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Abstract

Identifying and controlling the emergence of antimicrobial resistance (AMR) is a high priority

for researchers and public health officials. One critical component of this control effort is

timely detection of emerging or increasing resistance using surveillance programs. Cur-

rently, detection of temporal changes in AMR relies mainly on analysis of the proportion of

resistant isolates based on the dichotomization of minimum inhibitory concentration (MIC)

values. In our work, we developed a hierarchical Bayesian latent class mixture model that

incorporates a linear trend for the mean log2MIC of the non-resistant population. By intro-

ducing latent variables, our model addressed the challenges associated with the AMR MIC

values, compensating for the censored nature of the MIC observations as well as the mixed

components indicated by the censored MIC distributions. Inclusion of linear regression with

time as a covariate in the hierarchical structure allowed modelling of the linear creep of the

mean log2MIC in the non-resistant population. The hierarchical Bayesian model was accu-

rate and robust as assessed in simulation studies. The proposed approach was illustrated

using Salmonella enterica I,4,[5],12:i:- treated with chloramphenicol and ceftiofur in human

and veterinary samples, revealing some significant linearly increasing patterns from the

applications. Implementation of our approach to the analysis of an AMR MIC dataset would

provide surveillance programs with a more complete picture of the changes in AMR over

years by exploring the patterns of the mean resistance level in the non-resistant population.

Our model could therefore serve as a timely indicator of a need for antibiotic intervention

before an outbreak of resistance, highlighting the relevance of this work for public health.

Currently, however, due to extreme right censoring on the MIC data, this approach has lim-

ited utility for tracking changes in the resistant population.

Introduction

Rationale

Identifying and controlling the emergence of antimicrobial resistance (AMR) is a high priority

for researchers and public health officials. A critical component of this control effort is
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surveillance for emerging or increasing resistance, as evidenced by the number and scale of

surveillance programs around the world [1] [2]. The aims of these surveillance programs are to

enable detection of emerging resistance in a timely manner and to facilitate antimicrobial

stewardship programs to be implemented properly and accurately [3]. Currently, detection of

temporal changes in AMR relies primarily on analysis of the proportion of resistant isolates

based on the dichotomization of minimum inhibitory concentration (MIC) [3]. The MIC can

be obtained from laboratory methods or machine-learning approaches [3] [4]. Regardless of

the approach to MIC determination or the breakpoint used, dichotomization results in a loss

of information.

Previous work and challenges

To date, the predominant approach to assessing changes in AMR has focused on evaluation of

changes in the proportion of isolates resistant to a particular antibiotic over time. Several statis-

tical methods have been employed, including the Cochran-Armitage trend test, logistic regres-

sion model with time as a co-variate [5] [6] [7], and the Mann-Kendall non-parametric

method to test monotonic trends over time [8]. These statistical methods are based on MIC

data that are dichotomized to resistant and non-resistant. Mazloom et al. [9] pointed out that

methods based on categorizations cause information loss. As such, a focus on changes in pro-

portion of bacteria that are categorized as resistance means that changes in the mean MIC of

isolates above or below the resistant breakpoint, a phenomena referred to as MIC creep/

decline, are not included in the current surveillance monitoring [10]. Similarly, reliance on

dichotomized MIC data prevents monitoring of correlations in mean MIC, despite the fact

that such information would aid in the identification of emerging joint resistance patterns.

Mean MIC estimation must address the natural characteristics of MIC values, which are

measured from serial dilution experiments [11] or obtained using the whole-genome sequenc-

ing based machine learning method [4]. Regardless of the method for obtaining MIC, cur-

rently observed MIC values are all censored. For example, an observed or predicted MIC of 8

for the organism A actually implies that the true MIC is>4,�8, and ultimately unknown. Esti-

mation of the mean MIC without adjusting for censorship is biased and likely to overestimate

the bacterial resistance to an antibiotic [12]. An additional issue is modeling of the underlying

distribution of the true unknown MIC values. With respect to MIC data, bacteria isolates typi-

cally consist of a mixture of two components. Depending upon the focus (or region), these two

populations may be considered resistant and non-resistant populations or wild-type and non-

wild-type populations; however, the presence of two overlapping populations is commonly

considered reasonable for these bacteria. For each component, the true concentration of anti-

biotic required to inhibit bacterial growth (i.e., the true MIC value) is believed to follow a log-

normal distribution [13]; hence, the log2MIC follows a normal distribution.

Statistical approaches for estimation of the mean MIC have been proposed previously. Kas-

steele et al. [14] suggested a model for mean log2MIC estimation that incorporated the cen-

sored nature of MIC data and adjusted for such bias using the interval-censored normal

distribution as the underlying distribution. This model is a reasonable accommodation for

censorship; however, the approach did not address the mixture of resistant and non-resistant

populations in the observed data. Craig [15] proposed that the underlying distribution of log2-

MIC can be modeled by a mixture of Gaussian distributions with resistant and non-resistant

populations. Jaspers et al. [16] [17] [18] [19] modeled the full continuous MIC distribution for

wild-type and non-wild-type bacteria populations determined by epidemiological cut-off

rather than clinical breakpoints. According to their definition of bacterial categorization, the

non-wild-type population has less informative distributions and was therefore estimated in
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non-parametric ways. These previously published approaches suggest that log2MIC mean can

be estimated, although none of the above mentioned studies evaluated an approach for esti-

mating a temporal trend in mean log2MIC, and such an approach is clearly a critical need for

AMR surveillance programs. Therefore, building upon these previous studies, we sought to

describe an approach to estimate the mean log2MIC and describe temporal changes in AMR,

while simultaneously addressing the censored nature of MIC data and the mixed distributions

of populations.

