two 

different shRNAs. EGFR protein and mRNA (MDA-MB-231) expression was evaluated by 

immunoblotting and qPCR, respectively. (C) ERβ was over-expressed in MDA-MB-231 

cells using an expression construct (pERβ), and EGFR protein and mRNA expression was 

evaluated by immunoblotting and qPCR, respectively. (D) MDA-MB-231, MDA-MB-468 

and MCF7 cells were treated with the ERβ antagonist PHTPP (10 μM) and EGFR protein 

expression was analyzed by immunoblotting. (E) ERα was expressed in MDA-MB-231 cells 

using an expression construct (pERα) and EGFR protein was assessed by immunoblotting. 

(F) Luciferase reporter constructs containing the wild-type 2.2 kb EGFR promoter and the 

mutant (mutated ERE) were transfected into MDA-MB-231 cells and luciferase activity was 

measured 24 h post-transfection. Data represent the mean of three independent experiments. 

The empty vector pcDNA3 was used as control. p value (*) < 0.05.
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Figure 4. IMP3 enhances the migration and invasion of breast cancer cells
(A) IMP3 was transiently depleted in MDA-MB-231 cells using siRNA (20 nM). At 72 hrs 

post-transfection, IMP3 protein was evaluated by immunoblotting, and migration and 

invasion assays were performed for another 4 h. (B) & (C) IMP3 was expressed transiently 

in MCF7 cells by transfecting with an expression construct (pIMP3) and IMP3 protein and 

mRNA were determined 48 h post-transfection by immunoblotting and qPCR, respectively. 

The same IMP3-expressing cells were subjected to migration and invasion assays for 

another 24 hrs. The empty vector pcDNA4/His/Max was used as control. (D) & (E) 

Migration and invasion assays were carried out with ERβ-depleted cells, as well as cells 

over-expressing ERβ. (F) MDA-MB-231 cells were treated with the MEK 1/2 inhibitor 

U0126 and assayed for migration and invasion. Data are representative of three independent 

experiments. p value (*) < 0.05.
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Figure 5. IMP3 binds and stabilizes CD164 and MMP9 mRNA
(A) & (B) IGF-II mRNA expression was quantified using qPCR in IMP3-depleted MDA-

MB-231 cells and in MCF7 cells engineered to express IMP3. The blot in (A) shows IMP3 

depletion in MDA-MB-231 cells and in (B) IMP3 expression in MCF-7 cells. (C) & (D) 

CD164 and MMP9 mRNA expression was quantified using qPCR in IMP3-depleted MDA-

MB-231 cells and MCF-7 cells expressing IMP3. (E) CD44 protein and mRNA expression 

was assessed in IMP3-depleted MDA-MB-231 cells. (F) IMP3-associated RNAs in 

cytoplasmic extracts of MDA-MB-231 cells were isolated using an IMP3 antibody (25 μg). 

Non-immune rabbit IgG was used as negative control. Expression of CD164, MMP9 and 

IGF-II mRNAs was quantified using qPCR. Data are representative of three independent 

experiments. p value (*) < 0.05.

Samanta et al. Page 18

Oncogene. Author manuscript; available in PMC 2013 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. CD164 and MMP9 mRNAs are suppressed by ERβ and increased by EGFR signaling
(A–C) Expression of CD164 and MMP9 mRNAs was quantified by qPCR in MDAMB-231 

cells in which ERβ had been depleted or over-expressed, or had been treated with either an 

EGFR antibody or the MEK 1/2 inhibitor u0126. Each experiment was repeated at least 

three times. p value (*) < 0.05.
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Figure 7. Proposed model for how ERβ regulates IMP3 in triple negative breast cancer cells
The interaction of ERβ with its ligand 3βA-diol suppresses EGFR expression. EGFR 

signaling induces IMP3 expression. IMP3 facilitates the migration and invasion of triple 

negative breast carcinoma cells by a mechanism that may involve its ability to specific 

mRNAs such as CD164 and MMP9.
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