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Background. Liver hepatocellular carcinoma (LIHC) has had a continuous increase in incidence and mortality rates over the last
40 years. Dynein Cytoplasmic 1 Heavy Chain 1 (DYNC1H1) is a protein coding gene which encodes the cytoplasmic dynein heavy
chain family. This is the first investigation into the expression of DYNC1H1 and its mechanisms of action in LIHC patients.
Methods. Based on the DYNC1H1 expression data from the TCGA database, we performed the DYNC1H1 expression,
clinicopathological data, gene enrichment, and immune infiltration analysis. TIMER and CIBERSORT were used to assess
immune responses of DYNC1H1 in LIHC. GEPIA, K-M survival analysis, and immunohistochemical staining pictures from
the THPA were used to validate the results. In order to evaluate the diagnostic value of DYNC1H1, GEO datasets were
analyzed by using ROC analysis. And quantitative real-time polymerase chain reaction was also carried out to evaluate the
expression of DYNC1H1. Results. DYNC1H1 expression levels were associated with T classification, pathologic stage, histologic
grade, and serum AFP levels. DYNC1H1 is an independent factor for a poor prognosis in patients with LIHC. Further study
showed that high expression of DYNC1H1 was enriched in epithelial–mesenchymal transition (EMT) and the TGF β signaling
pathway by GSEA analysis enrichment, indicating that DYNC1H1 might play a key role in the progression of CRC through
EMT and immune response, which also had been validated by the experimental assays. Conclusions. DYNC1H1 will provide a
novel and important perspective for the mechanisms of LIHC by regulating EMT. This gene will be able to act as an
efficacious tool for the early diagnosis and effective intervention of LIHC.

1. Introduction

LIHC is one of the few prevalent solid organ tumors in
which a continuous increase in incidence and mortality rates
has been observed over the last 40 years [1]. The 2020 Global
Cancer Statistics showed that LIHC new cases were approx-

imately 906,000 and the death cases were 830,000, of which
more than 50% occurred in China. Hepatocellular carcinoma
(HCC) represents the predominant histological subtype (75–
85%) of primary liver cancer [2]. Currently, several risk fac-
tors have been indicated to contribute for developing LIHC,
such as hepatitis B, hepatitis C, excessive consumption of
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alcohol, exposure, tobacco use, and aflatoxin [3–5]. At pres-
ent, ultrasonography (US), computed tomography (CT),
magnetic resonance imaging (MRI), and the serum alpha-
fetoprotein (AFP) value are the most common noninvasive
methods used to detect and diagnose LIHC, but all of them
are not always sufficiently sensitive in early diagnosis [6].
Therefore, the identification of a more specific biomarker
and potential target for treatment is critical for improving
the prognosis of LIHC.

Dynein Cytoplasmic 1 Heavy Chain 1 (DYNC1H1) is a
protein coding gene which encodes the cytoplasmic dynein
heavy chain family. This family links engulfment and execu-
tion of apoptosis to prevent several pathologies including
cancer, neurodegenerative diseases, and autoimmune disor-
ders [7–9]. The DYNC1H1 plays a dominant role in the
assembly of the mitotic spindle and the congression of the
metaphase plate [10]. DYNC1H1 also controls microtubule
binding [11]. Therefore, DYNC1H1 involved in microtubule
dynamics and mitotic spindle orientation could be a possible
factor in the pathophysiology and progression of tumors
[12]. They are closely linked to tumor pathogenesis [13, 14].

Although DYNC1H1-associated immune responses have
been identified among various types of cancer, comprising
gastric and lung cancer, the role of DYNC1H1 in immune
infiltration and prognosis is still underexplored [11, 15].
To address this challenge, we analyzed DYNC1H1 in LIHC
through using RNA expression sequencing data from The
Cancer Genome Atlas (TCGA, https://cancergenome.nih
.gov/) database. We used R language software to compare
the interrelationship between DYNC1H1 and some clinico-
pathological parameters. In order to better confirm the path-
ogenic effect of DYNC1H1 and understand the regulatory
mechanisms, we constructed protein–protein interaction
(PPI) networks, Gene Ontology (GO) analyses, and gene
set enrichment analysis (GSEA) analyses. The correlation
between DYNC1H1 and EMT pathway scores was analyzed.
Using the Tumor Immunoassay Resource (TIMER) and
CIBERSORT algorithm, we further investigated the interrela-
tionship between DYNC1H1 and Tumor-Infiltrating Immune
Cells (TIICs). The association of DYNC1H1 and prognosis
was subsequently analyzed by using the Gene Expression
Profiling Interactive Analysis (GEPIA), Kaplan–Meier (K-M)
survival analysis, and the Human Protein Atlas (THPA). In
order to assess the diagnostic value of DYNC1H1, a receiver
operating characteristic (ROC) curve was established. Finally,
we further validated DYNC1H1 using qPCR, which will help
us further elucidate the potential pathogenesis of LIHC.