Contribution

In this paper, we proposed a hierarchical Bayesian latent class mixture model with censoring

to detect temporal changes in AMR. This proposed model was applied to data from human

samples from the Center for Disease Control National Antimicrobial Resistance Monitoring

System (NARMS) surveillance program and swine samples from the Iowa State University

Veterinary Diagnostic Laboratory (ISU VDL). The human data consisted of Salmonella I,4,

[5],12:i:- tested with ceftiofur (TIO) and chloramphenicol (CHL). The swine data included Sal-
monella I,4,[5],12:i:- tested with TIO. Our applications revealed some interesting patterns in

the Results Section. Simulation studies showed that our model was accurate and robust in the

estimation of the mean log2MIC in non-resistant populations, the linear temporal trend in

non-resistant populations, and the proportion of resistant bacteria over time. Future work

stemming from our model is also discussed in the Discussion Section. Inclusion of such analy-

ses into current surveillance programs would provide additional insight for monitoring of

temporal changes in AMR and would increase the value of information extracted from such

surveillance systems.

Methods

Model notation and assumptions

Our hierarchical Bayesian model for detection of linear temporal changes in AMR must take

into account the censored nature of the data and the underlying mixed distribution of the

observations. The commonly used approach for analysis of two-fold serial dilution observa-

tions is to transform to base 2 logarithm. To account for censoring statistically, each observed

MIC value was assumed to represent an interval of true MIC values rather than a single dis-

crete point value. With the following notations, Table 1 explains the conversion between the

observed log2MIC values and a continuous scale interval (lij, uij) for each isolate and each

antibiotic.

y�ij: observed value of log2MIC for isolation j in year i;

yij: latent true value of log2MIC for isolation j in year i;

Table 1. Conversion table between observed and latent log2MIC.

y�ij censor type lij uij yij 2 (lij, uij)

� a left censored −1 a −1< yij� a
= a interval censored a − 1 a a −1 < yij� a
> a right censored a 1 a < yij <1

The observed records of MIC from the CDC NARMS dataset range from = 0.016 to >256. Hence, the censored

log2MIC data, a, is commonly observed as integer numbers ranging from log2(0.016)� −6 to log2(256) = 8.

https://doi.org/10.1371/journal.pone.0220427.t001
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lij, uij: lower bound and upper bound of the true value yij, yij 2 (lij, uij); and

cij: latent indicator of the bacterial population from which the observation was drawn, where

i = 1, 2, . . .I, and j = 1, 2, . . ., ni. Here, I is the total number of years, and ni is the total num-

ber of isolates tested in the ith year.

Denote S as the conversion function between y�ij and yij, and therefore, y�ij ¼ SðyijÞ, which is

depicted in Fig 1 by the step-like plot. The distribution of the latent true value of log2MIC was

assumed to be a bimodal Gaussian mixture model, which corresponds to the underlying mix-

ture of resistant and non-resistant populations.

We proposed a model with a linear trend in the mean log2MIC over time. The motivation

for this model stemmed from the results of a naïve analysis of Salmonella enterica I,4,[5],12:i:-

and antibiotic CHL in the CDC NARMS dataset (the grey line displayed in Fig 2). Since the

true log2MIC cannot be observed with the raw data due to censoring, the naïve mean log2MIC

was calculated and presented over time. The naïve analysis for mean log2MIC ignored the

nature of censoring of MIC data, resulting in calculation of the arithmetic average of log2MIC

each year. For example, if the observed MIC value was� 2, then log2MIC = log2(2) = 1 was

treated as the corresponding log2MIC value and was therefore used for the naïve mean calcula-

tion. Although mathematically this approach has some issues, it served to illustrate the linear

Fig 1. Conversion plot between observed and latent log2MIC. In this example, the serial dilution experiment starts at

MIC = 2−2 = 0.25 and ends at MIC = 24 = 16.

https://doi.org/10.1371/journal.pone.0220427.g001
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trend in the non-resistant population. The potential to observe and assess the presence of a lin-

ear trend is less useful in the resistant population, because the majority of the observed log2-

MIC results are right censored at the highest concentration of the serial dilutions. As a

consequence, in the resistant population, the naïve mean log2MIC barely changed over time.

Our assumption about the linear trend in the naïve mean log2MIC was only applicable to the

non-resistant population.

Model description

Below, we describe in detail the approaches we used; however, as an introduction, we first pro-

vide a brief lay summary of the approach. In the first level of the model, we modeled the data

with a mixture Gaussian distribution within each year. This level of model did not allow for

estimation of a time effect, because each year was analyzed separately without being imposed

by any pattern in time. The second level added complexity to the model via regression of the

yearly mean log2MIC towards a line. For the resistant population, we assumed a flat line and

that yearly randomness arose around this line. For the non-resistant population, we assumed a

non-flat line that is a linear function of time. This time effect was estimated by a slope parame-

ter in the model (described below): a positive result implies that the AMR is increasing with

Fig 2. Estimation results for Salmonella enterica I,4,[5],12:i:- tested with CHL in the CDC NARMS dataset. The

grey bars represent the observed proportions of resistant bacteria (left y-axis). The grey line indicates the naïve mean of

log2MIC in the non-resistant population. The red line connects the point estimates of the mean log2MIC in the non-

resistant population. The blue line represents the estimated linear trend, shaded with its 95% CI.