Despite certain previous studies involving the potential
role of this gene in LIHC [16, 17], the association of TIICs
and poor prognosis did not present an exhaustive analysis
and lacked an in-depth discussion. The development and
pathogenesis of LIHC is an extremely complex process con-
sisting of multiple causative aspects and risk factors involved
in the etiology. Our study has suggested that higher
DYNC1H1 expression is strongly associated with T classifi-
cation, pathologic stage, histologic grade, AFP, and overall
survival (OS) event, generally indicating a poor prognosis.
In addition, the correlation between DYNC1H1 and TIICs
was explored. In this paper, the function of DYNC1H1 in

LIHC was analyzed in detail to explore effective molecules
for LIHC diagnosis and treatment.

2. Materials and Methods

2.1. Data Acquisition and Mining. The TCGA database was
utilized to find the gene expression data (workflow type:
HTSeq-TPM), immune system infiltrates, and corresponding
clinical information [18]. In addition, for any missing, insuf-
ficient, or unclear data source, the sample will be excluded
from the research. We used both RNA-sequence and clinical
data, which was used for analysis and investigation. Both
RNA-sequence and relevant clinical data were used to guide
further studies. Among these 424 cases, 374 cases of LIHC
tissue and corresponding 50 cases of normal healthy liver
tissues were included in our research. For investigation of
the underlying molecular mechanism of the DYNC1H1
expression, patients with LIHC were clustered into 2 groups,
the high or low expression level group based on patients’
expression level and the median value of the DYNC1H1
gene. Our research was performed in conformity with the
publication guidelines offered by TCGA [19]. Moreover, in
order to verify the expression and diagnostic value of
DYNC1H1 in LIH, we collected 2 gene expression profiling
datasets (GSE14520 and GSE63898) from the Gene Expres-
sion Omnibus (GEO) database [20–22] (Table 1).

2.2. Validation of DYNC1H1 Expression. We analyzed the
TCGA dataset to validate and verify the potential prognostic
role of DYNC1H1 genes in LIHC. To analyze difference in
DYNC1H1 genes between LIHC samples and normal liver
tissues, we utilized independent sample t-tests for nonpaired
samples and paired t-test for paired samples. The results
were generated with boxplots. And using the ggplot2 R pack-
age [23], boxplots were plotted.

2.3. Survival Analysis Based on DYNC1H1 Expression. In
short, using the R packages survival and survminer to graph
K-M survival curves, survival analysis was carried out. It was
the K-M survival curves that were used to represent the OS
and progression-free interval (PFI) distributions between
the high and low DYNC1H1 groups. By the OS and PFI time
derived from TCGA, the relations of the DYNC1H1 expres-
sion level with patients’ survival outcome was computed.
Following that, in order to further appraise the upshots of
the K-M survival analysis, receiver operating characteristic
(ROC) curves were generated by using the pROC package
[24] in R language [24].

2.4. Construction of the Predicted PPI Network. Using the
DESeq2 R package [25], the samples were split into 2
expression groups in LIHC: low DYNC1H1 group (0–
50%) and high DYNC1H1 group (50–100%). STRING, a
well-known online biological tool for the prediction of
PPI, comprises direct (physical) and indirect (functional)
associations [26]. With the help of the version 11.0 of
the PPI database STRING, we identified the differentially
expressed genes (DEGs) involved in the PPI with the thresh-
old values of jlog 2 fold − changeðFCÞj > 2:0 and adjusted p
value ðp:adjustÞ < 0:05. In this PPI network, the required
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interaction score for determining a significant interplay
was medium confidence (0.400) as cut-off criteria. Second,
the PPI network was visualized with Cytoscape (version
3.8.2) [27].

2.5. GO Pathway Enrichment Analysis of DEGs. GO analysis
comprises a biological process (BP), cellular component
(CC), and molecular function (MF). The GO enrichment
analysis of DEGs in samples of LIHC was performed by
the clusterProfiler [28] R package. Afterwards, we used the
org.Hs.eg.db (version 3.4.0) and GOplot R (version 1.0.2)
packages for analysis and visualization of the results by gen-
erating cluster plots [29].

2.6. Gene Set Enrichment Analysis. For GSEA, we chose nor-
malized RNA-seq datasets from the TCGA data portal [30].
Herein, gene set permutations were set to 1000 with default
parameters. Hallmark pathway enrichment analyses were
performed to determine the possible biological function of
DYNC1H1 by using GSEA. Enrichment results with 2 con-
ditions (p:adjust < 0:05 and q-value <0.25) were considered
as statistically significant.

2.7. Immune Infiltrate Analysis. TIMER is a comprehensive
and publicly available resource for systemic analysis of
immune infiltrates across various types of tumor (https://
cistrome.shinyapps.io/timer/) [31]. We investigated the
interrelation between the DYNC1H1 expression and the
tumor using TIMER. The TIMER correlation module was
also used to evaluate and visualize the interrelation between
the gene and the tumor-infiltrating immune cell profile in
LIHC. TIMER employs a previously released deconvolution
statistical method to investigate associations among infiltrat-
ing immune cells and DYNC1H1 genes. We assessed the
correlation between the expression of DYNC1H1 and the
abundance of immune infiltrates (CD4+ T cells, dendritic
cells, B cells, CD4+ T cells, B cells, neutrophils, and macro-
phages) in LIHC by the gene modules. The pictures of the
gene against tumor purity were drawn using TIMER [32].
After that, to assess the relative gene expression, we chose
a deconvolution algorithm called CIBERSORT (http://
cibersort.stanford.edu/) on the basis of gene expression
[33]. By evaluating the association between immune cell
infiltration and DYNC1H1 expression in LIHC to uncover
correlations between TIICs, we assessed the immune
response of 24 TIICs by using CIBERSORT. We chose stan-
dard annotation files to build gene expression datasets by
setting the default signature matrix at one thousand permu-
tations. To determine the confidence of the deconvolution
method, CIBERSORT derived a p value through Markov
chain Monte Carlo (MCMC) methods. The three hundred
and seventy-four tumor samples were classified into two

groups to assess the significant effects of the DYNC1H1
expression on the microenvironment of the immune system.
To identify the species of lymphocytes influenced by
DYNC1H1, the p value < 0.05 was set up.

2.8. Comprehensive Analysis. The online database GEPIA
analyzes the RNA-sequencing expression data of 8587 nor-
mal and 9736 tumor samples of 33 malignant tumors from
TCGA and GTEx by using a standard processing pipeline
[34]. OS with the DYNC1H1 expression in LIHC was ana-
lyzed by using GEPIA. Furthermore, a boxplot was generated
to calculate the differential DYNC1H1 expression by using
the tumor or normal state as a variable. Kaplan–Meier anal-
ysis of survival curve was performed using K-M survival
analysis (http://kmplot.com/analysis/) to analyze interaction
relationships between the DYNC1H1 expression and survival
information with LIHC [35]. DYNC1H1 was fed into the
database to graph K-M survival plots. The hazard ratio
(HR) and the log-rank p value were calculated. Values with
p value < 0.05 (p < 0:05) were considered to be statistically
significant.

2.9. Immunohistochemistry-Based Validation of Hub Genes
in THPA. THPA, a public database which includes over 5
million immunohistochemically stained tissues and cell dis-
tribution information for 26,000 human proteins, was a pro-
gram supported by a grant from Sweden. THPA can examine
normal and LIHC tissues via antibody proteomics, which is
often used for the validation of the hub target genes’ expres-
sions. Therefore, we used this pathology tool to evaluate
expression levels of DYNC1H1 between liver tissues and
LIHC tissues from THPA.

2.10. Cell Culture. The human normal liver cell lines (L02)
and hepatocellular carcinoma cell lines (Hep3B, HepG2,
SMMC7721, and MHCC97H) were obtained from the Chi-
nese Academy of Sciences (Shanghai, China). All cells were
cultured in Dulbecco’s modified eagle’s medium (DMEM)
containing 10% fetal bovine serum (FBS). Then after, cells
were maintained in a humidified incubator containing
37°C and 5% CO2.

2.11. Quantitative Reverse-Transcription Polymerase Chain
Reaction. According to the manufacturer’s instructions, the
total amount of RNA was extracted from the cell lines using
a TRIzol reagent (Invitrogen, Thermo Fisher Scientific, Inc.)
and subjected to reverse transcription using the Prime-
Script™ RT Reagent Kit (Takara, Shiga, Japan). Quantitative
Reverse-Transcription Polymerase Chain Reaction (qRT-
PCR) was analyzed and performed using the Applied Biosys-
tems® 7500 Fast Real-Time PCR System (Thermo Fisher
Scientific, Waltham, MA) and accompanying Applied Bio-
systems® 7500 Software (version 2.0.6) to measure the

Table 1: Basic information of the microarray datasets.