https://doi.org/10.1371/journal.pone.0220427.g002

Hierarchical Bayesian linear model for antibiotic resistance

PLOS ONE | https://doi.org/10.1371/journal.pone.0220427 January 31, 2020 5 / 18

https://doi.org/10.1371/journal.pone.0220427.g002
https://doi.org/10.1371/journal.pone.0220427


time, while a negative result implies that the AMR is decreasing with time. We used the real

data for such a model with two levels and showed that the linear trend model was able to quan-

tify the year effect observed in the year-to-year mode. Based on the notations and assumptions

described in the beginning of the Methods Section, the construction procedure of the hierar-

chical Bayesian latent class mixture model with censoring and linear trends is described as fol-

lows:

cijjpi�
ind BerðpiÞ; ð1Þ

yijjcij; b0i; b1i; s
2

0
; s2

1
�
ind Nðb0i; s

2
0
Þ; cij ¼ 0

Nðb1i; s
2
1
Þ; cij ¼ 1

(

; ð2Þ

where i = 1, 2, . . ., I; j = 1, 2, . . ., ni. The variable before the pipe (“|”) was modeled with some

distribution parameterized by the variable(s) behind the pipe. Ber(p) denotes a Bernoulli distri-

bution with probability p, and N(β, σ2) denotes a normal distribution with mean β and vari-

ance σ2. In the ith year, the jth isolate comes from the resistant population with probability pi
and from the non-resistant population with probability 1 − pi. The parameters β0i represent

the mean log2MIC for the non-resistant group in ith year, and the parameters β1i represent the

mean log2MIC for the resistant group in the ith year. The variances for both components, s2
0

and s2
1
, were set as invariant across the years, because we expected the spread of the observa-

tions within one population to be consistent over time. Using a predetermined cutoff value to

categorize isolates into resistant and non-resistant can be problematic, because the threshold is

not always consistent over years for some datasets (e.g., ISU VDL dataset contains examples of

inconsistent threshold). With the Gaussian mixture model described in (1) and (2), the isolates

for each year are separated into two components based on the posterior probabilities.

So far, the model allowed estimation of the mean log2MIC for each year but has not

imposed any constraints on the yearly means. Considering the heterogeneity of bacteria iso-

lates in the MIC dataset, due perhaps to different sampling collection methods from year to

year or different labs used to test isolates (e.g., CDC NARMS dataset contains data collected

from multiple institutes), a hierarchical modeling strategy was adopted to borrow information

about mean log2MIC values across years and to integrate uncertainty from each individual

year.

Based on the descriptive naïve means of log2MIC in the non-resistant population, we pro-

posed to incorporate a linear trend into the model above to describe the temporal changes of

the mean log2MIC in the non-resistant group for the organisms and antibiotics that appeared

to be candidates for formal assessment of a linear pattern. First, we modeled the yearly mean

log2MIC of the non-resistant population by introducing the hyper-parameters γ0 and γ1, with

a simple linear model as follows:

b0i ¼ g0 þ g1ti þ �i; ð3Þ

where i = 1, 2, . . ., I. �i �iid Nð0; t2
0
Þ. Time (year) was used as a covariate with ti = i. For the

first year of our observation ti = i = 1. This is equivalent to

b0ijg0; g1; t
2

0
�
ind Nðm0i; t

2

0
Þ; ð4Þ

where μ0i = γ0 + γ1ti. Second, we modeled the yearly mean log2MIC of the resistant population,

using the hyper-parameter μ1 which is a constant:

b1ijm1; t
2

1
�
iid Nðm1; t

2

1
Þ: ð5Þ
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This model implied that the yearly mean of log2MIC in the non-resistant population is distrib-

uted around a straight line with intercept γ0 and slope γ1, with normally distributed error and

variance quantified by t2
0
, while the yearly mean of log2MIC in the resistant population is dis-

tributed around a constant μ1, also with normally distributed error and variance quantified by

t2
1
. We modeled the yearly mean log2MIC of the resistant population with a constant instead of

a linear trend because the MIC determination of the observed log2MIC is often highly right

censored, meaning that we do not have enough information to estimate β1i or its trend. If

more studies reported end-point dilutions for resistant isolates, modeling the time trend in the

resistant population would likely be feasible.

Further modeling on top of the first level, i.e. Eqs (1) and (2), involved addition of more

hyper-parameters in the hierarchical structure for the proportion of the resistant population in

the ith year, pi. This parameter was modeled with a normal distribution through a logit link

function:

ai≔ logitðpiÞ ¼ log
pi

1 � pi

� �

; ð6Þ

aijy; n
2�

iid Nðy; n2Þ; i ¼ 1; 2; . . . ; I: ð7Þ

Let Θ be the vector of all unknown parameters ðg0; g1; m1; y; t
2
0
; t2

1
; s2

0
; s2

1
; n2Þ

T
; f be a

generic expression for probability density function (pdf) or probability mass function

(pmf). Also,y� ¼ ðy�
1
; . . . ; y�I Þ, where y�i ¼ y�i1; . . . ; y�ini ; β0 ¼ ðb01; . . . ; b0IÞ; β1 ¼ ðb11; . . . ; b1IÞ;

p ¼ ðp0; . . . ; pIÞ; i ¼ 1; 2; . . . ; I. The joint likelihood function was used as follows:

f ðy�jYÞ ¼
YI

i¼1

Yni

j¼1

f ðy�ijjYÞ; ð8Þ

( f ðy�ijjYÞ ¼
Z uij

lij

f ðyijjYÞdyij ¼
Z uij

lij

X

cij¼0;1

f ðyij; cijjYÞdyij; ð9Þ

( f ðyij; cijjYÞ ¼
Z 1

0

Z þ1

� 1

Z þ1

� 1

f ðyij; cij; b0i; b1i; pijYÞdb0idb1idpi; ð10Þ

Based on densities and masses from Eqs (1) to (7):

( f ðyij; cij; b0i; b1i; pijYÞ

¼ f ðyij; cij; b0i; b1i; pijg0; g1; m1; y; t
2
0
; t2

1
; s2

0
; s2

1
; n2Þ

¼ f ðyijjcij; b0i; b1i; s
2
0
; s2

1
Þ � f ðcijjpiÞ � f ðb0ijg0; g1; t

2
0
Þ � f ðb1ijm1; t

2
1
Þ � f ðpijy; n

2Þ:

ð11Þ

For Eq (9), our latent variables yij and cij were integrated (summed) over their possible

range (values) to obtain the likelihood function of the observed data. In Eq (10), the mean and

proportion parameters were also integrated over their supports. Eq (11) shows the derivation

of the likelihood of latent variables and parameters from the data model.