ID Platform Data type Author Update date Country Sample type n (N) n (LIHC)

GSE14520 GPL3921 mRNA Xin Wei Wang et al. Oct 06, 2021 USA Human tissues 220 225

GSE63898 GPL13667 mRNA Augusto Villanueva et al. Apr 14, 2020 USA Human tissues 168 228
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Figure 1: Continued.
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mRNA expression levels of DYNC1H1. The following primer
sequences were used: DYNC1H1 forward primer: TTGGGC
ACTAGGAAATTGATGC; DYNC1H1 reverse primer:
GCAGGGTTGATACGCCACA.

2.12. Statistical Analysis. All statistical analyses were con-
ducted using R statistical software (R Core Team, version
3.6.3). The univariate and multivariate models of the Cox
analysis were used to show the multivariate HR and 95%
confidence intervals (95% CI). We then evaluated the
DYNC1H1 expression and other clinical and pathological
features affecting OS. The significance threshold was set as
probability (p) value < 0.05. Logistic regression was used to
evaluate the associations between the DYNC1H1 expression
and clinical characteristics (T stage, pathologic stage, histo-
logic grad, AFP, and OS event). A p value of less than 0.05
was considered to be statistically significant.

3. Results

3.1. Survival Outcomes and Variable Analysis. To confirm
the expression levels of DYNC1H1 in various species of
tumors, we firstly analyzed the RNA-seq data from TCGA
datasets using the TIMER tools. Analysis result shows that
the expression level of DYNC1H1 is upregulated in the
majority of tumors involving BLCA, CESC, CHOL, COAD,
ESCA, GBM, HNSC, HNSC-HPV, KICH, KIRC, KIRP,
LIHC, LUAD, LUSC, PAAD, PCPG, PRAD, SKUM, STAD,
THCA, and UCEC (Figure 1(a)). To further validate the
expression level and prognosis role of DYNC1H1 in these
tumors, we checked their expression; we again analyzed the
RNA-seq datasets and characteristics of the patient from

the TCGA database and discovered that DYNC1H1 was
upregulated when compared to all LIHC tissues and normal
liver tissues (Figure 1(b)). We acquired the same outcome in
paired LIHC tissues (N = 50) compared with normal liver
tissues (Figure 1(c)). Meanwhile, the high expression of
DYNC1H1 exhibited poor survival and progression-free
survival of patients with LIHC (Figures 1(d) and 1(e)). As
displayed in Table 2, we performed the Cox analysis to assess
the correlation between the DYNC1H1 expression and over-
all survival, as well as other multivariable characteristics in
LIHC patients. Univariate regression analysis demonstrated
that a number of factors, comprising the pathologic stage
(HR = 2:504, p value < 0.001), T stage (HR = 2:598, p value
< 0.001), M stage (HR = 4:077, p value = 0.017), and
DYNC1H1 expression (HR = 1:709, p value < 0.001), are
highly associated with overall survival. The multivariate anal-
ysis, shown with a forest diagram in Figure 1(f), uncovered
that the DYNC1H1 expression (p value = 0.009) is an inde-
pendent factor for a poor prognosis in patients with LIHC
(Table 2). The distribution of DYNC1H1 expression, survival
status of patients with LIHC, and expression profiles of
DYNC1H1 are depicted in Figure 1(g). The DYNC1H1 level
displayed a robust prognostic value because the ROC curve
indicated that the AUC of the DYNC1H1 expression for pre-
dicting survival was 0.704 (Figure 1(h)).

3.2. Relationship between DYNC1H1 Expression and
Clinicopathology. Our study appraised the association
between DYNC1H1 and clinicopathological characteristics
of LIHC patients. The TCGA database includes 424 LIHC
tissues including gene expression data and clinical character-
istics obtained from LIHC patients. LIHC with increased
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Figure 1: DYNC1H1 serves an oncogenic role in LIHC, and high DYNC1H1 expression predicts poor prognosis. (a) Human DYNC1H1
expression levels in different tumor types from TCGA database were determined by TIMER database (∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p <
0:001). (b) The expression of DYNC1H1 in all LIHC samples from TCGA. (c) The expression of DYNC1H1 in paired CRC samples
from TCGA. (d, e) The correlation between DYNC1H1 expression and survival status in TCGA. (f) Multivariate Cox analysis of
DYNC1H1 expression and other clinicopathological variables. (g) DYNC1H1 expression distribution and survival status. (h) ROC curves
of DYNC1H1.
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DYNC1H1 expression was distinctly associated with T stage
(p value < 0.05, Figure 2(a)), pathologic stage (p value < 0.01,
Figure 2(b)), histologic grade (p value < 0.01, Figure 2(c)),
AFP (p value < 0.01, Figure 2(d)), and OS event (p value <
0.001, Figure 2(e)). Results from this study showed that
LIHC patients with high DYNC1H1 levels were more likely
to present with worse T stage, worse pathologic stage, worse
histologic grade, worse AFP, and worse OS event compared
to those with low DYNC1H1 patients.