Prior distribution for hierarchical model parameters

The full Bayesian analysis required a joint prior distribution of all unknown parameters

in the model. In our model setting, the vector of unknown parameters was

Y ¼ ðg0; g1; m1; y; t
2
0
; t2

1
; s2

0
; s2

1
; n2Þ

T
. Furthermore, we assumed independent prior

Hierarchical Bayesian linear model for antibiotic resistance
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distribution for each parameter. The inverse gamma distribution was assigned to each vari-

ance of the data model and hierarchical part, due to their positive supports. The normal dis-

tribution was assigned to each linear parameter and each mean parameter of the hierarchical

part, due to their supports on the whole real line. Since we did not have sufficient prior

knowledge about these parameters, non-informative priors were used within the conjugate

family. In particular, small values were chosen for the shape and scale parameters of the

inverse gamma prior distribution; and large variance was chosen for the normal prior distri-

bution.

t2

0
; t2

1
; s2

0
; s2

1
; n2�

iid IGð10� 4; 10� 4Þ; ð12Þ

g0; g1; m1; y�
iid Nð0; 106Þ: ð13Þ

Using the Bayesian rule, our goal was to obtain samples and draw inference from the poste-

rior distribution, which can be expressed based on densities from (8) to (13):

f ðYjy�Þ

/ f ðy�jYÞf ðYÞ

/ f ðy�jYÞf ðg0Þf ðg1Þf ðm1Þf ðyÞf ðt2
0
Þf ðt2

1
Þf ðs2

0
Þf ðs2

1
Þf ðn2Þ

: ð14Þ

The posterior distribution did not have a closed form, and we illustrated the sampling

approach in the following section with some real data applications.

Application to real datasets

The goal of the assessment of the linear trend was to add a new dimension to understanding

the temporal changes of AMR in both humans and livestock. To illustrate this, we applied

the proposed model to human data from the CDC NARMS surveillance program and swine

data submissions to the ISU VDL. The CDC NARMS data included Salmonella I,4,[5],12:i:-

tested with CHL and TIO, while the swine data included Salmonella I,4,[5],12:i:- tested with

TIO.

Description of the CDC NARMS data used

NARMS program collects isolates of Salmonella spp., Escherichia coli and Campylobacter spp.

The AMR data collected for the CDC surveillance program were obtained from bacteria iso-

lated from patients who attend public health departments or hospitals that are part of the CDC

NARMS surveillance network between 1996 and 2015. In the CDC NARMS dataset, the most

abundant species was Salmonella enterica, which accounted for 58.70% of the 54351 total iso-

lates. Serotype I,4,[5],12:i:- had 892 records in the dataset, accounting for 2.79% of the Salmo-
nella enterica isolates. We chose Salmonella enterica I,4,[5],12:i:- because this strain is an

emerging pathogen with public health implications for both hosts. The antibiotics CHL and

TIO were selected for evaluation of a linear trend based on evidence of a linear trend in the

naïve mean log2MIC in the non-resistant population descriptive analysis. For each of the two

organism-antibiotic combinations, the distribution of the observed MIC was a mixture of two

components: resistant and non-resistant populations. Therefore, the model assumptions were

satisfied for these two combinations. Prior to the linear trend analysis, we discarded records

before 2002, because the data were sparse for the first six years of the surveillance dataset

(fewer than 10 isolates).

Hierarchical Bayesian linear model for antibiotic resistance
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Description of the VDL data used

Organisms isolated from livestock and submitted to veterinary diagnostic laboratories offer

insight into the emergence and patterns of AMR. This population of organisms could offer dif-

ferent and unique information about AMR, providing insight into the implications for the

spread of resistance through the local environment as well as occupational exposure. Yuan

et al. (2018) reported that the swine population submitted to the ISU VDL suggested emer-

gence of the pathogen Salmonella I,4,[5],12:i:- sooner than the NARMS data. For comparison

with the analysis for the CDC NARMS data and also for the sake of model assumptions, we

applied the proposed model to a subset of ISU VDL data: Salmonella enterica I,4,[5],12:i:-

tested with TIO from swine submissions. We did not evaluate CHL as for the CDC NARMS

data, as this antibiotic was not used by the ISU VDL.

The ISU VDL dataset provided surveillance data on MIC from 2003 to 2018, comprising

93,634 isolates in total in the swine subset. Of these, 21,392 isolates are Salmonella enterica.

Our target subset, Salmonella enterica serotype I,4,[5],12:i:- in the swine submissions included

1,967 isolates. We removed data obtained in 2018, because records in 2018 were not complete

and still being processed in the diagnostic laboratory at the time of our analysis. We also

excluded data from the first 8 years and focused on data obtained between 2011 and 2017, due

to the sparsity of isolates observed in the first few years.

The implementation of the Bayesian model to the CDC NARMS dataset and the VDL data-

set followed the same procedure. We describe the determination of the initial values of the

Markov Chain Monte Carlo (MCMC) chain and calculation for inference in the next

subsection.

Implementation

Our proposed hierarchical Bayesian latent class mixture model with censoring and linear

trend was implemented using the MCMC Gibbs sampling method. The Gibbs sampling algo-

rithm was adapted for censorship in a finite mixture model [20] [21]. The algorithm of the

Gibbs sampler is provided in S1 Appendix. All computation was implemented using R 3.3.5.

All R scripts (including data cleaning, model construction, model implementation, results

extraction, and results visualization) are provided on Github Github repository: https://github.

com/MinZhang95/AMR-Linear.

The initial values for MCMC were obtained from the raw data, so that the MCMC chain

converged soon. For one combination of organism and antibiotic, the naïve mean of log2MIC

in the non-resistant population in each tested year with censorship was calculated as the initial

values for β0i. Similarly, the naïve mean of log2MIC values in the resistant population in each

year was calculated as initial values for β1i, i = 1, 2, . . ., I. For the CDC NARMS dataset, I = 14,

and for the VDL dataset, I = 7. The initial values for the linear parameters γ0 and γ1 were

obtained from fitting β0i and years i = 1, 2, . . ., I with simple linear regression. The estimated

standard deviation of the error term of the simple linear regression was used as the initial

value for τ0. The sample mean and sample standard deviation of β1i(i = 1, 2, . . ., I) were calcu-

lated as the initial values for μ1 and τ1, respectively. The initial values for the proportion of the

resistant population pi were calculated by dividing the number of resistant isolates by the total

number of isolates in each year. The initial values of αi(i = 1, 2, . . ., I) were obtained by per-

forming a logit transformation on the proportions pi.
Ten thousand iterations were performed, and the remaining 6,000 iterations after the 4,000

burn-in iterations were collected to make inferences. The parameters in the model were esti-

mated by the mean of posterior distribution. The 2.5th and 97.5th percentiles of those 6,000
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samples of posterior draws were used for determination of the 95% credible interval (CI).

Results are presented and interpreted in the following section.

Results

Using the proposed hierarchical Bayesian latent class mixture model with censoring and linear

trend, we analyzed the resistance level of Salmonella enterica I,4,[5],12:i:- tested with CHL and

TIO in the CDC NARMS human data and also Salmonella enterica I,4,[5],12:i:- tested with

TIO in the ISU VDL swine dataset. The goal of the analyses was to illustrate the evaluation of

increasing or decreasing trends in mean log2MIC over time in order to identify trends with

important public health implications. The estimates of the yearly mean log2MIC in both the

non-resistant (b̂0i) and resistant populations (b̂1i) and estimates of the proportions of the pop-

ulation designated as resistant (p̂i), along with their 95% CIs, are presented in Tables 2, 3 and

4. A linear model was fitted to the mean log2MIC in the non-resistant population to borrow

information across years and to reveal a potential linear trend. The intercept (γ0) was inter-

preted as the baseline of the mean log2MIC in the non-resistant population, while the slope

(γ1) was interpreted as an increase in the resistance from the previous year (for i = 2, . . ., I) or

from the baseline (for i = 1). The point and interval estimates of the linear model parameters

for each example are presented in Table 5. Among all the above-mentioned estimates, the esti-

mates for the yearly mean log2MIC (b̂0i) and the linear parameters (ĝ0; ĝ1) of the non-resistant

population are of the greatest interest, as the main objective of our study was to use the pro-

posed model to detect linear temporal changes in AMR in the susceptible group. If b̂0i shows

an increase over time and the estimated slope ĝ1 is positive, then this result could signify

increasing resistance for the organism to the antibiotic. The estimates for these parameters are

also presented in Figs 2, 3 and 4 for better visualization. The yearly mean log2MIC in the resis-

tant population (b̂1i) was not our priority in this study, as most of the observations in the resis-

tant population are right censored and thus do not provide enough information for parameter

estimations. This right censoring also underlay the wide credible intervals of b̂1i.

Table 2. Point estimates and 95% CIs for mean and proportion parameters for Salmonella I,4,[5],12:i:- tested with (CHL) from the CDC NARMS dataset.

Estimated mean log2MIC in the non-resistant

population

Estimated mean log2MIC in the resistant

population

Estimated proportion of resistant population

Year β̂0i 95% CI of β̂0i β̂1i 95% CI of β̂1i
p̂ i 95% CI of p̂i

2002 1.7238 (1.5553, 1.8918) 14.7834 (7.9651, 22.0001) 0.0263 (0.0128, 0.0444)

2003 1.8222 (1.6545, 1.9887) 14.6345 (7.8851, 21.8576) 0.0252 (0.0084, 0.0384)

2004 1.8161 (1.6386, 1.9864) 14.4699 (8.4943, 21.7372) 0.0265 (0.0133, 0.0468)

2005 1.6942 (1.5195, 1.8615) 14.6031 (7.8794, 21.8553) 0.0245 (0.0067, 0.0333)

2006 1.6782 (1.5772, 1.7793) 14.2337 (8.6058, 22.2089) 0.0252 (0.0109, 0.0346)

2007 1.8737 (1.7584, 1.9877) 14.6124 (7.2965, 21.3269) 0.0253 (0.0096, 0.0370)

2008 2.0180 (1.9090, 2.1258) 14.8148 (8.0501, 22.2385) 0.0287 (0.0188, 0.0590)

2009 1.8640 (1.7291, 1.9975) 14.6725 (8.2464, 22.1023) 0.0301 (0.0210, 0.0711)

2010 2.0592 (1.9447, 2.1789) 14.7990 (8.4321, 21.7882) 0.0253 (0.0083, 0.0351)

2011 1.9689 (1.8522, 2.0900) 14.5946 (7.9317, 21.9562) 0.0239 (0.0061, 0.0308)

2012 1.9539 (1.8505, 2.0570) 14.6309 (7.9532, 22.0486) 0.0239 (0.0058, 0.0316)

2013 2.2740 (2.1836, 2.3674) 14.8033 (7.8064, 21.4324) 0.0253 (0.0128, 0.0336)

2014 2.1307 (2.0357, 2.2311) 14.5674 (8.3267, 21.7343) 0.0248 (0.0085, 0.0348)

2015 2.2017 (2.1175, 2.2860) 14.4117 (8.2791, 21.2827) 0.0275 (0.0185, 0.0478)

https://doi.org/10.1371/journal.pone.0220427.t002
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From the first row in Table 5, which shows the estimations of the linear model parameters

for Salmonella I,4,[5],12:i:- tested with CHL in the CDC NARMS dataset, the 95% CI for the

slope was (0.0088, 0.0773), indicating a significantly positive slope estimation and therefore a

significantly increasing trend in the mean log2MIC of the non-resistant population. Fig 2

depicts this increasing pattern by plotting the fitted regression line (blue line) through the

Table 3. Point estimates and 95% CIs for mean and proportion parameters for Salmonella I,4,[5],12:i:- tested with (TIO) from the CDC NARMS dataset.