3.3. PPI Network Construction. In the PPI network, a total of
353 DEGs were included via the STRING database. The aim
of the construction of the PPI network was to further under-
stand the interactions of DEGs correlated with LIHC risk,
including 180 nodes and 313 edges (Figure 2(f)).

3.4. GO Enrichment Analyses. In order to elucidate the
mechanism of DYNC1H1 in the progression of LIHC, we
performed GO enrichment analysis based on single-gene
differential expression with the threshold values of jlog 2 F
Cj > 1:5 and p.adjust value < 0.05. GO functional analyses
revealed these DEGs to be involved in biological processes
including detoxification of copper ion (GO:0010273),
stress response to copper ion (GO:1990169), detoxification
of inorganic compound (GO:0061687), and stress response
to metal ion (GO:0097501). In the molecular functions,
the DEGs were primarily enriched in the receptor ligand

activity (GO:0048018), ligand-gated ion channel activity
(GO:0015276), ligand-gated channel activity (GO:0022834),
and substrate-specific channel activity (GO:0022838). The
cellular components of the DEGs were significantly enriched
in the intrinsic component of the synaptic membrane
(GO:0099240), immunoglobulin complex (GO:0019814),
postsynaptic membrane (GO:0045211), and synaptic mem-
brane (GO:0097060) (Table 3 and Figures 2(g) and 2(h)).
The biological function andmolecular role of DYNC1H1 were
receptor-ligand, membrane, and immunoglobulin complex.

3.5. GSEA of DYNC1H1 in LIHC. In order to elucidate the
mechanism of DYNC1H1 in the progression of LIHC, we
then preformed GSEA to analyze the enrichment of the
Hallmark pathways in the high-expression group and the
low-expression group. Based on the NES, q-value, and p
.adjust, significantly enriched Hallmark pathways were
selected. When using the Hallmark gene set as a reference
gene set, DEGs tended to be enriched in the following Hall-
mark signaling pathways: Hallmark epithelial mesenchymal
transition, Hallmark estrogen response early, and Hallmark
UV response DN, as depicted in Table 4 and Figure 2(i).

3.6. Regulation of the Progression of LIHC through the EMT
Pathway.We found that the hallmark of EMT was the top of
the enriched gene signature when comparing the high-
expression group and the low-expression group from TCGA

Table 2: Correlation between overall survival and multivariable characteristics in TCGA patients via Cox regression and multivariate
survival model.

Characteristics Total (N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

Age 373

≤60 177 Reference

>60 196 1.205 (0.850-1.708) 0.295 1.314 (0.809-2.132) 0.270

Gender 373

Female 121 Reference

Male 252 0.793 (0.557-1.130) 0.200 1.062 (0.637-1.773) 0.817

Histologic grade 368

G1 & G2 233 Reference

G3 & G4 135 1.091 (0.761-1.564) 0.636 1.140 (0.709-1.834) 0.589

Pathologic stage 349

Stage I & stage II 259 Reference

Stage III & stage IV 90 2.504 (1.727-3.631) <0.001 0.279 (0.015-5.202) 0.392

T stage 370

T1 & T2 277 Reference

T3 & T4 93 2.598 (1.826-3.697) <0.001 9.921 (0.554-177.718) 0.119

M stage 272

M0 268 Reference

M1 4 4.077 (1.281-12.973) 0.017 2.200 (0.633-7.651) 0.215

N stage 258

N0 254 Reference

N1 4 2.029 (0.497-8.281) 0.324 3.437 (0.450-26.229) 0.234

DYNC1H1 373 1.709 (1.346-2.169) <0.001 1.610 (1.128-2.297) 0.009
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LIHC samples (Figure 2(j)). We next examined whether
overexpression of DYNC1H1 affects EMTmarkers including
SNAIL, SLUG, MMP9, TWIST1, and TWIST2 (Figure 2(k)).
These findings suggest that DYNC1H1 might promote LIHC
progression by regulating the EMT pathway.

3.7. Relationship between DYNC1H1 Expression and Tumor-
Infiltrating Immune Cells. The presence of tumor-infiltrating
lymphocytes (TIL) has emerged as an independent predictor
of cancer sentinel lymph node status and overall survival rate
(Azimi et al. 2012). We therefore chose the TIMER web tool
to analyze the relationship between DYNC1H1 and the
immune infiltration’s level in LIHC. The results are shown

in Figure 3(a). The expression levels of DYNC1H1 were pos-
itively correlated with the levels of B cells (p value = 3:51 ×
10−14), CD8+ T cell (p value = 4:82 × 10−7), CD4+ T cell (p
value = 3:91 × 10−25), macrophage (p value = 1:30 × 10−28),
neutrophil (p value = 2:96 × 10−24), and dendritic cell (p
value = 3:88 × 10−22). The aforesaid results showed that
DYNC1H1 played a meaningful and pivotal role in immune
infiltration. Furthermore, we sought to figure out whether the
tumor immune microenvironment was distinct in LIHC
patients with low DYNC1H1 compared to those with high
DYNC1H1. According to the DYNC1H1 expression, the
424 tumor samples were classified into two groups, with
212 samples in the high expression of the DYNC1H1 group
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Figure 2: DYNC1H1 expression was associated with clinicopathological features of LIHC based on TCGA and GO term/GSEA pathway
enrichment results. Expression of DYNC1H1 correlated significantly with T stage (a), pathologic stage (b), histologic grade (c), AFP (d),
and OS event (e). (f) PPI network. (g) Z-score results for the top 12 GO terms, including the top 4 BPs, CCs, and MFs. (h) Enrichment
results for DEGs and the top 12 GO terms. (i, j) Gene set enrichment analysis. (k) The correlations between individual gene and EMT
marker score.
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and 212 samples in the low-expression group. In order to
further explore the mechanisms of immune response and the
proportion of 24 immune cell populations in downloaded sam-
ples, we used the computational deconvolution method as
implemented in CIBERSORT. Using the CIBERSORT algo-
rithm, the difference between high and low DYNC1H1 expres-
sion groups in 24 immune cells was analyzed (Figure 3(b)).
Plasmacytoid dendritic cell (pDC), CD56bright NK cells, mac-
rophages, immature dendritic cells (iDC), eosinophils, dendritic
cells (DC), cytotoxic cells, activated dendritic cells (aDC), T
helper cells, central memory T cell (Tcm), effector memory T
cell (Tem), T follicular helper cells (TFH), helper T type 1
(Th1) cells, and helper T type 2 (Th2) cells were influenced by
DYNC1H1 levels, with notable variation existing in the den-
dritic cell and T cell lines between the high and low DYNC1H1
groups. Th2 cells, TFH, T helper cells, aDC, macrophages, and
CD56bright NK cells were increased compared to the group
with the low DYNC1H1 expression (p value < 0.001). Mean-
while, pDC, DC, and cytotoxic cells were decreased in the group
with a high DYNC1H1 expression (p value < 0.001). In addi-
tion, we further examined possible correlations between 24
types of immune cells (Figure 3(c)). Moderate to strong correla-
tions existed between different subpopulations of TIICs as per
the heat map.

3.8. Data Validation. We first analyzed the mRNA expres-
sion of DYNC1H1 by using the GEPIA database. The

DYNC1H1 level was increased in the LIHC group when
compared to the normal control (Figure 4(a)). A significant
interrelation was revealed between the high DYNC1H1 level
and the poor OS for LIHC (p value = 3 × 10−4, Figure 4(b)).
We further verified this finding by performing K-M survival
plots. K-M survival plots showed that the high DYNC1H1
expression group was markedly correlated with poor overall
survival rates (p value = 0.0049, Figure 4(c)). In addition,
representative immunohistochemistry (IHC) images indi-
cated that DYNC1H1 has higher expression levels compared
to nontumor tissues from the THPA (Figure 4(d)).

3.9. DYNC1H1 Possesses a Higher Specificity than AFP for
LIHCDiagnosis. Eventually, in order to evaluate the diagnostic
value of DYNC1H1, GSE14520 and GSE63898 datasets were
analyzed by using ROC analysis. As we know, alpha-
fetoprotein (AFP) is a kind of diagnostic tumor marker that
is commonly associated with LIHC. In GSE14520, the expres-
sion level of DYNC1H1 was significantly higher than that of
the nontumor tissue (Figure 5(a)), and its AUC of 0.866 was
higher than the AUC value of 0.685 for AFP (Figure 5(b)).
In GSE63898, the expression level of DYNC1H1 was signifi-
cantly higher than that of the nontumor tissue (Figure 5(c)),
and its AUC of 0.796 was higher than the AUC value of
0.566 for AFP (Figure 5(d)). In Figure 5(e), the expression of
DYNC1H1 was further validated by qRT-PCR in multiple cell
lines.

Table 3: Functional and pathway enrichment analyses for genes.