Estimated mean log2MIC in the non-resistant

population

Estimated mean log2MIC in the resistant

population

Estimated proportion of resistant population

Year β̂0i 95% CI of β̂0i β̂1i 95% CI of β̂1i
p̂ i 95% CI of p̂i

2002 -1.3309 (-1.4990, -1.1657) 12.7589 (5.6945, 22.6436) 0.0415 (0.0246, 0.0596)

2003 -1.1844 (-1.3495, -1.0210) 12.7476 (5.6395, 22.6380) 0.0422 (0.0258, 0.0624)

2004 -1.3890 (-1.5780, -1.2017) 12.5196 (5.2118, 22.6231) 0.0431 (0.0271, 0.0654)

2005 -1.2564 (-1.4195, -1.0979) 12.7641 (5.6486, 22.7206) 0.0415 (0.0256, 0.0583)

2006 -1.1858 (-1.2808, -1.0922) 12.8693 (5.8527, 22.5644) 0.0423 (0.0287, 0.0586)

2007 -0.8702 (-0.9801, -0.7550) 12.7401 (5.5777, 22.7752) 0.0418 (0.0242, 0.0603)

2008 -0.9226 (-1.0280, -0.8147) 12.7304 (5.6264, 22.6573) 0.0427 (0.0274, 0.0622)

2009 -0.7899 (-0.9158, -0.6651) 12.7352 (5.6360, 22.6448) 0.0413 (0.0246, 0.0588)

2010 -0.8039 (-0.9231, -0.6844) 12.7766 (5.7197, 22.6692) 0.0417 (0.0250, 0.0576)

2011 -0.9334 (-1.0518, -0.8116) 12.7302 (5.5366, 22.6482) 0.0432 (0.0269, 0.0622)

2012 -0.6249 (-0.7338, -0.5156) 12.5240 (5.1599, 22.6408) 0.0404 (0.0218, 0.0562)

2013 -0.5035 (-0.5995, -0.4095) 12.7588 (5.5134, 22.7535) 0.0398 (0.0203, 0.0547)

2014 -0.8214 (-0.9197, -0.7222) 12.8010 (5.5933, 22.8088) 0.0424 (0.0242, 0.0604)

2015 -0.7063 (-0.7908, -0.6185) 12.7208 (5.8189, 22.6522) 0.0458 (0.0309, 0.0736)

https://doi.org/10.1371/journal.pone.0220427.t003

Table 4. Point estimates and 95% CIs for mean and proportion parameters for Salmonella I,4,[5],12:i:- tested with (TIO) in the ISU VDL dataset.

Estimated mean log2MIC in the non-resistant

population

Estimated mean log2MIC in the resistant

population

Estimated proportion of resistant population

Year β̂0i 95% CI of β̂0i β̂1i 95% CI of β̂1i
p̂ i 95% CI of p̂i

2011 -1.5938 (-2.0234, -1.1577) 3.0631 (2.6063, 3.5410) 0.2214 (0.1648, 0.2733)

2012 -1.4962 (-1.6860, -1.3145) 3.3031 (3.0435, 3.6241) 0.2126 (0.1574, 0.2536)

2013 -1.0193 (-1.1410, -0.8924) 3.3055 (3.0956, 3.5459) 0.2100 (0.1645, 0.2472)

2014 -0.9867 (-1.1124, -0.8591) 3.2542 (3.0673, 3.4813) 0.2100 (0.1627, 0.2428)

2015 -0.8984 (-1.0210, -0.7761) 3.0831 (2.9517, 3.2393) 0.2341 (0.2011, 0.2842)

2016 -0.9169 (-0.9952, -0.8391) 3.1126 (3.0195, 3.2254) 0.2288 (0.2043, 0.2628)

2017 -0.6747 (-0.7633, -0.5882) 3.0487 (2.9413, 3.1770) 0.2137 (0.1804, 0.2411)

https://doi.org/10.1371/journal.pone.0220427.t004

Table 5. Point estimates and 95% CIs for linear model parameters in the three examples.

Estimated intercept for the linear trend of non-

resistant mean log2MIC

Estimated slope for the linear trend of non-

resistant mean log2MIC

Data set Antibiotic γ̂ 0 95% CI of γ̂ 0 γ̂ 1 95% CI of γ̂ 1

CDC NARMS CHL 1.6225 (1.3416, 1.8861) 0.0415 (0.0088, 0.0773)

CDC NARMS TIO -1.2297 (-1.6223, -0.7820) 0.0369 (-0.0168, 0.0844)

ISU VDL TIO -1.6391 (-2.2577, -1.0546) 0.1388 (0.0049, 0.2713)

https://doi.org/10.1371/journal.pone.0220427.t005
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estimated non-resistant means (red points). The yearly non-resistant means were scattered

around the regression line in a random pattern, in agreement with the linear model assump-

tion of independence. The grey histogram in Fig 2 shows the observed proportions of the resis-

tant isolates. Notably, no Salmonella I,4,[5],12:i:- isolate resistant to CHL was observed for

some years, while the mean of log2MIC below the resistance threshold was estimated to be

increasing constantly. This example demonstrated a situation in which analysis based on

dichotomized MIC alone would misleadingly indicate a decreasing level of resistance from

2009 to 2012 and neglect the increasing level of resistance below the break point. Based on

these results, we concluded that an intervention for use of CHL for Salmonella I,4,[5],12:i:- in

human is suggested to prevent a possible outbreak of resistance if the linearly increasing pat-

tern is allowed to continue in the following years.