Ontology ID Description Gene ratio Bg ratio p value p.adjust q-value

BP GO:0010273 Detoxification of copper ion 10/555 15/18670 1.31e-12 2.41e-09 2.20e-09

BP GO:1990169 Stress response to copper ion 10/555 15/18670 1.31e-12 2.41e-09 2.20e-09

BP GO:0061687 Detoxification of inorganic compound 10/555 17/18670 8.02e-12 7.40e-09 6.74e-09

BP GO:0097501 Stress response to metal ion 10/555 17/18670 8.02e-12 7.40e-09 6.74e-09

MF GO:0048018 Receptor ligand activity 36/527 482/17697 4.32e-07 1.21e-04 1.04e-04

MF GO:0015276 Ligand-gated ion channel activity 17/527 138/17697 7.58e-07 1.21e-04 1.04e-04

MF GO:0022834 Ligand-gated channel activity 17/527 138/17697 7.58e-07 1.21e-04 1.04e-04

MF GO:0022838 Substrate-specific channel activity 33/527 428/17697 6.50e-07 1.21e-04 1.04e-04

CC GO:0099240 Intrinsic component of synaptic membrane 18/583 164/19717 1.83e-06 1.42e-04 1.23e-04

CC GO:0019814 Immunoglobulin complex 20/583 159/19717 5.18e-08 1.95e-05 1.69e-05

CC GO:0045211 Postsynaptic membrane 27/583 323/19717 1.35e-06 1.42e-04 1.23e-04

CC GO:0097060 Synaptic membrane 33/583 432/19717 7.14e-07 1.34e-04 1.16e-04

Table 4: Signaling pathways most significantly correlated with DYNC1H1 expression based on NES, q-value, and p.adjust.

Hallmark pathways Enrichment score NES p.adjust q-values

Hallmark_epithelial_mesenchymal_transition 0.526697402 2.419142251 0.014927601 0.008485163

Hallmark_estrogen_response_early 0.432011711 1.988225556 0.014927601 0.008485163

Hallmark_UV_response_DN 0.443524891 1.954904884 0.014927601 0.008485163

Hallmark_angiogenesis 0.569576131 1.917856809 0.014927601 0.008485163

Hallmark_TGF_beta_signaling 0.521478423 1.906591073 0.01937609 0.011013777

Hallmark_mitotic_spindle 0.407384283 1.874883995 0.014927601 0.008485163
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4. Discussion

LIHC is the 3rd leading reason of cancer death and one of
the five most frequently diagnosed cancer types [36]. During
the past 20 years, LIHC’s prevalence had been increasing
persistently [37]. Cancer progression and metastasis have
been implicated in a range of steps, including cell survival
and proliferation, cell adhesion and migration, cell adhesion,
and cell metabolism [38]. A number of previous biomarker
studies have provided information on LIHC. Microtubule-
associated serine and threonine kinase 2 (MAST2) was ini-
tially identified as a microtubule-associated protein.
Recently, MAST2 is found to be a biomarker of diagnosis
and prognosis of LIHC. The high expression level of MAST2
was correlated with advanced clinical status, for example,
histological type, histologic grade, T classification, N classifi-
cation, survival status, and poor prognosis of patients [39].

We assessed DYNC1H1 as a prognostic biomarker for
LIHC in our current research. We evaluated the prognos-
tic value of DYNC1H1 in patients with LIHC by analyzing
the RNA-seq data from the TCGA database. Through
DYNC1H1 analysis, and its interrelation to multiple tumor
characteristics and immune cell responses, high DYNC1H1
expression served as an independent prognostic factor for
poor OS. Furthermore, high DYNC1H1 expression levels
were remarkably associated with T classification, pathologic
stage, histologic grade, and serum AFP levels. Collectively,
these results indicated that the DYNC1H1 expression level
might influence LIHC initiation, progression, and immune
microenvironment.

Subsequently, GO pathway analyses were performed.
GO functional analyses revealed DYNC1H1 to be involved

in biological processes including detoxification of copper
ion, stress response to copper ion, detoxification of inorganic
compound, and stress response to metal ion. The detoxifica-
tion of inorganic compound like selenium plays a major role
in tumor cell survival [40]. In parallel, these findings also
indicate a close relationship between metal ions and immu-
nity to cancer. This finding was in agreement with prior stud-
ies. Metal ion-activated immunotherapy is considered as an
effective and potential approach in tumor therapy [41]. In
the molecular functions, the DYNC1H1 was primarily
enriched in receptor ligand activity, ligand-gated ion channel
activity, ligand-gated channel activity, and substrate-specific
channel activity. The family of ligand-gated channels war-
rants further investigation in tumor therapy [42–44]. The
cellular components of the DYNC1H1 were significantly
enriched in the intrinsic component of the synaptic mem-
brane, immunoglobulin complex, postsynaptic membrane,
and synaptic membrane. The synaptic membrane is com-
plexed with tubulin which is essential for tumor cell migra-
tion [45].

GSEA was used as a method for determining pathway
enrichment and functional module enrichment in the DEGs.
Based on GSEA enrichment, we found that DYNC1H1 was
involved in the EMT pathway and was positively correlated
with EMT markers. Thus, it demonstrated that DYNC1H1
drove the EMT phenotype and regulated the EMT program
in LIHC. This agreed with reality and was consistent with
the importance of the EMT in HCC invasion and metastasis
[46]. Additionally, the Hallmark results showed an enrich-
ment in estrogen response early. In the literature, it is also
suggested that antiestrogens or reduced estrogen levels may
be linked to liver cancer [47].
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Figure 3: Correlations between DYNC1H1 expression and immune infiltration levels in LIHC by TIMER. (a) Correlations between
DYNC1H1 expression and immune infiltration levels. (b) The varied proportions of 24 subtypes of immune cells in high and low
DYNC1H1 expression groups in tumor samples. (c) Heat map of 24 immune infiltration cells in tumor samples.
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In the present study, by using the TIMER database, we
studied the connection between the DYNC1H1expression
and the immune cell infiltration level in LIHC. It was found
that DYNC1H1 was positively related with B cells, CD8+ T
cells, CD4+ T cells, macrophages, neutrophils, and dendritic
cells. Using the CIBERSORT algorithm, we confirmed that
the high DYNC1H1 expression was related with the upregu-
lation of Th2 cells, TFH, T helper cells, aDC, macrophages,
and CD56bright NK cells and the downregulation of pDC,
DC, and cytotoxic cells. DC serves as one of the functionally
specialized antigen-presenting cells to play essential roles in

initiating specific T cell responses for innate antitumor
immunity [48]. It also regulated humoral immune responses
to inhibit tumor development [49]. Therefore, we hypothe-
sized that the function of DC could be suppressed by the
overexpression of DYNC1H1. Summing up, these studies
demonstrate that DYNC1H1 plays a critical role in modulat-
ing the immune responses of LIHC. However, randomized
controlled trials (RCTs); multicenter randomized, controlled
clinical trials, and mechanism researches are required for a
more accurate understanding of the correlation between
DYNC1H1 and LIHC in vitro and in vivo [50–52].
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Figure 4: The synthesized analysis of DYNC1H1 mRNA expression and prognosis in patients with LIHC. (a) DYNC1H1 mRNA expression
levels in normal and LIHC tissues, as obtained from GEPIA. (b) Levels of DYNC1H1 mRNA expression and overall survival based on data
obtained from GEPIA. (c) Further validation of the correlation between DYNC1H1 expression and overall survival, as shown in K-M
survival plot. (d) Hepatic expression of DYNC1H1 protein was visualized using immunohistochemistry via THPA.
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Finally, our results are validated by GEO datasets, its
ROC curve analysis, and qRT-PCR. They demonstrated that
the expression level of DYNC1H1 was significantly higher
than nontumor tissue and its AUC was higher than the
AUC value of AFP which was the mainstream biomarker
for LIHC in 2 datasets. Altogether, these results showed that
DYNC1H1 was expected to be the positive predictive tumor
marker for patients with LIHC.

There are still several drawbacks to our research. The
first point concerns data sources which come from public
databases. In the future, we need to collect as many serum
samples as possible from patients with LIHC, in order to val-
idate this biomarkers. This brings us to the second point.
Because the usefulness of biomarkers is mechanism depen-
dent, we require more experimental validation and mecha-
nistic elucidation in cell lines and animal models.

5. Conclusion

To sum up, DYNC1H1 associated with LIHC was identified
using bioinformatic analysis. DYNC1H1 is a novel prognos-
tic biomarker and has correlation with EMT and immune
infiltrates in LIHC. With further study in the future,
DYNC1H1 will provide novel and important perspectives
for the mechanisms of LIHC. This gene will be able to act
as an efficacious tool for the early diagnosis and effective
intervention of LIHC.
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Figure 5: DYNC1H1 shows a higher positive predictive value than AFP in LIHC patients. (a) The violin plot shows DYNC1H1mRNA levels in
patients with nontumor (n = 220) and LIHC (n = 225) from the GSE14520 dataset. (b) ROC curve analysis shows the diagnostic value of
DYNC1H1and AFP in nontumor and LIHC patients from the GSE14520 dataset. (c) The violin plot shows DYNC1H1 mRNA levels in
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