In the example of Salmonella I,4,[5],12:i:- tested with TIO in the CDC NARMS dataset, we

found an insignificant slope estimation, with a 95% CI of (−0.0168, 0.0844) (second row in

Table 5). Despite the notion the true value of the slope parameter is within an interval that con-

tains zero, our best estimation was positive, and the major coverage of the CI was greater than

zero. No organism exhibited resistance to TIO above the threshold in 2012, reflecting a rapid

Fig 3. Estimation results for Salmonella enterica I,4,[5],12:i:- tested with TIO in the CDC NARMS dataset. The

grey bars represent the observed proportions of resistant bacteria (left y-axis). The grey line indicates the naïve mean of

log2MIC in the non-resistant population. The red line connects the point estimates of the mean log2MIC in the non-

resistant population. The blue line represents the estimated linear trend, shaded with its 95% CI.

https://doi.org/10.1371/journal.pone.0220427.g003
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decrease from more than 5% in 2011. This phenomenon was accompanied by a stable MIC

increase in the non-resistant population.

For the ISU VDL dataset, we detected a significantly increasing pattern in the non-resistant

means for Salmonella I,4,[5],12:i:- tested with TIO, with a 95% CI of (0.0049, 0.2713) (third

row in Table 5). As shown in Fig 4, the 95% CI of the estimated regression line (the shaded

area) is rather wide compared with those in Figs 2 and 3, and the difference likely resulted

from the limited number of observations in this example. In this VDL swine dataset, the

observed resistant proportions exhibited an abrupt decrease in 2012, an abrupt increase in

2015, and a continuous decrease since that time. Our estimated regression line added more

dimensions in the non-resistant population by revealing the creep in its mean log2MIC.

Model evaluation with simulation

In order to assess the performance of the proposed hierarchical Bayesian latent class mixture

model with censoring and linear trend, a simulation study was conducted based on the CDC

NARMS-CHL example. In our model, the parameters of interest were g0; g1; m1; y; t
2
0
; t2

1
; s2

0
; s2

1
,

Fig 4. Estimation results for Salmonella enterica I,4,[5],12:i:- tested with TIO in the ISU VDL dataset. The grey

bars represent the observed proportions of resistant bacteria (left y-axis). The grey line indicates the naïve mean of

log2MIC in the non-resistant population. The red line connects the point estimates of the mean log2MIC in the non-

resistant population. The blue line represents the estimated linear trend, shaded with its 95% CI.

https://doi.org/10.1371/journal.pone.0220427.g004
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and ν2. In the simulation study, these parameters were predetermined according to the estima-

tion results from the example and were denoted with a “hat” on the Greek letter. Also, we sim-

ulated the same number of observations for the ith year as the total number of isolates (ni) in

the CDC NARMS-CHL dataset. The data generation process is described in the following

steps.

For i = 1, 2, . . ., I; j = 1, 2, . . ., ni; and ti = i:

1. Generate ai�
iid Nðŷ; n̂2Þ.

2. Calculate pi by performing an expit transformation (inverse of logit) on αi, pi ¼
1

1þexpð� aiÞ
.

3. Generate the latent class indicator cij�
ind BerðpiÞ.

4. Generate the mean log2MIC in the non-resistant population b0i�
ind Nðĝ0 þ ĝ1ti; t̂

2

0
Þ.

5. Generate the mean log2MIC in the resistant population b1i�
ind Nðm̂1; t̂1

2Þ.

6. Generate the log2MIC for isolate j in year i with yij�
ind Nðb0i; ŝ

2
0
Þ; cij ¼ 0

Nðb1i; ŝ
2
1
Þ; cij ¼ 1

(

.

The simulated pi and β0i were treated as the real proportion of resistant population and the

real yearly mean of log2MIC, which were compared with estimations based on the simu-

lated observations subsequently. Until this point, the simulated yij were continuous values

drawn from a mixture of Gaussian distributions. To mimic the censoring nature of log2-

MIC, yij was also censored according to its value. We previously defined lij and uij to be the

lower bound and upper bound of yij. For CHL, the starting dilution was 2 mg/ml, and the

ending dilution was 32 mg/ml for both serotypes. This indicated that if yij� log2(2), then it

will be left censored as yij� 1 with lij = −1 and uij = 1. Similarly, if yij> log2(32), it will be

right censored as yij> 5, with lij = 5 and uij =1. If log2(2) < yij� log2(32), then yij will be

interval censored with lij as its nearest integer to the left and uij as its nearest integer to the

right. This censoring operation corresponds to step 7.

7. Censor the underlying true values of log2MIC, yij, to the observed values y�ij with

y�ij ¼

1; yij � 1

dy�ije; 1 < yij � 5

5; yij > 5

8
><

>:
, where dy�ije represents rounding up to the nearest integer.

End of simulation.

As a single set of observed log2MIC (i.e., y�ij) could be generated by completing steps 1 to 7,

we simulated 100 datasets by repeating the above procedure 100 times. With each simulated

dataset, estimation was conducted using the proposed hierarchical Bayesian model, which pro-

duced a set of estimations: ~pi;
~b0i; ~g0; ~g1, etc., for i = 1, 2, . . ., I.

As a comparison, parameters were also estimated with the naïve estimation method,

where ~pi is nothing but the yearly proportion of resistant component; ~b0i is the yearly

arithmetic mean of the observed log2MIC in the non-resistant component; and the ~g0; ~g1 are

estimations obtained from simple linear regression on the ~b0i against time. The naïve estima-

tion method does not resolve the censorship issue, and separate the isolates with a hard

threshold.

In order to assess and compare the performance of our hierarchical Bayesian model and the

naïve approach, two metrics were calculated. The first was the mean bias over the 100

Hierarchical Bayesian linear model for antibiotic resistance
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simulations, and the second was the root of mean squared error (RMSE). Mean bias measures

how close the estimations are relative to the true parameter values, while RMSE measures the

variation of estimates around the true parameters.

Table 6 shows the mean bias and RMSE for the yearly parameters, and Table 7 shows the

two metrics for the linear parameters, both of which compare between the proposed hierarchi-

cal Bayesian model and the naïve approach. The mean biases and RMSE for pi, β0i, and γ0 from

our proposed model were closer to 0 compared with those from the naïve approach. The mean

biases and RMSE for γ1 produced by the two approaches were both fairly small with similar

values. This simulation study indicates that the estimations for the most relevant parameters

are precise and robust by utilizing our proposed model.

Discussion

Our goal with this study was to address a deficiency in the available approaches for analysis of

AMR data using MIC values. AMR is a serious public health issue worldwide, and enormous

resources have been devoted to monitoring the changes in MIC over the years. We proposed a

Bayesian hierarchical model with a linear trend and demonstrated that this model enables

Table 6. The mean bias and RMSE of the proportion and mean parameters from the simulation study—A comparison between the proposed model and the naïve

approach.

Proposed hierarchical Bayesian model Naïve approach

Mean bias RMSE Mean bias RMSE

Year pi β0i pi β0i pi β0i pi β0i

2002 0.00018 -0.00181 0.00682 0.07521 0.00533 0.42282 0.02933 0.46958

2003 0.00069 -0.00522 0.00685 0.08694 0.00067 0.35529 0.02818 0.40492

2004 0.00097 0.00266 0.00685 0.10295 0.00383 0.41238 0.03005 0.45091

2005 -0.00025 0.00289 0.00729 0.07703 -0.00155 0.58917 0.02530 0.62948

2006 0.00063 -0.00034 0.00643 0.04481 0.00203 0.64111 0.01725 0.66823

2007 0.00003 -0.00119 0.00735 0.05521 -0.00199 0.49288 0.01775 0.53106

2008 -0.00011 -0.00125 0.00704 0.04911 -0.00712 0.37628 0.02086 0.41558

2009 0.00018 -0.00152 0.00739 0.06671 -0.00672 0.60513 0.02272 0.63279

2010 -0.00014 0.00186 0.00667 0.06255 0.00053 0.44058 0.02068 0.48096

2011 0.00002 0.00847 0.00696 0.06332 -0.00058 0.58104 0.02107 0.62239

2012 0.00085 -0.00129 0.00654 0.05962 0.00326 0.65920 0.01896 0.69075

2013 -0.00009 -0.00834 0.00664 0.04629 0.00123 0.36472 0.01612 0.41247

2014 -0.00003 0.00078 0.00697 0.05114 -0.00281 0.53222 0.01701 0.56277

2015 -0.00009 0.00031 0.00685 0.04405 -0.00383 0.53804 0.01430 0.56901

The parameter pi represents the proportion of the resistant population, and β0i represents the mean log2MIC in the non-resistant population of the ith year.

https://doi.org/10.1371/journal.pone.0220427.t006

Table 7. The mean bias and RMSE of the linear model parameters from the simulation study—A comparison between the proposed model and the naïve approach.

Mean bias RMSE

γ0 γ1 γ0 γ1

Proposed model -0.02105 0.00330 0.20174 0.02669

Naïve approach 0.47159 0.00398 0.48441 0.01387

The parameters γ0 and γ1 represent the intercept and slope of the linear trend in the proposed model.

https://doi.org/10.1371/journal.pone.0220427.t007
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additional information about the linear patterns in the mean log2MIC in the non-resistant

population in addition to the proportion of resistant bacteria. The linear changes in the non-

resistant population may be linear creep that signals a need for intervention or a linear decline

that implies a successful intervention. Therefore, our proposed model offers a tool to a more

complete picture of the resistance level of organisms against various antibiotics, providing

valuable information for the surveillance programs.

The proposed approach was founded on the concept of identifying a valid and robust mean

log2MIC estimate that addresses the latent nature of the MIC data. Under our framework,

there were two sources of latent parameters. One resulted from censorship, as the true under-

lying continuous values for the censored observed MIC values are unknown. The other

involved the population from which the bacterial isolates arose (resistant or non-resistant pop-

ulation). By tackling the censorship problem and incorporating the mixed components of the

data, our Bayesian hierarchical model corrected the systematic bias of the mean MIC estima-

tions and separated the isolates from different groups. We then added a higher level of com-

plexity to this fundamental model setup: linear regression in the hierarchical model.

Considering the variation of the MIC values shown in the dataset, we allowed the mean

log2MIC to vary across different years. The Bayesian hierarchical model yielded a more robust

estimation by shrinking the mean estimates towards a linear regression line in the non-resis-

tant population and towards a common constant in the resistant population. In this way, we

were able to quantify the linear pattern in the mean log2MIC in the group of isolates that are

often undervalued by researchers. Compared with regressing the mean log2MIC to a constant

in the non-resistant population, a linear trend with a non-zero slope provided a better fit to the

datasets and satisfied our model assumptions.

Our model relied on several assumptions. We assumed normal distributions for resistant

and non-resistant populations. This assumption was supported by the observed MIC distribu-

tion for the examples used in this paper; however, under violation of this assumption, non-

parametric methods, such as spline fitting, could be used to replace the normality assumption

[16]. For both resistant and non-resistant populations, we also assumed invariant variances

across years, following the principle of parsimonious models. This assumption could be

important when there are observations from many years but not enough observations within

each year. In addition, we assumed that the proportion of the resistant population was inde-

pendent across all years. We also assumed the mean log2MIC had independent errors in the

linear model and the constant mean model in the sub-populations. Violation of this assump-

tion would require inclusion of a correlation structure in the proportions or the errors terms.

In conclusion, we proposed a framework of analysis of longitudinal log2MIC data using a

Bayesian hierarchical approach with linear trend. We not only estimated the mean of log2MIC

values properly and accurately but also detected a significant linear increase in the mean log2-

MIC in the non-resistant population for some given organisms and antibiotics, potentially sig-

naling the need for intervention. Additional directions from this proposed framework include

studying the correlations among multiple antibiotics, between human and animal resistance,

and between different surveillance programs for the same population. In addition, analysis of

the relationship between clinical interventions and the MIC responses to the interventions

based on these models is of interest.
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